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Abstract. We consider the partition lattice Π(λ) on any set of transfinite cardi-
nality λ and properties of Π(λ) whose analogues do not hold for finite cardinalities.
Assuming AC, we prove: (I) the cardinality of any maximal well-ordered chain is
always exactly λ; (II) there are maximal chains in Π(λ) of cardinality > λ; (III) a
regular cardinal λ is strongly inaccessible if and only if every maximal chain Π(λ) has
size at least λ; if λ is a singular cardinal and µ<κ < λ ≤ µκ for some cardinals κ
and (possibly finite) µ, then there is a maximal chain of size < λ in Π(λ); (IV) every
non-trivial maximal antichain in Π(λ) has cardinality between λ and 2λ, and these
bounds are realized. Moreover, there are maximal antichains of cardinality max(λ, 2κ)

for any κ ≤ λ; (V) all cardinals of the form λκ with 0 ≤ κ ≤ λ occur as the cardinal-
ities of sets of complements to some partition P ∈ Π(λ), and only these cardinalities
appear. Moreover, we give a direct formula for the number of complements to a given
partition;

Under the GCH, the cardinalities of maximal chains, maximal antichains, and
numbers of complements are fully determined, and we provide a complete character-
ization.

1. Introduction and results

For a set S, the lattice of all equivalence relations, and that of all partitions
over S, will be denoted by Equ(S) and Π(S), respectively. For a cardinal
κ, Equ(κ) and Π(κ) will denote Equ(S) and Π(S), respectively, such that
|S| = κ. By the standard correspondence between partitions and equivalence
relations, the lattices Equ(S) and Π(S) are isomorphic. It is well-known that
the lattice Equ(S) ' Π(S) is algebraic, simple, semimodular, and relatively
complemented, see, for example Birkhoff [Bir40, §8-9], Burris and Sankap-
panavar [BS81, Theorem 4.11], Grätzer [Grä03, Sec. IV.4], Nation [Nat, Sec.
4], or Stern [Ste99].

For properties depending on κ, only a few results exist in the literature for
infinite κ. Czédli has proved that if there is no inaccessible cardinal ≤ κ then
the following holds: If κ ≥ 4, Π(κ) is generated by four elements [Czé96a],
and if κ ≥ 7, Π(κ) is (1+1+2)-generated [Czé99] (for κ = ℵ0, slightly stronger
results hold [Czé96b]). It appears that no further results are known, beyond
those holding for all cardinalities, finite or infinite. The aim of the present
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work is to prove a number of results concerning Π(κ) that depend on κ being
an infinite cardinal.

We first deal with the length of maximal chains in partition lattices. We
prove that a well-ordered maximal chain in the lattice Π(λ) has cardinality λ.
Then, given infinite cardinals κ < λ, we prove that there is a maximal chain
of length ≤ κ in the lattice Π(λ) if and only if Π(κ) contains a maximal chain
of length ≥ λ, and both equivalent to the property D(κ, λ), introduced by
Baumgartner [Bau76, Sec. 2], that there exists a chain of size λ with a weakly
dense subset of size κ. Furthermore, property D(κ, λ) holds true if and only if
there is a tree of size and height at most κ with at least λ branches. Besides we
study the question whether a lattice Π(λ) contains a maximal chain of size > λ

and < λ, respectively. The first follows from Theorem 3.19 and [Sie22] (see
also [Bau76, Corollary 2.4]) while the latter is false for strong limit cardinals.
For regular λ, this is the only case when the maximal chains of size < λ do
not exist. For singular cardinals we only provide some partial results.

Next we study possible cardinalities of maximal antichains in the partition
lattice Π(λ). We prove that a non-trivial (i.e., distinct from {⊥Π(λ),>Π(λ)})
maximal antichain has size between λ and 2λ. It is easy to see that both the
bounds are realized by the antichain of all atoms and the antichain consisting
of all co-atoms of Π(λ), respectively. We prove that these might not be the
only possible cardinalities of maximal antichains by constructing a maximal
antichain in Π(λ) of size 2κ for every κ with λ ≤ 2κ ≤ 2λ.

Finally we prove that a non-trivial, i.e., distinct from ⊥ and >, partition
P ∈ Π(λ) has 2λ complements unless P has a single block, say B, of size λ
and |λ \B| < λ. In this case the partition P has exactly λ|λ\B| complements.

We conclude the paper with the summary of all the previous results under
the assumption of GCH.

2. Preliminaries and notation

2.1. Set theory. We work in ZF with the Axiom of Choice (AC). As usual,
a set S is well-ordered if and only if it is totally ordered and every non-empty
subset of S has a least element. Throughout the paper, we use von Neumann’s
characterization of ordinals: a set S is an ordinal if and only if it is strictly
well-ordered by ( and every element of S is a subset of S. The order type
of a well-ordered set S is the (necessarily unique) ordinal α that is order-
isomorphic to S. In addition to standard notation such as ω and ℵ0, cardinals
and ordinals are denoted by lowercase Greek letters α, β, γ, δ, ξ . . . for ordinals
and κ, λ, µ, ν, . . . for cardinals.

Cardinals are least ordinals of a given cardinality, and by |α| we denote the
cardinality of α. The cardinality of a set is denoted |S| and its powerset is
denoted P(S). We denote by κ+ the successor cardinal of κ.



Vol. 00, XX Chains, Antichains, and Complements in Infinite Partition Lattices 3

Given sets S, T , we denote by ST the set of all maps S → T and by |S||T |

its cardinality. For an infinite cardinal κ, and a possibly finite cardinal µ, we
set µ<κ :=

∑
α∈κ µ

|α|. By logµ λ we denote the least cardinal κ such that
λ ≤ µκ.

We denote by cf(κ) the cofinality of an infinite cardinal κ. Recall that
König’s Theorem [Kön05] implies cf(2κ) > κ, and we additionally have 2κ ≤
2λ whenever κ < λ. By Easton’s theorem [Eas70], these are the only two
constraints on permissible values for 2κ when κ is regular and when only ZFC
is assumed. In contrast, when the Generalized Continuum Hypothesis (GCH)
is assumed, cardinal exponentiation is completely determined.

Many standard results on cardinal arithmetic can be found in [HSW99],
among other places, and are used frequently throughout the proofs.

2.2. Posets and chains. A chain in a poset (P,≤) is a subset of P that is
linearly ordered by ≤. Similarly, an antichain in (P,≤) is a subset of P such
that any two distinct elements of the subset are ≤-incomparable. By amaximal
chain (resp. antichain) in (P,≤) we mean a chain (resp. antichain) maximal
with respect to inclusion. By the Maximal Chain Theorem [Hau14], every
chain in a poset is contained in a maximal chain. Similarly, every antichain is
contained in a maximal one.

A poset (P,≤) is called bounded provided that it contains a bottom element,
⊥P, and a top element, >P. A subset of the poset P containing the bottom
and the top element of P is called bounded (in P). We say that a subset X is
complete in L if it forms a complete sublattice of L.

We use [x, z] := { y ∈ P | x ≤ y ≤ z } to denote the interval in a poset P
with bounds x ≤ z.

As usual, given elements x and y of a poset (P,≤), we write x ≺P y if x < y

and no z ∈ P exists such that x < z < y. Furthermore, x �P y denotes that
either x ≺ y or x = y. Given a subset X ⊆ P, we write x ≺X y if x, y ∈ X

with x < y, and there exists no z ∈ X such that x < z < y. A subset X ⊆ P

is called covering (in P) if x ≺X y implies x ≺P y.
If the poset P is clear from the context, we drop the subscript when denoting

the top, the bottom element, or the covering relation in P. We are going to
make use of the following elementary lemmas:

Lemma 2.1. A chain C in a complete lattice L is maximal if and only if it
is bounded, complete and covering in L.

Proof. The only if implication is trivial. We prove the opposite one. Suppose,
for contradiction, that the chain C is bounded, complete and covering in L

but C is not maximal, i.e., there is x ∈ L \ C such that C ∪ {x} is a chain.
We set

C−x := { y ∈ C | y < x } and C+
x := { z ∈ C | x < z } .
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Since C is bounded in L, ⊥L ∈ C−x and >L ∈ C+
x , in particular, the sets C−x

and C+
x are non-empty. It follows that∨

C−x < x <
∧

C+
x . (2.1)

Since C is complete in L, both
∨

C−x and
∧

C+
x belong to C. From x /∈ C

and C ∪ {x} being a chain, we infer that C = C−x ∪ C+
x , hence

∨
C−x ≺C∧

C+
x . Since C is covering in L, we conclude that

∨
C−x ≺L

∧
C+
x . This is in

contradiction with (2.1). �

Lemma 2.2. Let C, L be complete lattices and ϕ : C→ L be a map preserving
arbitrary joins and meets. If C is a chain and

x ≺C y =⇒ ϕ(x) �L ϕ(y), (2.2)

for all x, y ∈ C, then the image ϕ(C) forms a maximal chain in the interval
[
∧
ϕ(C),

∨
ϕ(C)].

Proof. Clearly, ϕ(C) is bounded in [
∧
ϕ(C),

∨
ϕ(C)]. Since C is complete and

the map ϕ preserves arbitrary meets and joins, the chain ϕ(C) is complete in
L. It remains to prove that ϕ(C) is covering in L.

Let a ≺ϕ(C) b in ϕ(C). Since C is a chain, x :=
∨
ϕ−1(a) ≤ y :=

∧
ϕ−1(b).

The map ϕ preserves arbitrary joins, and so we have that

ϕ(x) = ϕ(
∨
ϕ−1(a)) =

∨
ϕ(ϕ−1(a)) = a.

Similarly, ϕ preserving arbitrary joins implies that ϕ(y) = b. From a ≺ϕ(C) b,
we infer that x < y. If x ≤ z ≤ y for some z ∈ C, then a = ϕ(x) ≤ ϕ(z) ≤
ϕ(y) = b. Since a ≺ϕ(C) b, either ϕ(z) = a, in which case z = x, or ϕ(z) = b,
which implies that z = y. We conclude that x ≺C y, and so a ≺L b due to
(2.2). �

By a tree we mean a partially ordered set T such that for every t ∈ T,
the set ↓ t := {x ∈ T | x < t } is well-ordered. The height of t ∈ T, denoted
by ht(t), is the order-type of ↓ t. The height of T is the ordinal ht(T) :=

sup {ht(t) + 1 | t ∈ T }. The αth level of the tree T is the subset Tα of all
elements with height α.

A maximal well-ordered subset of T is called a branch. The height of a
branch b is the ordinal ht(b) := sup { ht(t) | t ∈ b }, i.e., the order type of
b. An α-branch is a branch of height α. A ht(T)-branch is called cofinal. We
denote by Br(T) the set of all branches of the tree T.

A node of the tree T is any block of the equivalence relation on T defined
by s ∼ t if and only if ↓ s = ↓ t. The height of a node N is the ordinal
ht(N) := ht(t) where t ∈ N . The support of the tree T, denoted by supp(T),
is the set of all non-singleton nodes of T.
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2.3. Partitions and equivalences. Following [Grä03, Sec. IV.4] (see also
[Nat, Sec. 4]) we sum up basic properties of the lattices Π(S) (resp. Equ(S))
of all partitions (resp. all equivalence relations) of a set S.

We denote binary relations, in particular equivalences, on a set S by Greek
letters Θ,Φ,Ψ . . . and we view them as subsets of S × S. We write x ≡Θ y if
(x, y) ∈ Θ.

We denote partitions by capital italic Roman letters P,Q, . . .. We call
elements of a partition blocks. For an element x ∈ S we denote by [x]S the
block of a partition P of a set S containing x. A partition P ∈ Π(S) naturally
induces an equivalence relation, denoted by ΘP defined by x ≡ΘP y if and only
if x and y belong to the same block of P. Conversely, any equivalence relation
corresponds to the partition whose blocks are the maximal sets of equivalent
elements. This one-to-one correspondence allows us to consider a partition as
its corresponding equivalence relation when convenient, and vice versa.

All equivalence relations on the set S form a complete lattice, denoted by
Equ(S). The meet in Equ(S) corresponds to intersection while the join is given
as a transitive closure of union, i.e, given E ⊆ Equ(S), then x ≡∨

E y if and
only if there is a natural number n and a sequence x = z0, z1, . . . , zn = y of
elements of S such that are equivalences Θ1, . . . ,Θn in E, such that zi−1 ≡Θi zi,
for all i ∈ {1, 2, . . . , n}. In particular, if E is a chain, then

∨
E =

⋃
E.

The description of (arbitrary) meets and joins in the lattice Equ(S) has a
straightforward translation for partitions based on the equalities

Θ∨
C =

∨
P∈C

ΘP and Θ∧
C =

∧
P∈C

ΘP , (2.3)

for all C ⊆ Π(S). It is straightforward to see from (2.3) that the blocks of∧
C are all the nonempty intersections whose terms are exactly one block from

every partition P ∈ C and if C is a chain, then

[x]∨C =
⋃
P∈C

[x]P , (2.4)

for all x ∈ S.
It is easily seen that ⊥Π(S) = { {x} | x ∈ S } and >Π(S) = {S}; that is, the

set of all singleton subsets of S and the singleton set equal to S, respectively.
If P ∈ Π(S) contains exactly one block B with |B| ≥ 2 and the remaining
blocks are all singletons, we call P a singular partition, following Ore [Ore42].
We will denote the singular partition with the non-singular block B by B̂.

Observe that P ≺ Q in Π(S) if and only if Q can be obtained by merging
exactly two distinct blocks of P. It follows readily that singular partitions
with a 2-element non-singleton block correspond to atoms of the lattice Π(S)

while co-atoms of Π(S) are partitions with exactly two blocks.
Let P ≤ Q be partitions of a set S. We denote by Q/P the partition of P,

i.e., of the set { [x]P | x ∈ S }, such that

[x]P ≡ΘQ/P [y]P ⇐⇒ x ≡ΘQ y,
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for all x, y ∈ S.
Observe that

[P,Q] ' [⊥,Q/P], (2.5)

where [⊥,Q/P] is the lower interval in the partition lattice Π(P) on the set of
blocks of P, and that

[⊥, B̂] ' Π(B) (2.6)

for a singular partition B̂.

3. Maximal chains in partition lattices

3.1. Well-ordered chains. For finite κ = n, it is immediate that any max-
imal chain in Π(n) has cardinality n: Each step reduces the number of blocks
by 1, whereby going from ⊥ with n blocks to > with one block requires n− 1

steps, hence n elements in the chain. For n ≥ 3, maximal chains are not
unique. In this section, we show that well-ordered maximal chains in Π(κ)

always have cardinality κ, whether κ is finite or infinite.
Let κ be an infinite cardinal. If a maximal chain in Π(κ) is well-ordered of

order type α, then α is a successor ordinal.1For clarity, we will write the order
type of a maximal chain as α+1 to emphasize this fact. Because |α| = |α+ 1|,
this has no impact on the cardinality of the chain. Such chains can be written
as C = {Pβ | β ≤ α } — or as C = {Pβ | β < α+ 1 } to emphasize the
order type — with P0 = ⊥ and Pα = >.

Lemma 3.1. Let κ be any cardinal. If a chain in Π(κ) is well-ordered of order
type α, then |α| ≤ κ.

Note that we are here speaking of any well-ordered chain, not necessarily a
maximal one, so its order type may be a limit ordinal.

Proof. The lemma holds trivially when κ is finite, as detailed above. Assume
that κ is an infinite cardinal. Let C = { Eβ | β < α } be an infinite well-
ordered chain in Equ(κ). We view the equivalence relations on κ as subsets on
κ× κ. The set { Eβ+1 \ Eβ | β + 1 < α } is formed by |α| nonempty pairwise
disjoint subsets of κ× κ. It follows that |α| ≤ |κ× κ| = κ. �

Lemma 3.2. Every well-ordered maximal chain of order type α + 1 in Π(κ)

satisfies cf(κ) ≤ |α|.

Proof. Let C = {Pβ | β < α+ 1 } be a well-ordered maximal chain in Π(κ)

of order type α + 1. Consider the partitions in this chain that have at least
one block of cardinality κ. Since > = Pα, there is at least one such partition.
Let δ be the least ordinal such that Pδ contains a block of cardinality κ. It

1Every maximal chain in Π(κ) has a maximal element, namely >. But since a well-
ordered set of limit-ordinal type has no maximal element, this implies that the order type
of a well-ordered maximal chain must be a successor-ordinal.
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exists, because every non-empty set of ordinals has a least element. Let ξ ∈ κ
be an ordinal such that

∣∣[ξ]Pδ ∣∣ = κ.
First suppose that δ = γ + 1 is a successor ordinal. Since C is a maximal

chain, it is covering due to Lemma 2.1, hence Pγ ≺Π(κ) Pδ. It follows that the
block [ξ]Pδ is a union of at most two blocks of Pγ . This is impossible since∣∣[ξ]Pδ ∣∣ = κ while the size of all blocks of Pγ is less than κ.

It follows that δ is a limit ordinal. Since the chain C is maximal, it is a
complete sublattice of Π(κ) by Lemma 2.1, hence Pδ =

∨
γ<δ Pγ . Applying

(2.4) we get that [ξ]Pδ =
⋃
γ<δ [ξ]Pγ , hence

κ =
∣∣[ξ]Pδ ∣∣ ≤∑

γ<δ

∣∣∣[ξ]Pγ ∣∣∣ . (3.1)

Since
∣∣∣[ξ]Pγ ∣∣∣ < κ for every γ < δ, we conclude from (3.1) that cf(κ) ≤ δ ≤

|α|. �

Corollary 3.3. Let κ be an infinite regular cardinal. Then every well-ordered
maximal chain in Π(κ) has size κ.

Lemma 3.4. Let C be a chain complete in Π(κ) and Q ∈ Π(κ). The map
− ∧ Q : C → Π(κ) given by the assignment P 7→ P ∧ Q preserves arbitrary
joins and meets.

Proof. The map clearly preserves arbitrary meets. The partition lattice Π(κ) is
geometric [Grä03, Theorem IV.4.2], hence upper-continuous. It follows readily
that the map − ∧Q preserves arbitrary joins. �

Applying Lemma 2.2 we get that

Lemma 3.5. Let C be a chain, complete in Π(κ), and Q ∈ Π(κ). Suppose
that

P ≺C R =⇒ P ∧Q �Π(κ) R∧Q,
for all P,R ∈ C. Then

C ∧Q := {P ∧ Q | P ∈ C }

is a maximal chain in the interval [⊥,Q].
Furthermore, if C is a well-ordered chain, then C ∧ Q is well-ordered as

well.

To see that C∧Q is well-ordered chain whenever C is well ordered, observe
that the −∧Q preimages of an infinite set with no minimal element in C∧Q
would be an infinite set with no minimal element in C.

Theorem 3.6. If κ is any infinite cardinal, then every well-ordered maximal
chain of order type α+ 1 in Π(κ) satisfies |α| = κ.

Proof. Thanks to the previous results, we only need to check that |α| ≥ κ

whenever κ is singular. Indeed, the case of regular κ is handled by Corollary 3.3
and the upper bound is due to Lemma 3.1.
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Since singular κ is a supremum of all regular λ < κ, it suffices to show that
λ ≤ |α| for every regular λ < κ.

If P ≺ Q, then Q is obtained by replacing exactly two blocks, say B1, B2

of P by their union. It follows that P ∧ λ̂ ≺ Q ∧ λ̂ if both B1 ∩ λ and B2 ∩ λ
are non-empty; and P ∧ λ̂ = Q ∧ λ̂ otherwise. In any case, P ∧ λ̂ � Q ∧ λ̂.
Applying Lemma 3.5, we infer that if C is a well-ordered maximal chain in
Π(κ) of order type α + 1, then C ∧ λ̂ is a well-ordered maximal chain in the
interval [⊥, λ̂].

Since [⊥, λ̂] ' Π(λ) by (2.6), and λ is a regular cardinal, we conclude from
Corollary 3.3 that λ =

∣∣∣C ∧ λ̂∣∣∣ ≤ |C|. �

Remark 3.7. Notice that every ordinal α + 1 with |α| = κ appears as the
order type of some well-ordered maximal chain in Π(κ). Indeed, the chain
of singular partitions

{
β̂ | β ≤ α+ 1

}
in Π(α + 1) works. In other words,

it suffices to find a well-order of order type α + 1 on κ (which exists by a
cardinality argument) and add the elements to a single block in this order.

The support of a partition P, denoted by supp(P ), is the union of all non-
singleton blocks of P.

Lemma 3.8. Let P ≤ Q in Π(κ). There is a well-ordered maximal chain in
the interval [P,Q] of size at most |supp(Q/P)|.

Proof. Since [P,Q] ' [⊥,Q/P], due to (2.5), and Q/P = Q/P ∧ ̂supp(Q/P),
we can without loss of generality assume that P = ⊥ and supp(Q) = κ. Let
C :=

{
β̂ | β ∈ κ

}
be a well-ordered maximal chain of singular partitions in

Π(κ). Observing that β̂ ∧ Q �Π(κ) β̂ + 1 ∧ Q for every ordinal β ∈ κ and

applying Lemma 3.5, we get that C∧Q =
{
β̂ ∧Q | β ∈ κ

}
is a well-ordered

maximal chain in [⊥,Q]. The cardinality of C∧Q is bounded by |C| = κ. �

3.2. Short chains. We now turn to the question of whether there are max-
imal chains of cardinality strictly less than λ in Π(λ). It is immediate that
there are no maximal chains of finite cardinality in Π(ℵ0). Indeed, each step
in a maximal chain merges exactly two blocks. Hence, starting from ⊥ which
has infinitely many blocks, after a finite number of steps it is impossible to
reach > or any other partition that has only finitely many blocks. For larger
cardinals, there is a general construction that proves existence of short chains.
In the special case where GCH is assumed, it proves existence of a maximal
chain of cardinality κ for every successor cardinal λ = κ+.

Let C be a complete lattice. For each c ∈ C, we set

c∗ :=
∧
{ c′ ∈ C | c < c′ } .
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Observe that c �C c∗ and if c ≺C c∗, then c∗ is the only cover of c. We put

C∗ := { c ∈ C | c < c∗ } .2

Lemma 3.9. Let L be a complete lattice and C a chain, complete in L. Sup-
pose that there is a maximal chain Mc ⊂ L in the interval [c, c∗] for every
c ∈ C. Then M =

⋃
c∈C Mc is a maximal chain in L.

Proof. Suppose for the contradiction that {x} ∪M is a chain for some x ∈
L \M. We set

c :=
∨
{ c′ ∈ C | c′ < x } and d :=

∧
{ d′ ∈ C | x < d′ } .

By completeness, c, d ∈ C and because x /∈ C, we get that c < x < d. Since
the union {x} ∪C is a chain, we have that c ≺C d, hence d = c∗. It follows
that x∪Mc is a chain in the interval [c, c∗], which contradicts the maximality
of Mc in [c, c∗]. �

Observe that if M is infinite, then the equality

|M| =
∑
c∈C

|Mc| = |C \C∗|+
∑
c∈C∗

|Mc| (3.2)

holds true.3

A 〈κ, λ〉-tree is a tree T of size and height at most κ and with at least λ
branches.

Lemma 3.10. Let κ, λ be infinite cardinals. There is a 〈κ, λ〉-tree if and only
if there is a tree T with |

⋃
supp(T)| ≤ κ, ht(T) = κ, and at least λ cofinal

branches.

Proof. By extending branches with well-ordered chains, we can transform a
〈κ, λ〉-tree to a tree S with |

⋃
supp(S)| ≤ κ, ht(S) = κ, and at least λ cofinal

branches.
On the other hand, by removing singleton nodes from such a tree, we obtain

a 〈κ, λ〉-tree. Indeed, let S be a tree with |
⋃

supp(S)| ≤ κ, ht(S) = κ, and
at least λ cofinal branches. We take the subtree T′ :=

⋃
supp(S) of S. From

the properties of S we readily see that the size and the height of T′ are at
most κ. Let b 6= c be branches of S and β := sup {α ∈ κ | b � α = c � α }.
Then there is a node N of height β such that b ∩N 6= c ∩N . The node N is
necessarily non-singleton, hence b∩T′ 6= c∩T′ are distinct branches of T′. It
follows that the tree T′ has at least λ branches, and so T′ is a 〈κ, λ〉-tree. �

Existence of 〈κ, λ〉-trees, for κ < λ, implies the existence of short chains in
Π(λ).

Lemma 3.11. Let κ < λ be cardinals. If there is a 〈κ, λ〉-tree, then there is a
maximal chain of size ≤ κ in Π(λ).

2Note that C∗ is the set of all completely meet-irreducible elements of C.
3Observe that for M finite we trivially compute that |M| =

∑
c∈C |Mc| − |C|+ 2.
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Proof. Suppose that there is a 〈κ, λ〉-tree. By Lemma 3.10 there is a tree S

with |
⋃

supp(S)| ≤ κ, ht(S) = κ, and at least λ cofinal branches. Let T be
a set of cofinal branches of S with |T | = λ. Observe that T =

⋃
T ⊂ S is a

tree with |
⋃

supp(T)| ≤ κ, ht(T) = κ, |Br(T)| = λ and all branches of T are
cofinal.

Given an ordinal α ≤ ht(T), we set

b � α := { t ∈ b | ht(t) < α } ,

for every branch b ∈ Br(T), and we let Pα be a partition of Br(T) defined
via the corresponding equivalence relation as

b ≡ΘPα
c ⇐⇒ b � α = c � α,

for all b, c ∈ Br(T). Observe that Pα ≥ Pβ whenever α ≤ β < ht(T) and

Pβ =
∧
α<β

Pα, (3.3)

for every limit ordinal β ≤ ht(T). It follows that the chain

C := {Pα | α ≤ ht(T) }

is complete in Π(Br(T)). By possibly removing all levels where the tree T

does not branch, we can without loss of generality assume that Pα > Pβ for
all α < β ≤ ht(T). Observe that then C∗ = {Pα+1 | α < ht(T) }. Using
Lemma 3.8, we construct a well-ordered maximal chain in each [Pα,Pα+1].
Applying Lemma 3.9, we extend the chain C to a maximal chain M. The size
of M is estimated as

|M| ≤ |C \C∗|+
∑

α∈ht(T)

|supp(Pα/Pα+1)| , (3.4)

due to (3.2) and Lemma 3.8. It is straightforward to see that |C| ≤ ht(T) ≤ κ
and |supp(Pα/Pα+1)| ≤ |

⋃
supp(T)| ≤ κ, for every α < ht(T). Substituting

to (3.4) we conclude that |M| ≤ κ+ ht(T) · κ = κ. �

Let κ be a possibly finite cardinal and µ an infinite cardinal. We pick a
sequence { να | α ∈ cf(µ) } of cardinals with

∑
α∈cf(µ) να = µ and denote by

B(µ, κ) the tree consisting of all maps να → κ, α ∈ cf(µ), i.e.,

B(µ, κ) :=
⋃

α∈cf(µ)

νακ,

ordered by inclusion. Observe that B(µ, κ) is a tree of height cf(µ), size
κ<µ =

∑
α∈cf(µ) κ

να , and with κµ branches, all of them cofinal. In particular
B(µ, κ) is a 〈κ<µ, κµ〉-tree.

Let κ be a possibly finite cardinal and λ an infinite cardinal. Observe that
logκ λ is infinite provided that κ < λ. Therefore B(logκ λ, κ) is a 〈κ<logκ λ, λ〉-
tree (cf. [Bau76, Corollary 2.4]). Applying Lemma 3.11 we get that

Corollary 3.12. Let λ be an infinite cardinal and κ < λ a possibly finite
cardinal. Then Π(λ) contains a maximal chain of size at most κ<logκ λ < λ.
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From Corollary 3.12 we conclude that for some infinite cardinals λ, there
are maximal chains of size less than λ in the lattices Π(λ).

Lemma 3.13. Let λ be an infinite cardinal, C a maximal chain in Π(λ), and
κ = |C∗|. Then there exists a 〈κ, λ〉-tree.

Proof. Since the chainC is maximal, hence covering by Lemma 2.1, C ≺Π(λ) C∗
for all C ∈ C∗. Let C∗ := { Cα | α ∈ κ } be an ordering of C∗. For each α ∈ κ
we pick Bα to be one of the two blocks of C that are merged in C∗. We assign
to each β ∈ λ the map fβ : κ→ 2 defined by

fβ(α) :=

{
1 : β ∈ Bα,
0 : β 6∈ Bα,

for all α ∈ κ.

Claim 1. The map λ→ κ2 given by the correspondence β 7→ fβ is one-to-one.

Proof of Claim. Let β 6= γ be ordinals from λ. We set

C :=
∨
{P ∈ C | β 6≡ΘP γ } ,

D :=
∧
{Q ∈ C | β ≡ΘQ γ } .

(3.5)

It follows from the definition that C ≺C D, hence D = C∗. In particular,
we have C ∈ C∗. Therefore C = Cα for some α ∈ κ. From β 6≡ΘCα

γ while
β ≡ΘC∗α

γ, we conclude that fβ(α) 6= fγ(α). � Claim 1.

We let F := { fβ � α | α ∈ κ and β ∈ λ } be ordered by inclusion. It is
clear, that F is a tree of height κ. Since the maps fβ correspond to its cofinal
branches, the tree F has at least λ cofinal branches.

Claim 2. The tree F has at most one node of height α, for every α ∈ κ.

Proof of Claim. Let α1 ∈ κ and suppose that F has two distinct nodes, say
N0, N1, of height β1. We can pick {βi,j | i, j ∈ {0, 1} } ⊆ λ such that fβi,j �
α1 ∈ Ni and fβi,j (α1) = j, for all i, j ∈ {0, 1}. It follows that

fβ0,0 � α1 = fβ0,1 � α1 6= fβ1,0 � α1 = fβ1,1 � α1.

Let α0 be the least ordinal in κ such that fβ0,0
(α0) 6= fβ1,1

(α0). Since fβ0,0
�

α1 6= fβ1,1
� α1, we have that α0 < α1. We can without loss of generality

assume that fβ0,0
(α0) = 0 while fβ1,1

(α0) = 1 (otherwise we swich N0 and
N1). We infer that

fβi,j (α0) = i and fβi,j (α1) = j,

for all i, j ∈ {0, 1}. It follows that

β0,1 ∈ Bα1 \Bα0 , β1,0 ∈ Bα0 \Bα1 , and β1,1 ∈ Bα0 ∩Bα1 . (3.6)

Since Bα0
and Bα1

are blocks of comparable partitions Cα0
and Cα1

, respec-
tively, they are either comparable or disjoint. Therefore either Bα1

\Bα0
= ∅

or Bα0
\Bα1

= ∅, provided that they are comparable, or Bα0
∩Bα1

= ∅. Each
of the three cases violates (3.6). � Claim 2.
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We infer from Claim 2 that the tree F has at most κ non-singleton nodes,
each of size 2, hence |

⋃
supp(F)| ≤ κ. Applying Lemma 3.10 we conclude that

there is a 〈κ, λ〉-tree. �

Observe that a tree of size κ has at most 2κ branches. Thus, we have the
following corollary.

Corollary 3.14. Let λ be an infinite cardinal. If C a maximal chain in Π(λ),
then λ ≤ 2|C

∗|.

>From Corollary 3.14 we get immediatelly that

Proposition 3.15. If λ is a strong limit cardinal, then each maximal chain
in Π(λ) has size at least λ.

Clearly,
2<log2 λ = sup { 2κ | 2κ < λ } ≤ λ, (3.7)

for every infinite cardinal λ. For a regular cardinal λ the equality 2<log2 λ = λ

happens if and only if λ is a strong limit cardinal, i.e., log2 λ = λ. Note
that in this case the cardinal λ is strongly inaccessible. For a singular λ, the
situation is less obvious. It can happen that log2 λ < λ and still 2<log2 λ = λ.
However observe that there is a strong limit cardinal log2 λ ≤ µ < λ, then
2<log2 λ ≤ µ < λ. We conclude that

Theorem 3.16. Let λ be an infinite cardinal. If λ = ℵ0 or λ is a strongly
inaccessible cardinal, then each maximal chain in Π(λ) has size at least λ.
Otherwise 2<log2 λ < λ and there is a maximal chain in Π(λ) of size at most
2<log2 λ

For a singular cardinal λ, if there is a possibly finite cardinal κ < λ satisfying
κ<logκ λ < λ, then there is a maximal chain in Π(λ) of size < λ. In particular,
the assumption is satisfied when there is a strong limit cardinal log2 λ ≤ µ < λ.

We do not know whether Π(λ) contains a maximal chain of size < λ when
λ is a singular cardinal such that log2 λ < λ and κ<logκ λ = λ for all cardinals
κ satisfying 2 ≤ κ < λ. Note however that κ<logκ λ = λ implies cf(logκ λ) =

cf(λ). Clearly, cf(κ) = cf(ℵκ), and so for an infinite regular cardinal κ, the
limit cardinal ℵκ is the second least cardinal of cofinality κ. It follows that

Corollary 3.17. For an infinite regular cardinal cardinal κ, either ℵκ is a
strong limit cardinal, or 2κ = ℵκ or the lattice Π(ℵκ) contains a maximal
chain of length < ℵκ.

3.3. Long chains. Finally we prove that the lattice Π(κ) can contain maxi-
mal chains of cardinality > κ.

Recall that a subset D of a chain C is weakly dense in C provided that for
all x, y ∈ C with x < y there is z ∈ D such that x ≤ z ≤ y. Let κ ≤ λ be
cardinals. A 〈κ, λ〉-chain is a chain C of size ≥ λ with a weakly dense subset
of size ≤ κ.
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We will call a subset D of a chain C left dense if for all x, y ∈ C with
x < y there is z ∈ D such that x ≤ z < y. Clearly, every left dense subset
of C is weakly dense. On the other hand every weakly dense subset D of the
chain C contains at least one of the elements c, c∗ for every c ∈ C∗. Putting
D′ = D ∪ C∗, we obtain a left dense subset of C of size |D′| ≤ 2 |D|. In
particular, for infinite κ ≤ λ, every 〈κ, λ〉-chain contains a left dense subset of
size ≤ κ.

Lemma 3.18. Let κ < λ be infinite cardinals. The lattice Π(κ) contains a
chain of size ≥ λ if and only if there is 〈κ, λ〉-chain.

Proof. (⇐) LetC be a 〈κ, λ〉-chain. As discussed above,C contains a left dense
subset, D, of size ≤ κ. Note that D is necessarily infinite. Pick an enumeration
{ να | 1 < α ∈ |D| } of D and set D(c) := {0, 1} ∪ {α | c < να } for each
c ∈ C. Since D is left dense in C, we have that c < c′ implies D(c) ( D(c′).
It follows that the singular partitions D̂(c), c ∈ C, form a chain of size |C|,
which is ≥ λ.

(⇒) Suppose that Π(κ) contains a chain C of size ≥ λ. We can without loss
of generality assume that C is a maximal chain in Π(κ), and so C is complete
in Π(κ) due to Lemma 2.1. For each α < β ∈ κ, we set

Dα,β :=
∨
{ C ∈ C | α 6≡ΘC β } .

Since the chain C is complete in Π(κ), we have Dα,β ∈ C, for all α < β ∈ κ.
Let P < Q in C. We pick α < β ∈ κ such that α 6≡ΘP β while α ≡ΘQ β. It

follows that P ≤ Dα,β < Q, and so

D := {Dα,β | α < β ∈ κ } ,

is a weakly dense4 subset of C of size at most κ. Therefore C is a 〈κ, λ〉-
chain. �

We are ready to prove the main theorem of this section.

Theorem 3.19. Let κ ≤ λ be infinite cardinals. The following properties are
equivalent:

(1) There is a 〈κ, λ〉-tree.
(2) There is a 〈κ, λ〉-chain.
(3) There is a chain of size ≥ λ in (P(κ) ,⊆).
(4) There is a chain of size ≥ λ in Π(κ).
(5) There is a maximal chain of size ≤ κ in Π(λ).

Proof. Properties (1), (2), and (3) are equivalent due to [Bau76, Theorem 2.1]
(cf. [Mit72]). Equivalence (2⇔ 4) follows from Lemma 3.18. Finally (1⇒ 5)

holds true due to Lemma 3.11 and (1⇐ 5) follows from Lemma 3.13. �

4In fact left dense.
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By a result of Sierpiński [Sie22] (see also [Har05, Thm. 4.7.35]), there is a
chain C in the poset (P(κ) ,⊆) of cardinality λ > κ. Applying Theorem 3.19
we conclude that

Corollary 3.20. For every infinite cardinal κ, there is a chain of cardinality
> κ in Π(κ).

Rational numbers form a countable weakly dense subset of the set R of
all real numbers. It follows from Lemma 3.18 that Π(ℵ0) contains a chain of
cardinality 2ℵ0 .

We can refine Corollary 3.20 applying [Bau76]. Observe that for an infinite
cardinal λ and µ with 2 ≤ µ < λ we have that

µ<logµ λ
+

≤ λ < λ+ ≤ µlogµ λ
+

(3.8)

By [Bau76, Corollary 2.4] there is a 〈λ, µlogµ λ
+

〉-tree for every 2 ≤ µ < λ; in
fact, B(λ, µ) is an example. From Theorem 3.19 and (3.8) we conclude that

Corollary 3.21. Let λ be an infinite cardinal. Then λ < λ+ ≤ µlogµ λ
+

for
every µ satisfying 2 ≤ µ < λ and Π(λ) contains a chain of size µlogµ λ

+

.

Remark 3.22. Following [Bau76], we write D(κ, λ) if the equivalent properties
of Theorem 3.19 are satisfied. The question whether there is a 〈κ, 2κ〉-chain,
thus implying that D(κ, 2κ) holds true for every infinite cardinal κ, is due
to Malitz [Mal68]. This is clearly the case if we assume GCH. On the other
hand, Mitchell constructed by Cohen forcing a cardinal preserving extension
of a contable transitive modelM of ZFC with an arbitrarily picked cardinal
κ with cf(κ)M > ℵ0 such that ¬D(κ, 2κ) [Mit72, Theorem 4.2]. Given regular
cardinals µ < κ in the modelM, another forcing construction led to a cardinal
preserving extension such that 2µ = κ+, 2κ = ℵκ+ and ¬D(κ, 2κ) [Mit72,
Theorem 4.4]. These in the particular case κ = ℵ1 prove the consistency of
(i) 2ℵ0 = ℵω1

and 2ℵ1 = ℵω1+1,
(ii) 2ℵ0 = ℵ2 and 2ℵ1 = ℵω2 ,
and ¬D(ℵ1, 2

ℵ1), respectively. The cases (i) and (ii) are the smallest possible
where ¬D(κ, 2κ) due to Baumgartner’s analysis of possible cases [Bau76, p.
414]. In particular, D(ℵ0, 2

ℵ0) holds for a trivial reason and Baumgartner
proved that if ¬D(ℵ1, 2

ℵ1), then either ℵ1 = cf(2ℵ0) < 2ℵ0 < 2ℵ1 , or ℵ1 <

2ℵ0 = cf(2ℵ1) < 2ℵ1 . Clearly, (i) is the smallest instance of the first and (ii) of
the latter.

The cardinal ded(κ) := sup {λ | D(κ, λ) } was recently studied by Cherni-
kov, Kaplan, and Shelah [CKS16, CS16] in connection with model theory. By
Theorem 3.19 we can view ded(κ) as the supremum of the lengths of chains
in Π(κ). Note that it need not be attained in general and that κ < ded(κ) ≤
ded(κ)ℵ0 ≤ 2κ (cf. [CS16]). It follows from the previous paragraph, that
ded(κ) < 2κ is consistent with ZFC whenever cf(κ) > ℵ0. The consistency
of ded(κ) < ded(κ)ℵ0 is due to [CKS16, Corollary 6.11]. Whether ded(κ) <

ded(κ)ℵ0 < 2κ can happen is not known. Some interesting estimations of
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ded(κ) are obtained by PCF-theory in [CKS16], in particular, it is proved that
2κ ≤ ded(ded(ded(ded(κ)))) [CS16, Theorem 2.10].

4. Maximal antichains

An antichain in (P,≤) is a subset A ⊆ P in which no two distinct elements
of P are ≤-comparable. An antichain is maximal if adding an element to it
results in a set that is not an antichain. Observe that in a poset, the trivial
antichains {⊥} and {>} are always maximal antichains.

There is no known tight bound on the cardinality of maximal antichains in
Π(n) for finite n, but some asymptotic results are known [Can98, BH02]. The
cardinality of a maximal antichain in Π(n) is Θ

(
na(log n)−a−1/4S(n,Kn)

)
where a = (2 − e log 2)/4 and S(n,Kn) = maxk

{
n
k

}
is the largest Stirling

number of the second kind for fixed n.
It is straightforward that the atoms, respectively co-atoms, form maximal

antichains in a partition lattice. If λ is an infinite cardinal, the sizes of these
antichains in Π(λ) are λ, respectively 2λ. Since Π(λ) itself has cardinality 2λ,
there is no antichain of a greater size. The proof that there is no maximal
antichain shorter than λ is more involved.

Theorem 4.1. For infinite λ, the cardinality of a non-trivial maximal an-
tichain in Π(λ) is at least λ.

Proof. Let κ < λ and A be a non-trivial antichain of cardinality κ in Π(λ).
We will show that A is not maximal by building a partition P /∈ A that is not
comparable to any of its elements.

Recall that supp(P) is the union of all non-singleton blocks of P. We call
a partition P ∈ Π(λ) small if |supp(P)| < ℵ0 · κ+. There are two cases to
consider.

First, suppose that there are no small partitions in A. Since the antichain
A is non-trivial, it does not contain >Π(λ) = λ̂. Therefore, for each A ∈ A

we can pick an element ξA that is not in the same block as 0. Let P be the
singular partition with the non-singleton block {0} ∪ { ξA | A ∈ A }. Since
0 ≡ΘP ξA while 0 6≡ΘA ξA, we have that P � A, for all A ∈ A. On the other
hand, supp(P) = {0}∪{ ξA | A ∈ A }, hence the partition P is small, and so
it is not above any non-small partition. In particular, A � P, for all A ∈ A.
We conclude that P /∈ A and A ∪ {P} is an antichain, which contradicts the
maximality of A.

Second, assume that there are small partitions in A. We set

S :=
⋃
{ supp(A) | A ∈ A and A is small } .

Observe that S is finite when κ is finite, and |S| < κ · κ+ = κ+ ≤ λ otherwise.
In both cases we have that |λ \ S| = λ, and so we can pick pairwise distinct
elements νA, A ∈ A, in λ \ S.
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Given a partitionA ∈ A, observe that S 6⊆ [νA]A, for otherwise the partition
A would properly contain all small partitions from A. It follows that we can
pick an element ξA ∈ S such that ξA 6≡ΘA νA, for all A ∈ A. Let P be the
least partition from Π(λ) such that ξA ≡ΘP νA, for all A ∈ A.

Since ξA 6≡ΘA νA while ξA ≡ΘP νA, we get that P � A, for all A ∈ A.
Observe that

supp(P ) = { ξA | A ∈ A } ∪ { νA | A ∈ A } ,

hence |supp(P )| ≤ κ + κ < ℵ0 · κ+, whence P is small. It follows that A �
P for all A ∈ A that are not small. Since the elements νA are pairwise
distinct, P ∧ Ŝ = ⊥Π(λ). It follows that A � P for every small partition
A ∈ A. We conclude that P /∈ A and that A ∪ {P} is an antichain, which is
a contradiction. �

Note that, while we here restrict our attention to infinite partition lattices,
for finite n, maximal non-trivial antichains in Π(n) can be proved to have
cardinality at least n by induction on n.

We have proved that every maximal antichain in Π(λ) has cardinality be-
tween λ and 2λ and since both of the bounds occur as cardinality of a maximal
antichain, of all atoms and co-atoms of Π(λ), respectively, they are as tight
as possible. However, the following construction shows that, in some models
where GCH is violated, there are maximal antichains of cardinalities between
these bounds. Specifically, it is true whenever there exists λ < 2κ < 2λ for
some infinite cardinals κ < λ.

Proposition 4.2. Let κ < λ be infinite cardinals. If A is a maximal antichain
in Π(κ), then there is a maximal antichain of size |A|+ λ in Π(λ).

Proof. For each partition A ∈ Π(κ), we define its extension as

Ae := A ∪ {{ξ} | κ ≤ ξ < λ } ,

and we put Ae := {Ae | A ∈ A }. Let

B :=
{
{̂ξ, ν} | ξ 6= ν and κ ≤ ν

}
be the set of all atoms of Π(λ) that are not extensions of atoms of Π(κ).

Let P ∈ Π(λ) be a partition. If P � κ̂, then P is above some atom from
B. On the other hand, P � κ̂ implies that P is comparable to Ae, for some
A ∈ A, because A is a maximal antichain in κ. It follows that Ae ∪ B is a
maximal antichain in Π(λ). Clearly,

|Ae ∪B| = |A|+ |B| = |A|+ λ.

�

Corollary 4.3. Let κ < λ be infinite cardinals such that λ < 2κ < 2λ. Then
there is a maximal antichain of size 2κ in Π(λ).
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Proof. As noted at the beginning of the section, co-atoms of κ form a maximal
antichain of size 2κ. Applying Proposition 4.2, we construct an antichain of
size 2κ + λ = 2κ in Π(λ). �

We do not yet know whether all cardinalities between the bounds always
occur as antichains. Certainly, we can construct non-GCH models where there
exist cardinals between κ and 2κ that cannot be written as 2λ. It is not yet
known whether they can be realized as the cardinality of a maximal antichain
through another construction.

5. Complements

Recall that in a bounded lattice L, elements a, b ∈ L are complements if
and only if a ∨ b = > and a ∧ b = ⊥. We denote by compl(P) the set of
all complements to P in Π(κ). For finite κ = n, counting the number of
elements in compl(P) is a difficult combinatorial problem. The best known
estimate, due to Grieser [Gri91], is that if P = {B1, . . . , Bm} is a partition in
Π(n), then the number of complements Q of P satisfying |Q| = n −m + 1 is∏m
i=1 |Bi| · (n−m+ 1)m−2.

Lemma 5.1. Let κ be an infinite cardinal, and P /∈ {⊥,>} a partition of κ.
Then

|compl(P)| ≥ 2|P|

Proof. If |P| is finite, then by the pigeonhole principle P contains at least
one block, say B, of cardinality κ. Any singular partition whose non-singleton
block contains exactly one element from each block of P is a complement to P.
Since there are κ choices for the element in B, there are at least κ complements
to P. Thus |compl(P)| ≥ κ > 2|P|.

Next assume that |P| is infinite. Since P 6= ⊥Π(λ), there are α < β ∈ κ

with α ≡ΘP β. We set Q := P \ {[α]P} and pick an element ξB from each
block B ∈ Q. For a subset X ⊆ Q, let ΨX be the equivalence relation on κ
generated by { 〈α, ξB〉 | B ∈ X } ∪ { 〈β, ξB〉 | B ∈ Q \ X }. Clearly, ΨX is a
complement of ΘP for every X ⊆ Q. Since ΨX 6= ΨY , whenever X 6= Y are
subsets of Q, we conclude that compl(P) ≥ 2|Q| = 2|P|. �

Theorem 5.2. Let λ be an infinite cardinal and P /∈ {⊥,>} a partition in
Π(λ). Then

(1) if P contains no block of cardinality λ, then |compl(P)| = 2λ,
(2) if P contains a block B of cardinality λ, then |compl(P)| = λ|λ\B|.

Proof. (1) First assume that P has no block of cardinality λ. We put κ := |P|
and let P = {Bα | α ∈ κ }, be an enumeration of all blocks of P. For each
α ∈ κ, we pick a bijection jα : |Bα| → Bα.
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We can assume that |P| < λ since otherwise Lemma 5.1 applies. It follows
that the set Sβ := {α ∈ κ | β < |Bα| } is infinite5, for all β < λ. Let δβ
denote the least ordinal from Sβ , for each β < λ. We infer that∣∣λ \ ({ jα(0) | α ∈ κ } ∪

{
jδβ (β) | β < λ

})∣∣ = λ,

hence there are 2λ maps f : λ→ {0, 1} satisfying f(jα(0)) = f(jδβ (β)) = 1 for
all α ∈ κ and β < λ. Let CP denote the set of all such maps.

With each map f ∈ CP we associate a partition Qf with possibly non-
singleton blocks[

jδβ (β)
]
Qf

= { jα(β) | α ∈ Sβ and f(jα(β)) = 1 } , where β < λ.

Let f ∈ CP . First observe that

[δβ ]Qf ∩Bα =

{
{jα(β)} : f(jα(β)) = 1,

∅ : f(jα(β)) = 0,

for all α ∈ κ and β < λ. It follows that P ∧Qf = ⊥Π(λ).
Since, by the definition, f(jα(0)) = 1 for each α ∈ κ, the block [δ0]Qf has a

non-empty intersection with each block of P. Therefore P ∨Qf = >Π(λ).
We have proved that all the partitions Qf , f ∈ CP , are complements of P.

Since

f−1{1} =
⋃
β∈λ

[
jδβ (β)

]
Qf

,

for all f ∈ CP , the correspondence f 7→ Qf is one-to-one. We conclude that
the partition P has 2λ complements.

(2) Second assume that P contains a block B of cardinality λ. We set
X := λ \ B and κ := |X|. Each injective map f : X → B corresponds to
a partition whose non-singleton blocks are exactly {ξ, f(ξ)}, ξ ∈ X. It is
straightforward to see that such partitions are complements of P. Distinct
maps clearly correspond to distinct partitions and since there is |B||X| = λκ

injective maps X → B, there are at least λκ complements of P.
Let Q be a complement of P. The intersection of each block of Q and B

is empty or a singleton. It follows that |supp(Q)| ≤ 2κ. Since λ is infinite,
there are λ2κ = λκ subsets of λ of size 2κ. For each S ⊆ λ there are at
most |P(S × S)| = 2|S|·|S| partitions with support S, hence there are at most
λκ · 22κ·2κ = λκ partitions Q ∈ Π(λ) with |supp(Q)| ≤ 2κ. We conclude that
|compl(P)| ≤ λκ. �

We get readily from Theorem 5.2 that

Corollary 5.3. Let λ be infinite and P /∈ {⊥Π(λ),>Π(λ)} be a partition of λ.
If P contains two or more blocks of cardinality κ, then |compl(P)| = 2λ.

5Observe that
∣∣Sβ∣∣ ≥ cf(λ).
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Theorem 5.2 provides a complete characterization of the cardinals that can
be realized as complement counts for infinite cardinals λ: it is precisely those
cardinals of the form λκ, with 0 ≤ κ ≤ λ (and 1 ≤ κ ≤ λ when considering
only non-trivial partitions).

6. Results under GCH

Under the Generalized Continuum Hypothesis, the results from the previous
sections all simplify greatly, and it is possible to determine possible cardinals
of maximal chains, antichains, and sets of complements of single partitions.

Theorem 6.1. Under GCH, when λ is an infinite cardinal:
(1) A maximal chain in Π(λ) has cardinality

- log2 λ, λ, or λ+ (and all three are always achieved) if λ is a successor
cardinal; and

- either λ or λ+ (and both are achieved) if λ is a limit cardinal.
(2) A non-trivial maximal antichain in Π(κ) has cardinality either λ or λ+,

and both are achieved.
(3) Let P /∈ {⊥Π(λ),>Π(λ)} be a partition of Π(λ). If P contains a block B

with |λ \B| < cf(λ), then P has exactly λ complements, otherwise P has
λ+ complements.

Proof. Under GCH every limit cardinal is strong limit and λ = (log2 λ)+ =

2log2 λ for a successor cardinal λ. Applying Theorem 3.16 and Corollary 3.20,
we conclude that (1) holds true. Part (2) follows from Theorem 4.1 and the
fact that atoms and co-atoms of Π(λ) form maximal antichains of sizes λ and
2λ = λ+, respectively. Finally, (3) follows from Theorem 5.2 and the equality

λκ =

{
λ : 0 < κ < cf(λ),

λ+ : cf(λ) ≤ κ ≤ λ,

which follows easily from GCH and König’s Theorem. �
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