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Abstract:
Implicit Computational Complexity aims at finding syntactical criteria on programs that guarantee a
runtime behaviour (usually, complexity). Ideally, ICC should analyse any program to determine its com-
plexity, possibly even suggesting optimisations. While it is impossible to precisely determine the complexity
of all programs, ICC still manages to prove that a wide range of programs run in polynomial time.
This dissertation presents my past and present works in the field of ICC.
The first part groups several journal articles showing incremental advances in ICC: the notion of Quasi-
Interpretation and how it can be used for proving various complexity bounds; the notion of Resource
Control Graphs and how they can be used for expressing several ICC results in a common language; and
the notion of transverse criteria and how they can be used for comparing ICC results.
The second part groups current works studying the set of equivalences between programs, a new direction
in ICC that builds on twenty years of research in the field. The extensional equivalence (two programs are
equivalent if they compute the same function) plays a central role in Computability. Are there any other
equivalences which could play a similarly important role?
The third part shows a possible application of ICC “in real life”. After twenty years and many results, it
seems that ideas from ICC are ready to be used in actual compilers. Indeed, it is possible to add some
new analysis or optimisations as compiler passes. This opens ways for a fruitful collaboration between two
separate research communities.

Dansk Resume:
I feltet implicit beregningskompleksitet (ICC) søger man at finde syntaktiske kriterier, som kan garante-
re, at programmer udviser bestemte egenskaber (typisk kompleksitet) på kørselstidpunktet. Ideelt burde
ICC kunne anvendes til at analysere ethvert program med det formål at bestemme dets kompleksitet, og
måske endda foreslå programoptimeringer. Medens det er umuligt præcist at bestemme alle programmers
kompleksitet, er det stadigt muligt via metoder fra ICC at bevise, at en bred vifte af programmer kører i
polynomiel tid.
I denne disputats præsenteres mine hidtidige resultater inden for ICC.
Disputatsens første del indeholder en række tidsskriftartikler, som præsenterer inkrementelle fremskridt
inden for ICC: Kvasi-fortolkninger (Quasi-interpretations) og hvordan de kan bruges til at bevise forskellige
kompleksitetsgrænser; Ressourcekontrolgrafer (Resource Control Graphs) og hvordan de kan anvendes til
at udtrykke adskillige resultater i ICC under anvendelse af en fælles formalisme; samt transverse kriterier
(transverse criteria) og hvordan de kan anvendes til at sammenligne resultater i ICC.
Disputatsens anden del indeholder nylig forskning, som undersøger mængden af ækvivalensrelationer mel-
lem programmer, en ny retning inden for ICC som bygger på tyve års studier i feltet. Den såkaldte
ekstensionelle ækvivalensrelation (to programmer er ækvivalente hvis de beregner den samme afbildning)
spiller en central rolle i beregnelighedsteori. Findes der andre ækvivalensrelationer, som kunne spille en
lignende, vigtig rolle?
Disputatsens tredje del omhandler en mulig anvendelse af ICC “i den virkelige verden”. Efter tyve års
arbejde og mange resultater ser det ud som om, at ideer fra ICC er klar til at kunne bruges i faktiske
oversættere: det er muligt at tilføje passende nye analyser og optimeringer som oversætter-gennemløb.
Dette åbner mulighed for et frugtbart samarbejde mellem to hidtil adskilte forskningsmiljøer.
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Summary

About this document

This document is a doktordisputats – a dissertation within the Danish academic system required to obtain the degree
of Doctor Scientiarum, equivalent to the French Habilitation à Diriger des Recherches. It contains my work in the
field of Implicit Computational Complexity from 2003 to 2016 and consists in a collection of published papers as well
as some yet unpublished work.

The articles in this dissertation are grouped in three parts. In addition to the thematic grouping, this can also be
viewed as a temporal grouping: my past in ICC; my present work and ideas; and a possible future for ICC. This is
also reflected in the choice of material presented in each part: my past research is represented by journal articles; my
present one by articles under revision, or unpublished long versions of workshop papers; and the possible future by
short articles only.

1 Background

1.1 Complexity

The classical study of Complexity concerns the amount of resources (usually, time or space) that a program needs in
order to run. It extends to the study of problems (or functions) by studying the minimal amount of resources needed
to solve a given problem.

The core dichotomy of Computability, between programs and functions, is all the more present in Complexity.
While it is (relatively) easy to define the complexity of a single program (in short, its running time), there are many
different ways to solve a problem, thus many different programs that compute the same function. And each of these
programs has a different complexity: anyone who studied a bit of Algorithmics knows that sorting can be done in time
O(n2) with insertion sort or O(n log(n)) with merge sort (among other possibilities).

Thus, the complexity of a function is defined as being the minimal complexity of any program computing it. Since
there are infinitely many programs computing any given function, it is usually difficult to find out that complexity.
The definition, however, provides a very easy way to show upper bounds on the complexity of functions: the existence
of the insertion sort algorithm shows that the complexity of sorting is at most O(n2). On the other hand, lower bounds
on the complexity of functions are usually extremely hard to prove (sorting being an exception).

Knowing the complexity of a program is obviously interesting: it makes it possible to determine which parts of
the program are efficient and which are not, and to predict the amount of resources that the program will need to be
executed, thus making sure that it is actually possible to run it on a given computer. Knowing the complexity of a
function is even better: it makes it possible to determine which parts of the program have too high a complexity and
should be optimised or rewritten.

Finding the complexity of any program is in general uncomputable. However, in many specific cases, it is possible
to find the complexity of individual programs. Unfortunately, computing the complexity of a given program is not an
easy task.

Firstly, it requires some non-trivial computations, even more so when the program is complicated, or uses some
advanced features of programming languages. Most bachelors in Computer Science had lessons in Complexity and it
is usually not an easy subject to teach and to learn. Even without digging into advanced complexity analysis, solving
recursive equations can be difficult.

Secondly, complexity is formally defined in terms of a computational model (usually Turing Machines, sometimes
λ-calculus). Because of their lack of expressivity, computational models are not used to actually program anything.
This makes the analysis of actual programs even harder.

So, ideally, we would like to have a tool which is able to perform a clever analysis of actual programs and determine
their complexity, and maybe even analyse the function computed by the program and suggest some optimisations or
drastic rewrites of the program to improve its complexity. Unfortunately, all of these dreams are impossible (that is,
not computable).

1.2 Implicit Computational Complexity

The field of Implicit Computational Complexity (ICC) was launched by the early works of Cobham on Bounded
Recursion, and the breakthrough of Bellantoni and Cook on Safe Recursion. They designed restricted programming
languages in which it is only possible to write programs that run in polynomial time.

Their works are implicit in two senses: firstly, there is no explicit reference to an actual computational model or
other kind of machinery and the language they use is (arguably) somewhat similar to actual programming languages;
secondly, in the case of Safe Recursion, there is no reference to an explicit bound on programs, the syntax is (strongly)
constrained but no bound needs to be provided.
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That way, the charge of devising a proof has been pushed upstream from the programmer. As soon as a program is
written in one of these languages, it is guaranteed to run in polynomial time. The programmer does not need anymore
to know about complexity, and the system can nonetheless provide bounds.

Of course, the drawback is that the language is too restricted. In many cases, a programmer can very well write a
polytime program which is not part of the language. The system thus rejects it and the program needs to be entirely
rewritten. Since finding the complexity of any program is an undecidable problem, we cannot entirely avoid these
“false negatives”. However, the early ICC languages tend to be too restricted for practical use.

In the years since the breakthrough of Safe Recursion, many other ICC systems have been created. A great focus
has been put on getting more and more expressivity, that is, being able to accurately analyse as many programs as
possible, and, hopefully, as many actual programs in actual programming languages as possible.

2 Advances in Implicit Complexity

The first part of this dissertation contains various works I have done in the field of Implicit Computational Complexity.
It is composed of three journal articles that are long versions of works presented in conferences and workshops at the
time.

Quasi-interpretations: a way to control resources is a gathering of many works around the notion of Quasi-
Interpretations (QI) that I introduced during my PhD. While Safe Recursion was a somewhat monolithic analysis, we
have split it in two parts by separating the termination from the bound itself. Termination of programs is ensured
by usual termination tools, in this case termination orderings, while the polynomial bound is enforced by the QI. We
show how the choice of termination ordering as well as the kind of QI used ensures various complexity bounds on the
programs.

Comparatively to Safe Recursion, the main advances are of two kinds.
Firstly, instead of designing a restricted language, QI work as an analysis on a Turing complete language. Pro-

grammers do not need to struggle to write their programs any more. Obviously, the system will thus not be able to
analyse everything, but it is still possible to run a program which does not have a QI. Thus, some parts of the program
can be correctly analysed while some are still without guarantees. It is then up to the programmer to either try and
rewrite those parts (and only those parts), or run the program as is (for example, because an external, handcrafted
proof is provided).

Secondly, the analysis is implicit in an additional sense: the implicit complexity of the program. In several cases, the
given program may run in exponential time but QI nonetheless allow to detect that it would run in polynomial time
after some transformations. Thus, instead of analysing the explicit complexity (the complexity of the program itself),
it tries to analyse the implicit complexity (the complexity of the function). This is obviously not perfect (in many
cases, the implicit complexity is not detected) but still works on a huge class of programs, namely all the programs
that would be polytime if some Dynamic Programming technique were used.

Quasi-Interpretations have been reused in several other works and are now a well-known tool in the ICC community.
Resource Control Graphs (RCG) is a somewhat generic framework in which to express several different ICC analysis.

This analysis is strongly based on annotated control graphs for the program, and the kind of annotations, as well as
the way to combine them, allows to study various properties of programs.

I show this way that, notably, both Non Size Increasing programs and the Size Change Principle can be expressed
as RCGs despite being apparently extremely different.

This work shows my early efforts towards unifying ICC systems. Many such systems have been designed for various
programming paradigms, making it extremely difficult to compare them efficiently. Yet, they often seem to rely on
the same techniques adapted in various ways to cope with the idiosyncrasies of the programming paradigms.

For a long time, I have been convinced that ICC systems are like the proverbial blind men approaching an elephant:
each touching a different part and describing it in terms that let the others think this is a different beast (the legs are
like pillars, the trunk like a branch, the belly like a wall, the tail like a rope, the tusks like pipes, and the ears like
paper). RCG is an attempt to take a step back and use a common language to describe the ICC elephant as a single
beast.

On quasi-interpretations, blind abstractions and implicit complexity is another take at some sort of unification of
ICC. Rather than trying to express everything with a common language, we focus here on how it is possible to compare
results that are expressed in seemingly incomparable formalisms.

Usually, the power of various ICC methods is compared by “battles of examples”: one shows that the new method
is able to do everything that the old one could do, plus a few more examples. Hopefully, the examples are sufficiently
well chosen to convince the reader that they are part of a large group of new programs that can now be analysed.
This is, however, totally ad hoc and not really scientific.

In this work, we argue that we should define broad classes of programs, dubbed transverse criteria, and study how
each ICC method interacts with them. Typically, if a method A is only able to analyse programs admitting a given
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criterion, while a method B can also analyse other programs, then we can say that B is more powerful than A more
convincingly than by way of a handful of examples.

As a case study, we provide the transverse criterion of blindly polynomial programs and show that QI are only able
to analyse these programs (and not all of them). Thus, any ICC method able to analyse both these and non-blindly
polynomial programs would be more powerful than QI.

3 Equivalences between Programs
The second part of this dissertation deals with my current work and ideas related to ICC. The core idea started from
a rereading of Rice’s Theorem and revolves around the dichotomy between programs and functions that underlies
Computability and Complexity.

While a program computes a single function, a given function can be computed by many different programs.
Semantics studies the links between programs and functions and usually introduces a semantic function which, to
each program, associates the function it computes. The semantic function is non-computable but is nonetheless a
useful tool to study programs and programming languages.

Rather than looking a the semantics, at the correspondence between programs and functions, we choose to look at
sets of programs computing the same function, that is, the inverse images of the semantic function. In this view, it
appears immediately that “computing the same function” is an equivalence between programs, which we call extensional
equivalence, or Rice’s equivalence to emphasise the role it plays in Rice’s Theorem.

Now, (computable) functions are just a convenient way of representing one class of the extensional equivalence.
That is, for example, x 7→ x2 is a nice way to refer to all the programs that compute the squaring function.

Focusing on equivalences naturally raises questions around other equivalences between programs. It is well known
that the set of all equivalences between programs (or natural numbers) admits a complete lattice structure. In this
lattice, Rice’s Theorem states that everything in the principal filter at the extensional equivalence is undecidable.
Because Rice’s Theorem is so nicely expressed in the language of lattice and equivalences, this view can provide good
insights on computability.

In Chains, Antichains, and Complements in Infinite Partition Lattices, we study the structure of the lattice of
equivalences itself. This is a purely order-theoretical study, and we consider equivalences over sets of any cardinality
(not just countable ones such as the set of programs).

We give complete characterisations of the possible cardinals of maximal chains; maximal antichains; and sets of
complements in such a lattice, with more precise results under the Generalized Continuum Hypothesis.

In More intensional versions of Rice’s Theorem, we go back to Rice’s Theorem, using the equivalence view to
improve it. We mostly focus on two questions: how necessary is the “extensional set” restriction in the original
Theorem? and what would happen if we replaced Rice’s equivalence (i.e., extensionality) by another equivalence?

We obtain generalisations of Rice’s Theorem that are now able to take into account the behaviour of programs,
and not just the functions they compute. Notably, we show that any decidable set of programs that contains all the
programs running in polynomial time must also contain programs of arbitrarily high runtime complexity.

In Computability in the Lattice of Equivalence Relations, we study interactions between the lattice structure and
Computability. We know that most equivalences between programs are undecidable, so we look at sets of equivalences
that are defined by computability or complexity properties (e.g., the set of decidable equivalences; the set of polytime
equivalences; the set of recursively enumerable equivalences). A possible outcome would be to find a subset of equi-
valences that is manageable and correctly approximates the whole set, in a way similar to the rationals approximating
the reals.

We show that sets of subrecursive equivalences are not sublattices; and that sets of equivalences in the arithmetical
hierarchy are not complete sublattices. This shows that notions from Computability do not interact well with the
order-theoretic structure of equivalences. Thus, we may want to use other mathematical tools to study the set of
equivalences.

4 Experiments in Implicit Complexity
The third part of this dissertation focuses on the work done with my PhD student, Thomas Rubiano. We are bringing
ICC results and methods into real-life compilers.

Correctly analysing a “real world” programming language is very difficult because of the large number of construc-
tions allowed in it. For this reason, most research in ICC focuses on “toy” languages such as Term Rewriting Systems
or the Loop language. While such languages arguably capture the essence of functional or imperative programming
languages, they are still far from real languages. That makes ICC analysis hard to get out of the academic spheres,
and at the same time makes it hard to have a large number of examples to feed the analysis in order to study its
power.
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At the other end of the gap, compilers work with many different programming languages, perform complex optim-
isations on them, and produce machine code for various architectures. In order to cope with the specificities both of the
source (programming) and target (assembly) languages, modern compilers are usually split in three parts: a front-end
that transforms source code (from various languages) into an internal Intermediate Representation (IR); a middle-end
that optimises the IR; and a back-end that transforms the IR into assembly language (for various architectures).

The Intermediate Representation, where all the work happens, is normally a simplified assembly-like language
where information on program structure (types, loops, tests, . . . ) is kept. It needs to be simple enough, otherwise
the optimisations are too hard to write, and thus it is at a correct level of expressivity to perform ICC analysis. It
needs to keep some structure, because the optimisations may use it, and thus we can also rely on that structure for
our analysis.

Therefore, it appears that the IR is a good language with which to express ICC analysis and spread the ideas to a
wider community. The experiments we have done, mostly in LLVM, show that it is indeed quite possible to implement
these ideas and that they can provide some analysis or optimisations not already present.

In Detection of Non-Size Increasing Programs in Compilers, we have implemented a pass in LLVM that detects
Non Size Increasing programs, that is programs that compute without the need of extra memory (and can reuse their
own pointers rather than freeing and allocating memory all the time).

The analysis is currently not used to fuel further optimisations but nonetheless shows that Intermediate Repres-
entation is a good level to implement ICC related analysis.

In Loop Quasi-Invariant Chunk Motion by peeling with statement composition, we have implemented a program
optimisation that is able to move large pieces of invariant code out of loops (instead of recomputing the same thing
several times). The optimisation is fueled by a data-flow analysis reminiscent of the Size Change Principle or the
mwp-polynomials.

Usual loop-invariant transformations are able to move single statements out of loops, but not more complex (and
composed) ones. This transformation is notably able to move an inner loop out of the outer loop, thus actually
reducing the complexity of the program.

Closing words
The articles grouped in this dissertation show a clear trend in my research towards a maturation and dissemination of
ICC. Early ICC has been plagued with strong differences in the languages analysed (from the type systems of Linear
Logic to the imperative Loop language). This made it hard to effectively adapt results from one team of researchers
to another and slowed down the progression of ideas and techniques.

Since my PhD, I have been thinking that the various ICC techniques should be somehow merged, and I have long
been working towards that goal. Unifying ICC will allow it to be used by the broader community without requiring
people to learn about many different systems that seem to be so close but yet so far.

My early works were direct attempts at such a unification; my current works on equivalences form an attempt
at finding “something bigger” than the individual ICC systems; my current works in compilation form an attempt to
spread the ideas to a completely different community.

Being a broad selection of my works, this dissertation also mirrors my career from a young PhD to an accomplished
Associate Professor. It contains works that I have done alone, with many colleagues from several countries whom I
had the pleasure to meet, and with my PhD student.
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QI: A way to control resources Bonfante, Marion, Moyen

Abstract:
This paper presents in a reasoned way our works on resource analysis by quasi-interpretations.
The controlled resources are typically the runtime, the runspace or the size of a result in a
program execution.
Quasi-interpretations allow analyzing system complexity. A quasi-interpretation is a numerical
assignment, which provides an upper bound on computed functions and which is compatible
with the program operational semantics. Quasi-interpretation method offers several advant-
ages: (i) It provides hints in order to optimize an execution, (ii) it gives resource certificates,
and (iii) finding quasi-interpretations is decidable for a broad class which is relevant for feasible
computations.
By combining the quasi-interpretation method with termination tools (here term orderings),
we obtained several characterizations of complexity classes starting from Ptime and Pspace.
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Bonfante, Marion, Moyen QI: A way to control resources

1 Introduction

This paper is part of a general investigation on program complexity analysis. We present the quasi-interpretation
method which applies potentially to any formalism that can be reduced to transition systems. A quasi-interpretation
gives a kind of measure by assigning to each symbol of a system a monotonic numerical function over R+. A quasi-
interpretation possesses two main properties. First, the quasi-interpretation of a constructor term is a real which
bounds its size. Second, a quasi-interpretation weakly decreases when a term is reduced.

From a practical point of view, the quasi-interpretation method is a tool to perform complexity analysis in a static
way. Quasi-interpretations allow to establish an upper bound on the size of intermediate values which occur in a
computation. This was used for a resource byte-code verifier in [ACGZJ04]. Moreover in the context of mobile-code
or of secured application, a resource certificate can be sent which consists in the (partial) proof of the fact that a
program admits a quasi-interpretation.

We restrict our study to quasi-interpretations over R+ which are bounded by some polynomials. A consequence of
Tarski’s Theorem [Tar51] is that it is decidable whether or not a program admits a Max-Poly quasi-interpretation
which are built by combining max operator of fixed arity and polynomials of bounded degrees. This leads to an
automatic synthesis procedure of a meaningful class of quasi-interpretations.

From a theoretical point of view, we combine quasi-interpretations with termination tools. We focus on simplific-
ation orderings and we consider in particular Recursive Path Orderings introduced by Dershowitz [Der82]. It turns
out that we characterize the class Ptime of functions computable in polynomial time [MM00] and the class Pspace
of functions computable in polynomial space [BMM01].

This work is related to Cobham [Cob62], Bellantoni and Cook [BC92], Leivant [Lei94] and Leivant-Marion [LM93a]
ideas to delineate complexity classes. Note that most of the machine-independent characterizations of complexity
classes have an extensional point of view. They study functions and do not pay too much attention to the algorithmic
aspects. In this paper, we try an alternative way of looking at complexity classes by focusing on algorithms. In this
long-term research program, the completeness problematic has moved and the nature of the problem has changed.
Indeed, the class of algorithms (with respect to some encoding), say which run in polynomial time, is not recursively
enumerable. So we cannot expect to characterize all Ptime algorithms. But we think that this question could shed
light on the nature of computations and contribute to an intentional computability theory. Similar questions have
been brought up by Caseiro [Cas97], Hofmann [Hof00a] and Jones [Jon99]. It is also worth mentioning the studies on
intentionality of Colson, see for example [Col98], and of Moschovakis, as well as Gurevich.

Lastly, Marion and Péchoux suggest a new method, called sup-interpretation [MP06], which is closely related to
quasi-interpretations. Sup-interpretations allow to capture more algorithms, and to characterize small parallel complex-
ity classes [BMP06]. On the other hand, sup-interpretations do not have the nice properties of quasi-interpretations.

The paper organization is the following. The next Section introduces the first order functional programming
language. The quasi-interpretations are defined next in Section 3. We suggest a classification of quasi-interpretations
which induces a natural complexity hierarchy. Then, we study quasi-interpretation properties. Section 4 establishes
that it is decidable if a program admits a quasi-interpretation with respect to a broad class of polynomially bounded
assignments. Section 5 defines recursive path orderings used to prove termination of programs and some properties
that we shall use later on. After these three sections, we state the main results at the beginning of Sections 6 and 7.
Roughly speaking, the first result says that programs which terminate by product or lexicographic orderings are
computable in polynomial-space. The second result means that programs that terminate by product ordering or that
are tail recursive are computable in polynomial time. It is worth noticing that we have to compute the program by call
by value semantics with a cache in order to have an exponential speed-up. The last Section 8 is devoted to simulations
of both space and time bounded computations.

2 First order functional programming

Term rewriting systems underpin first order functional programming, that is why we refer to Dershowitz and Jouannaud
survey [DJ90]. Throughout the following discussion, we consider three finite disjoint sets X ,F , C of variables, function
symbols and constructors.

2.1 Syntax of programs

Definition 1. The sets of terms and the rules are defined in the following way:

(Constructor terms) T (C) 3 v ::= c | c(v1, · · · , vn)
(terms) T (C,F ,X ) 3 t ::= c | x | c(t1, · · · , tn) | f(t1, · · · , tn)
(patterns) P 3 p ::= c | x | c(p1, · · · , pn)
(rules) D 3 d ::= f(p1, · · · , pn)→ t

Theoretical Computer Science, 2011 21
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c ∈ C ti ↓ wi
(Constructor)

c(t1, · · · , tn) ↓ c(w1, · · · , wn)

ti ↓ wi f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = wi rσ ↓ w
(Function)

f(t1, · · · , tn) ↓ w

Figure 1: Call by value semantics with respect to a program 〈X , C,F , E〉.

where x ∈ X , f ∈ F , and c ∈ C. We shall use a type writer font for function symbols and a bold face font for
constructors.

Definition 2. A program is a quadruplet f = 〈X , C,F , E〉 such that E is a finite set of D-rules. Each variable in the
right-hand side of a rule also appears in the left hand side of the same rule. We distinguish among F a main function
symbol whose name is given by the program name f.

The set of rules induces a rewriting relation →. The relation ∗→ is the reflexive and transitive closure of →.
Throughout, we consider orthogonal programs which is a sufficient condition in order to be confluent. Following
Huet [Hue80], the program rules satisfy both conditions: (i) Each rule f(p1, · · · , pn) → t is left-linear, that is a
variable appears only once in f(p1, · · · , pn), and (ii) there are no two left hand-sides which are overlapping. Lastly, a
ground term is a term with no variables.

2.2 Semantics

Orthogonal programs define a class of deterministic first order functional programs. The domain of the computed
functions is the constructor term algebra T (C).

A substitution σ is a mapping from variables to terms. We say that it is a constructor substitution when the range
of σ is T (C). We note S the set of these constructor substitutions.

We consider a call by value semantics which is displayed in Figure 1. The meaning of t ↓ w is that t evaluates to
a constructor term w. The program f computes a partial function JfK : T (C)n → T (C) defined as follows. For every
v1, · · · , vn ∈ T (C), JfK (v1, · · · , vn) = w iff f(v1, · · · , vn) ↓ w. Otherwise, it is undefined and JfK (v1, · · · , vn) = ⊥.

Notice that if t ↓ w then t ∗→w, because programs are confluent.

3 Quasi-interpretations

3.1 Quasi-interpretation definition

To approach the resource control problem, we suggest the concept of quasi-interpretation which plays the main role
in this study. Quasi-interpretations have been introduced by Marion [Mar00, Mar03], Bonfante [Bon00], and Marion-
Moyen [MM00]. There are related to interpretation to prove termination, an in particular to [BCMT01].

The fundamental property of a quasi-interpretation is that it is a numerical approximation from above of the size
of each intermediate values (that is constructor terms), which appears in a reduction process. However, a quasi-
interpretation does not give an upper bound on a term size which appears in a reduction process. A typical example
is the lcs example in 6 whose reduction involved terms of exponential size, but the lcs program admits an additive
quasi-interpretation, as we shall see later.

Let R+ be the set of non-negative real numbers. An assignment L− M is a mapping from constructors and function
symbols, that is C⋃F , such that for each symbol f of arity n it yields

1. An non-negative real number Lc M of R+, for every symbol c of arity 0.

2. a n-ary function Lb M : (R+)n → R+ for every symbol b of arity is n > 0.

Take a denumerable sequence X1, . . . , Xn, . . . We extend an assignment L− M to terms canonically. Given a term t
with n variables x1, . . . , xn, the assignment Lt M denotes a function from (R+)n to R+ and is defined as follows:

Lxi M = Xi xi ∈ X
Lb(t1, · · · , tn) M = Lb M(Lt1 M, · · · , Ltn M)
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An assignment satisfies the subterm property if for any i = 1, n and any X1, · · · , Xn in R+, we have

Lb M(X1, · · · , Xn) ≥ Xi

A direct consequence of the subterm property is that for any ground term s and any subterm t of s, Ls M ≥ Lt M.
An assignment is weakly monotone if for any symbol b, Lb M is an increasing (not necessarily strictly) function with

respect to each variable. That is, for every symbol b and for all i = 1, n if Xi ≥ Yi, we have Lb M(X1, · · · , Xn) ≥
Lb M(Y1, · · · , Yn).

A substitution σ is defined over a term t, if the domain of σ contains all variables of t. Given two terms t and s,
we say that Lt M ≥ Ls M if for every constructor substitution σ defined over t and s, we have Ltσ M ≥ Lsσ M.

Definition 3 (Quasi-interpretation). A quasi-interpretation L− M of a program f is a weakly monotonic assignment
satisfying the subterm property such that for each rule l→ r

Ll M ≥ Lr M

Throughout, when we shall write “quasi-interpretation”, we always mean “quasi-interpretation of a program f =
〈X , C,F , E〉”.

It is worth noticing that the inequalities that defines a quasi-interpretation are not strict which differs from the
notion of interpretation used to prove termination.

Proposition 4. Assume that L− M is a quasi-interpretation of a program f. For any ground terms s and v such that
s
∗→v, we have Ls M ≥ Lv M

Proof. A context is a particular term that we write C[�] where � is a new variable. The substitution of � in C[�] by a
term t is noted C[t].

The proof goes by induction on the derivation length n. For this, suppose that s = s0 → . . . → sn = v. If
n = 0 then the result is immediate. Otherwise n > 0 and in this case, there is a rule f(p1, · · · , pn) → t and a
constructor substitution σ such that s0 = C[f(p1, · · · , pn)σ] and s1 = C[tσ]. Since L− M is a quasi-interpretation,
we have Ltσ M ≤ Lf(p1, · · · , pn)σ M. The weak monotonicity property implies that LC[tσ] M ≤ LC[f(p1, · · · , pn)σ] M. We
conclude by induction hypothesis.

Example 5. Given a list l of tally natural numbers, sort(l) sorts the elements of l by insertion. The constructor set
is C = {tt,ff ,0, suc,nil, cons}.

if tt then x else y → x

if ff then x else y → y

0 < suc(y)→ tt
x < 0→ ff

suc(x) < suc(y)→ x < y

insert(a,nil)→ cons(a,nil)
insert(a, cons(b, l))→ if a < b then cons(a, cons(b, l))

else cons(b, insert(a, l))

sort(nil)→ nil
sort(cons(a, l))→ insert(a, sort(l))

Constructors admit the following quasi-interpretation.

Ltt M = Lff M = L0 M = Lnil M = 0

Lsuc M(X) = X + 1

Lcons M(X,Y ) = X + Y + 1

And function symbols

Lif then else M(X,Y, Z) = max(X,Y, Z)

L< M(X,Y ) = max(X,Y )

Linsert M(X,Y ) = X + Y + 1

Lsort M(X) = X

This example illustrates two important facts. Quasi-interpretations can be max-functions like in the case of <.
And, the quasi-interpretations of both sides of a rule can be the same. For example take the last rule. We see that

Lsort(cons(a, l)) M = A+ L+ 1 = Linsert(a, sort(l)) M

Theoretical Computer Science, 2011 23



QI: A way to control resources Bonfante, Marion, Moyen

Example 6. Given two binary words u and v over the constructor set {a,b, ε}, lcs(u, v) returns the the length of
the longest common subsequence of u and v. The expression lcs(ababa,baaba) evaluates to suc4(0) because the
length longest common subsequence is 4 (take baba).

max(n,0)→ n

max(0,m)→ m

max(suc(n), suc(m))→ suc(max(n,m))

lcs(ε, y)→ 0

lcs(x, ε)→ 0

lcs(i(x), i(y))→ suc(lcs(x, y)) i ∈ {a,b}
lcs(i(x), j(y))→ max(lcs(x, j(y)), lcs(i(x), y)) i 6= j, j ∈ {a,b}

It admits the following quasi-interpretation:

• Lε M = L0 M = 0

• La M(X) = Lb M(X) = Lsuc M(X) = X + 1

• Llcs M(X,Y ) = Lmax M(X,Y ) = max(X,Y )

3.2 Taxonomy of Quasi-interpretations
Our aim is to study feasible computations. That is why we confine ourselves to programs admitting quasi-interpretations
which are bounded by polynomials. We insist that assignments are bounded by polynomials, but are not necessarily
polynomials.

Definition 7. An assignment L− M is polynomial if for each symbol b ∈ F ⋃ C, Lb M is a function bounded by a
polynomial.

Next, we classify polynomial assignment according to the rate of growth of constructor assignments.

Definition 8. Let c be a constructor of arity n > 0.

• An assignment of c is additive (or of kind 0) if

Lc M(X1, · · · , Xn) =

n∑
i=1

Xi + α

where α ≥ 1.

• An assignment of c is affine (or of kind 1) if

Lc M(X1, · · · , Xn) =

n∑
i=1

βiXi + α α ≥ 1

where the βi’s are constants of R+ and α > 1.

• An assignment c is multiplicative (or of kind 2) if

Lc M(X1, · · · , Xn) = Q(X1, · · · , Xn) + α α ≥ 1

where Q is a polynomial.

We classify polynomial assignments by the kind of assignments given to constructors, and not to function symbols.
If each constructor assignment is additive (resp. affine, multiplicative) then the assignment is additive (resp. affine,
multiplicative) assignment.

A program f admits an additive quasi-interpretation L_ M if it is an additive assignment. We shall also just say
that f is additive, without explicitly mentioning the additive quasi-interpretation tied to it.

Similarly, A program f admits an affine (resp. a multiplicative) quasi-interpretation L_ M if it is an affine (resp. a
multiplicative). We shall also just say that f is affine (resp. multiplicative).

In both previous examples, programs admit a polynomial quasi-interpretation because each quasi-interpretation
is bounded by a polynomial. In example 5, the quasi interpretation of the function symbol < is not a polynomial.
The insertion sort program admits an additive quasi-interpretation because each constructor (that is the symbol in
{tt,ff ,0, suc,nil, cons}) admits an additive assignment. On the other hand, the assignment of the function symbol
< is not additive but it is does not matter because it is not a constructor. For the same reason, the lcs example
admits also an additive quasi-interpretation.
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Example 9. We give three programs which illustrate the three kinds of program classes delineated by quasi-
interpretations.

add(0, y)→ y

add(suc(x), y)→ suc(add(x, y))

mult(0, y)→ 0

mult(suc(x), y)→ add(y, mult(x, y))

These rules define the addition and the multiplication. They admit the following additive quasi-interpretation.

L0 M = 0

Lsuc M(X) = X + 1

Ladd M(X,Y ) = X + Y

Lmult M(X,Y ) = X × Y

So, addition and multiplication are additive programs (additivity only refers to the interpretation of constructors).
Now, in order to define the exponential, we introduce another successor s which has an affine assignment.

exp(0)→ suc(0)

exp(s(x))→ add(exp(x), exp(x))

The quasi-interpretations of the new symbols are:

Ls M(X) = 2X + 1

Lexp M(X) = X + 1

The above program which defines the exponential admits an affine quasi-interpretation. We see that the domain
of exp and its co-domain are not the same. Indeed, the domain is generated by {0, s} whose quasi-interpretation is
affine and the co-domain is generated by {0, suc} whose quasi-interpretation is additive. We shall see later on that
it is necessary to have two successors with different kinds of quasi-interpretations. Similar observations have be done
in [BCMT01] and on tiering system in which an argument of tier 1 produces an output of tier 0. We think that it is
worth to investigate this analogy in order to interpret tiering concepts by quasi-interpretations.

We define the doubly-exponential function, i.e. n 7→ 22n , as follows (here we need yet another successor, s′).

dexp(0)→ suc(suc(0))

dexp(s′(x))→ mult(dexp(x), dexp(x))

and

Ls′ M(X) = (X + 2)2

Ldexp M(X) = X + 2

Again we see that the domain and co-domain are not the same. The domain admits a multiplicative quasi-interpretation
and the co-domain has an additive one.

Other classes of assignments could be introduced such as elementary or primitive recursive assignments, but we
will not discuss about them in this paper. This type of extensions is related to Lescanne’s paper [Les92] about
interpretation for termination proofs.

3.3 Elementary properties of assignments
We study now some quantitative properties of assignments when they are of the kind mentioned above. The size |t|
of a term t is defined by

|t| =
{

0 if t is 0-ary symbol
1 +

∑
i=1,n |ti| if t = f(t1, . . . , tn)

Proposition 10. Assume that L_ M is an additive, an affine or a multiplicative assignment. For any constructor term
t in T (C), we have |t| ≤ Lt M.
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Proof. The proof goes by induction on the size of t.

Proposition 11. Assume that L_ M is an additive, an affine or a multiplicative quasi-interpretation of a program f.
For any term u and any constructor term t ∈ T (C), if u ∗→t, we have |t| ≤ Lu M.

Proof. Proposition 4 implies that Lu M ≥ Lt M. Then from Proposition 10, we have |t| ≤ Lt M. So, |t| ≤ Lu M.

Proposition 12.

• If L_ M is an additive assignment, for any constructor term t in T (C),
we have Lt M ≤ k × |t|.

• If L_ M is an affine assignment, for any constructor term t in T (C),
we have Lt M ≤ 2k×|t|.

• If f is a multiplicative program, for any constructor term t in T (C),
we have Lt M ≤ 22k×|t| .

where in each case k is a constant which depends on the assignment L_ M given to constructors.

Proof. The proof goes by induction on the size of t.

It is worth noticing that the above Proposition illustrates a general phenomenon that we shall see all along this
paper. Roughly speaking, the complexity increases by an exponential when we jump from additive to affine quasi-
interpretations, or from affine to multiplicative ones.

3.4 Call-trees
We present now call-trees which are a tool that we shall use all along. A call-tree gives a static view of an execution
which captures all function calls. Hence, we can study dependencies between function calls without taking care of the
extra details provided by the underlying rewriting relation.

Take a program f = 〈X , C,F , E〉. A state of a program f is a tuple 〈h, v1, · · · , vp〉 where h is a function symbol of
F of arity p and v1, . . . , vp are constructor terms of T (C). Throughout, we may omit to mention the program f when
the context is clear.

Assume that η1 = 〈h, v1, · · · , vp〉 and η2 = 〈g, s1, · · · , sm〉 are two states. A transition is a triplet η1
e; η2 such

that:

(i) e is a rule h(q1, · · · , qp)→ t of E ,

(ii) there is a constructor substitution σ such that qiσ = vi for all 1 ≤ i ≤ p,

(iii) there is a subterm g(s1, · · · , sm) of t such that for any 1 ≤ i ≤ m, siσ
∗→si and si ∈ T (C).

The reflexive transitive closure of ∪e∈E e; is ∗;.

Proposition 13. Let L− M be a quasi-interpretation of a program f. Assume that 〈h, v1, · · · , vp〉 and 〈g, s1, · · · , sm〉
are two states such that

〈h, v1, · · · , vp〉 ∗; 〈g, s1, · · · , sm〉
Then we have Lg(s1, · · · , sm) M ≤ Lh(v1, · · · , vp) M and also Lsi M ≤ Lh(v1, · · · , vp) M for all 1 ≤ i ≤ m.

Proof. The hypothesis 〈h, v1, · · · , vp〉 ∗; 〈g, s1, · · · , sm〉 means that there is a term t such that h(v1, · · · , vp) ∗→t and
that g(s1, · · · , sm) is a subterm of t. Proposition 4 states Lh(v1, · · · , vp) M ≥ Lt M. Since a quasi-interpretation satisfies
the subterm property, we have Lsi M ≤ Lg(s1, · · · , sm) M ≤ Lh(v1, · · · , vp) M.

Next, we define the 〈g, s1, · · · , sm〉-call tree as a tree where (i) 〈g, s1, · · · , sm〉 is the root. (ii) the set of nodes is
{η | 〈h, v1, · · · , vp〉 ∗; η} and (iii) there is an edge between the state η1 and the state η2 if η1

e; η2.
Some state may actually appear several time in the tree. This happen typically in two cases: when there is a

loop in the computation or when there are two different sequences of call leading to the same one (such as with the
Fibonacci function). We do not merge identical states in the call-tree, hence nodes are occurrences of a state rather
that a state alone.

Keeping several occurrences of the same state is useful because here we need to mimic the call by value semantics
of Figure 1. This semantics actually performs identical calls several times. In Section 7 identical nodes in a call tree
will be merged and the tree will thus turn into a directed acyclic graph.

The size of a state 〈g, s1, · · · , sm〉 is
∑m
i=1 |si|.
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Lemma 14. Let L− M be an additive (or affine, or multiplicative) quasi-interpretation of a program f. The size of
each node of the 〈f, t1, · · · , tn〉-call graph is bounded by d× Lf(t1, · · · , tn) M where d is the maximal arity of a function
symbol in f.

Proof. Suppose that 〈g, s1, · · · , sm〉 is a state of the 〈f, t1, · · · , tn〉-call graph. It follows from Proposition 13 that
Lsi M ≤ Lf(t1, · · · , tn) M. As each si is a constructor term, Proposition 10 entails that |si| ≤ Lsi M. Therefore

|〈g, s1, · · · , sm〉| =
∑
i=1,n

|si| ≤ d× Lf(t1, · · · , tn) M

where d is the maximal arity of a function symbol.

3.5 Upper bound on the complexity
It turns out that we can now state a quite important practical point. Indeed, consider an additive program f. Then,
the quasi-interpretation of Lf(t1, · · · , tn) M is bounded by a polynomial in the input size, that is in

∑
i=1,n(|ti|). Next,

by combining Lemma 14, we deduce that the size of each state of the 〈f, t1, · · · , tn〉-call tree is bounded by a polynomial
in the input size. Because, the size of each state is bounded by the quasi-interpretation of the root.

Theorem 15. Assume that f is a program. For any constructor terms t1, . . . , tn,

• If f is an additive program, the size of each state of the 〈f, t1, · · · , tn〉-call tree is bounded by P (m) where P is
some polynomial.

• If f is an affine program, the size of each state of the 〈f, t1, · · · , tn〉-call tree is bounded by 2k×m where k is some
constant.

• If f is a multiplicative program, the size of each state of the 〈f, t1, · · · , tn〉-call tree is bounded by 22k×m where k
is some constant.

where m = maxi=1,n |ti|.
Proof. It is a consequence of Lemma 14 and Proposition 12.

From this result, we can see that the halting problem on a given input is decidable, thus leading to a potential
runtime detection of non-termination. In [Ama03], Amadio wrote a first proof of the result above.

Theorem 16. There is an evaluation procedure which, given an additive program f and given n constructor terms
t1, · · · , tn, computes the value w if f(t1, · · · , tn) ↓ w and otherwise returns ⊥, that is if the evaluation does not
terminate. This evaluation procedure runs in exponential time, i.e. in 2P (maxni=1 |ti|), where P is a polynomial.

Proof. We build a call by value evaluator with a deterministic Turing machine with an extra tape which behaves as
a stack in order to evaluate f(t1, · · · , tn). The stack is used for the recursive calls and the normal tapes contain the
current context. Actually, a call by value procedure computes the value of each state of 〈f, t1, · · · , tn〉-call graph and
for this we perform breadth-first exploration. A context corresponds to a state and the number of states that we have
to memorize is bounded by the width of the call-graph. And the width is bounded by te maximal arity d of a function
symbol. So, the space use on the space is bounded by k′× d× Lf(t1, · · · , tn) M for some constant k′. (Notice that here,
we do not take into consideration the size of the stack.) Cook’s theorem [Coo71] implies that the call by value evaluator
can be then simulated in time 2K×Lf(t1,··· ,tn) M for some constant K (which depends on k′ and d). Since the program
admits a polynomial quasi-interpretation, the time is bounded by 2P (maxni=1 |ti|), where P (X) = K × Lf M(kX, . . . , kX)
by Proposition 12.

Corollary 17. There is an evaluation procedure which given an affine (resp. multiplicative) program f and n
constructor terms t1, · · · , tn, computes the value w if t ↓ w and otherwise returns ⊥ in double exponential time, i.e.

in 22K
′×maxni=1 |ti| (resp. in triple exponential time, i.e. in 222

K′′×maxni=1 |ti|

), where K ′ and K ′′ are two constants.

3.6 Uniform Termination is undecidable
Quasi-interpretations do not ensure termination. Indeed, the rule f(x) → f(x) admits the quasi-interpretation
Lf M(X) = X but does not terminate. Moreover, quasi-interpretations do not give enough information to decide
uniform termination as stated in the following theorem.

Theorem 18. It is undecidable to know whether a program which admits a polynomial quasi-interpretation, terminates
or not on all inputs.

Proof. Senizergues proved in [Sen95] that the uniform termination of non-increasing semi-Thue systems is undecidable.
These semi-Thue systems are a particular case of rewriting systems with a quasi-interpretation (simply take the identity
polynomial for the unary symbols and 1 for the unique constant ε) . The conclusion follows immediately.
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4 Synthesis of Quasi-interpretations

We consider now the problem of finding program quasi-interpretations, which is an important practical question. For
this, we restrict assignments to the class Max-Poly. The class of Max-Poly functions contains constant functions
ranging over non-negative rationals and is closed by projections, maximum, addition, multiplication and composition.

We establish as a direct consequence of Tarski’s Theorem [Tar51] that finding a program quasi-interpretation,
which belongs to the class Max-Poly over non-negative real numbers, is decidable, when degrees are fixed. Indeed,
Tarski demonstrated that the first-order theory for reals containing the addition +, the multiplication ×, the equality
=, the order > with variables over reals and rational constants is decidable. On the other hand, the same question
over natural numbers is undecidable because it is a consequence of Matiyasevich’s Theorem [Mat93].

We consider two related problems. The first one is the verification problem:

inputs: A program f and an assignment L− M.

problem: Is L− M a quasi-interpretation for f?

The second one is the synthesis problem:

input: A program f.

problem: Is there an assignment L− M which is a quasi-interpretation for f?

Before proceeding to the main discussion, it is convenient to have a normal representation of function inMax-Poly.

Proposition 19 (Normalization). A Max-Poly function Q can always be expressed as:

Q(X1, . . . , Xn) = max(P1(X1, . . . , Xn), . . . , Pk(X1, . . . , Xn))

where each Pi is a polynomial. We say that the max-degree of Q is k and the degree of Q is the maximum degree of
the polynomials P1, . . . , Pk.

Proof. This is due to the fact that max is distributive with + and × over the non-negative reals.

Now consider a Max-Poly assignment L− M of a program f. Take a rule l→ r and define

Sl→r = ∀X1, . . . Xp ≥ 0 :
∨

i=1..n

∧
j=1..m

Pi(X1, . . . , Xp) ≥ Qj(X1, . . . , Xp)

where Ll M = max(P1, . . . , Pn), Lr M = max(Q1, . . . , Qm) and X1, . . . , Xp are all the variables of Ll M. (Recall that the
variables of Lr M are also variables of Ll M.)

We see that the first order formula Sl→r is true iff Ll M ≥ Lr M.

Theorem 20. The verification problem for Max-Poly assignments is decidable in exponential time in the size of the
program.

Proof. In order to solve the verification problem, we have to decide whether or not the following first order formula is
true.

SE =
∧

l→r∈E

Sl→r for a given assignment

This is performed by Tarski’s decision procedure. Basu, Pollack and Roy [BPR96] established that such procedure is
at most exponential in the number of quantifiers. In our case, it corresponds to the maximum arity of symbols.

Theorem 21. The synthesis problem for Max-Poly assignment of bounded degree and bounded max-degree is decidable
in doubly exponential time in the size of the program.

Proof. Without loss of generality, we restrict ourselves to unary functions. Functions with many variables are handled
in the same way but with more coefficients and indexes. By Theorem hypothesis, we assume that the degree is d and
the max-degree is k.

Suppose that there are n symbols, constructors or functions, b1, . . . , bn. The assignment of bi is of the form

Lbi M(X) = max(P bi1 (X), . . . , P bik (X)) where P bim =

d∑
j=0

abi,m,jX
j
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Now, we have to guess polynomial coefficients by proving the validity of the formula:

∃ab1,1,0 . . . ab1,k,d, . . . , abn,1,0, . . . , abn,k,d : SE

where SE is defined in the previous proof. Lastly, we need to verify that the subterm and the weak monotonicity
properties and the fact that the coefficient of degree 0 for constructors is ≥ 1.

The total number of quantifiers is k × (d+ 1)× n. So, the decision procedure is doubly exponential in the size of
the program.

Remark 22. The quasi interpretations of all examples belong to the class Max-Poly. Actually, it appears that the
class of Max-Poly quasi-interpretations is sufficient for daily programs. In practice, each program appears to admit
a Max-Poly quasi-interpretation with low degrees, usually no more than 2 for both the degree of polynomials and
the arity of max.

Although a solution of the decision of Max-Poly synthesis problem is presented above, yet the procedure for
carrying out the decision is complex. There is need of specific methods for finding quasi-interpretations which are
in a smaller class but which are relevant. For this reason, Amadio [Ama03] considered the max-plus algebra over
rational numbers. A program which admits a quasi-interpretation over the max-plus algebra are related to non-size
increasing according to Hofmann [Hof99]. Amadio established that the synthesis of max-plus quasi-interpretation is
in NPtime-hard and NPtime-complete in the case of multi-linear assignments.

5 Termination
We now focus on termination which plays the role of a mold capturing certain algorithm patterns. We obtain a
finer control resource by the combination of termination tools and quasi-interpretations. Here, we consider Recursive
Path Orderings which are simplification orderings and so well-founded. Among the pioneers of this subject, there are
Plaisted [Pla78], Dershowitz [Der82], Kamin and Lévy [KL80]. Finally, Krishnamoorthy and Narendran in [KN85]
have proved that deciding whether a program terminates by Recursive Path Orderings is a NP-complete problem.

5.1 Extension of an ordering to sequences
Suppose that � is a partial ordering and ≺ its strict part. We describe two extensions of ≺ to sequences of the same
length.

Definition 23. The product extension1 of ≺ over sequences, noted ≺p, is defined as follows.
We have (m1, · · · ,mk) ≺p (n1, · · · , nk) if and only if (i) ∀i ≤ p,mi � ni and (ii) ∃j ≤ k such that mj ≺ nj .
Definition 24. The lexicographic extension of ≺, noted ≺l, is defined as follows.
We have (m1, · · · ,mk) ≺l (n1, · · · , nk) if and only if there exists an index j such that (i) ∀i < j,mi � ni and (ii)
mj ≺ nj .

The product ordering of sequences in a restriction of the more usual multi-set ordering of sequences. We do not
need here the full power of the multi-set ordering mainly because we only compare sequences of the same length will
the multi-set ordering works on sequences of any length.

Notice that the product ordering of sequences is also a restriction of the lexicographic ordering, that is two sequences
ordered by the product extension are also ordered lexicographically.

5.2 Recursive path ordering with status
Let ≺F be an ordering on F and ≈F be a compatible equivalence relation such that if f ≈F g then f and g have the
same arity. The quasi-ordering �F=≺F ∪ ≈F is a precedence over F .
Definition 25. A status st is a mapping which associates to each function symbol f of F a status st(f) in {p, l}. A
status is compatible with a precedence �F if it satisfies the fact that if f ≈F g then st(f) = st(g).

Throughout, we assume that status are compatible with precedences.

Definition 26. Given a precedence �F and a status st, the recursive path ordering ≺rpo is defined in Figure 2.

When st(f) = p, the status of f is said to be product. In that case, the arguments are compared with the product
extension of ≺rpo. Otherwise, the status is said to be lexicographic.

A program is ordered by ≺rpo if there is a precedence on F and a status st such that for each rule is decreasing,
that is each rule l→ r, we have r ≺rpo l.

1 Unlike [MM00], we have decided to present the product extension instead of the permutation extension. This simplifies the presentation
without loss of generality. Actually, there is a tedious procedure to transform the rules in order to prove termination by product ordering.
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s = ti or s ≺rpo ti
f ∈ F ⋃ C

s ≺rpo f(. . . , ti, . . .)

∀i si ≺rpo f(t1, · · · , tn)
f ∈ F , c ∈ C

c(s1, · · · , sm) ≺rpo f(t1, · · · , tn)

∀i si ≺rpo f(t1, · · · , tn) g ≺F f
f, g ∈ F

g(s1, · · · , sm) ≺rpo f(t1, · · · , tn)

(s1, · · · , sn) ≺st(f)
rpo (t1, · · · , tn) f ≈F g ∀i si ≺rpo f(t1, · · · , tn)

f, g ∈ F
g(s1, · · · , sn) ≺rpo f(t1, · · · , tn)

Figure 2: Definition of ≺rpo

Theorem 27 (Dershowitz [Der82]). Each program which is ordered by ≺rpo terminates on all inputs.

Example 28.

1. The shuffle program rearranges two words. It terminates with a product status.

shuffle(ε, y)→ y

shuffle(x, ε)→ x

shuffle(i(x), j(y))→ i(j(shuffle(x, y))) i, j ∈ {0, }

2. The following program reverses a word by tail-recursion. It terminates with a lexicographic status.

reverse(ε, y)→ y

reverse(i(x), y)→ reverse(x, i(y)) i ∈ {0, }

3. The program sort of Example 5 terminates if each function symbol has a product status and by setting the
precedence if then else ≺F insert ≺F sort

4. The lcs program of Example 6 is ordered by taking max ≺F lcs, and both symbols have a product status.

5.3 Extensional Characterization
The orderings considered are special cases of more general ones and in particular of Multiset Path Ordering and
Lexicographic Path Ordering. Nevertheless, they characterize the same set of functions. Say that a RPOPro-program
is a program in which each function symbol has a product status. Following the result of Hofbauer [Hof92], we have2

Theorem 29. The set of functions computed by RPOPro-programs is exactly the set of primitive recursive functions.

Now, say that a RPOLex-program is a program in which each function symbol has a lexicographic status. Weier-
mann [Wei95] has established that3

Theorem 30. The set of functions computed by RPOLex-programs is exactly the set of multiple-recursive functions.

5.4 Consequences of termination proofs
We write s E t to say that s is a subterm of t.

Proposition 31.

1. For each constructor term t and s, s ≺rpo t iff s / t.

2Since the product ordering is a restriction of the multiset ordering, any RPOPro-program is also terminating by the more usual MPO
termination ordering. Conversely, as stated above, there is a (somewhat tedious) procedure to turn MPO programs into RPOPro-programs.

3here, the RPOLex-programs are exactly the programs terminating by the usual LPO termination ordering.
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2. For each constructor term s1, · · · , sn and t1, · · · , tn,
(s1, · · · , sn) ≺xrpo (t1, · · · , tn) implies (s1, · · · , sn) /x (t1, · · · , tn), where x is a status p or l and /x is the corres-
ponding extension based on the subterm relation.

3. For each constructor term s1, · · · , sn and t1, · · · , tn,
(s1, · · · , sn) ≺xrpo (t1, · · · , tn) implies (|s1|, · · · , |sn|) <x (|t1|, · · · , |tn|), where x is a status p or l and <x is the
corresponding extension of the ordering over natural numbers.

Proof. The proofs go by induction on the size of terms.

Remark 32. The ordering ≺rpo is not stable for constructor contexts. Indeed, we have (ε) ≺rpo 0((ε)), but ((ε)) ≺rpo
(0((ε))) does not hold. So, ≺rpo is not a reduction ordering but there is no rewriting inside constructor terms.

Lemma 33. Let f be a program which is ordered by ≺rpo, α be the number of function symbols and d be the maximal
arity of function symbols. Assume that the size of each state of the 〈f, t1, · · · , tn〉-call tree is strictly bounded by A.
Then the following facts hold:

1. If 〈f, t1, · · · , tn〉 ∗; 〈g, s1, · · · , sm〉 then
(a) g ≺F f or

(b) g ≈F f and (s1, · · · , sm) ≺st(f)
rpo (t1, · · · , tn).

2. If 〈f, t1, · · · , tn〉 ∗; 〈g, s1, · · · , sm〉 and g ≈F f then the number of states between the states 〈f, t1, · · · , tn〉 and
〈g, s1, · · · , sm〉 is bounded by Ad.

3. The length of each branch of the call-tree is bounded by α×Ad.
Proof.

1. Because the rules of the program decrease by ≺rpo.
2. Suppose that 〈h, v1, · · · , vp〉 is a state between 〈f, t1, · · · , tn〉 and 〈g, s1, · · · , sm〉. Due to the first point of this

lemma, we have h ≈F f and (v1, · · · , vp) ≺st(f)
rpo (t1, · · · , tn). So, by proposition 31(3), we have (|v1|, · · · , |vp|) <st(f)

(|t1|, · · · , |tn|). Since the size of each component is bounded by A and n ≤ d, the length of the decreasing chain
is bounded by Ad.

3. In each branch, the previous point of the Lemma claims that there are at most Ad states whose function symbols
have the same precedence. Next, there are Ad states whose function symbols have the precedence immediately
below, and so on. As there are only α function symbols, the length of the branch is bounded by α×Ad.

6 Characterizing space bounded computation

6.1 Polynomial space computation
Definition 34. A RPOQI -program is a program that (i) admits a quasi-interpretation and (ii) which terminates by
≺rpo.
Theorem 35. The set of functions computed by additive RPOQI-programs is exactly the set of functions computable
in polynomial space.

The upper-bound on space-usage is established by Theorem 38. The completeness of this characterization is
established by Theorem 55.

Example 36. The Quantified Boolean Formula (QBF) problem is Pspace complete. It consists in determining the
validity of a boolean formula with quantifiers over propositional variables. Without loss of generality, we restrict
formulae to ¬,∨,∃. QBF problem is solved by the following program.

not(tt)→ ff not(ff)→ tt
or(tt, x)→ tt or(ff , x)→ x

0 = 0→ tt suc(x) = 0→ ff
0 = suc(y)→ ff suc(x) = suc(y)→ x = y

in(x,nil)→ ff in(x, cons(a, l))→ or(x = a, in(x, l))
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verify(Var(x), t)→ in(x, t)

verify(Not(φ), t)→ not(verify(φ, t))

verify(Or(φ1, φ2), t)→ or(verify(φ1, t), verify(φ2, t))

verify(Exists(n, φ), t)→ or(verify(φ, cons(n, t)), verify(φ, t))

qbf(φ)→ verify(φ,nil)

Booleans are encoded by {tt,ff}, variables are encoded by unary integers which are generated by {0, suc}. Formulae
are built from {Var,Not,Or,Exists}. All these symbols are constructors. The main function symbol is qbf.

Rules are ordered by ≺rpo by putting

{not, or, _=_} ≺F in ≺F verify ≺F qbf

and each function symbol has a product status except verify which has a lexicographic status.
They admit the following additive quasi-interpretations :

Lc M = 0 where c is a constructor of arity 0

Lc M(X1, · · · , Xn) = 1 +

n∑
i=1

Xi where c is a constructor of arity > 0

Lverify M(Φ, T ) = Φ + T

Lqbf M(Φ) = Φ + 1

Lg M(X1, · · · , Xn) =
n

max
i=1

Xi for other function symbols

6.2 RPOQI-programs are Pspace computable

We are now establishing that a RPOQI -program f is computable in polynomial space.

Lemma 37. Let f be a RPOQI-program. For each constructor term t1, · · · , tn, the space used by a call by value
interpreter to compute f(t1, · · · , tn) is bounded by a polynomial in Lf(t1, · · · , tn) M.

Proof. Take an innermost call by value interpreter, like the one of Figure 1. It builds recursively in a depth first
manner the 〈f, t1, · · · , tn〉-call tree, evaluates nodes and backtracks. Put A = Lf(t1, · · · , tn) M. The interpreter only
needs to store states along a branch of the call-tree. Each state as well as the intermediate results are bounded by
O(A). The maximal length of a branch is bounded by α × Ad by Lemma 33(3). The number of states and results
to memorize for the depth first search is bounded by α × Ad+1 × β where β is the maximal size of a rule. In other
words, β is an upper bound on the width of the call-tree. Therefore, the space used by the interpreter is bounded by
O(Ad+1).

Theorem 38. Let f be an additive RPOQI-program. For each constructor term t1, · · · , tn, the space used by a call by
value interpreter to compute f(t1, · · · , tn) is bounded by a polynomial in maxni=1 |ti|.

Proof. By Proposition 12, we have Lti M ≤ O(|ti|). Because quasi-interpretations are polynomially bounded, we have
Lf(t1, · · · , tn) M ≤ P (maxni=1 |ti|), for some polynomial P . So the space is bounded by O(P (maxni=1 |ti|)d+1) following
Lemma 37.

6.3 Beyond polynomial space

The kind of constructor quasi-interpretations provides an upper bound on the space required to evaluate a program.

Theorem 39.

• The set of functions computed by affine RPOQI-programs is exactly the set of functions computable in linear
exponential space, that is in space bounded by 2O(n) where n is the size of the inputs.

• The set of functions computed by multiplicative RPOQI-programs is exactly the set of functions computable in
linear double exponential space, that is in space bounded by 22O(n)

where n is the size of the inputs..

Proofs are very similar to the one of Theorem 38. The kind of quasi-interpretation gives the different upper-bounds
on the space-usage as established in Proposition 12. The converse is established by Theorems 58 and 61.
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7 Characterizing time bounded computation

7.1 Polynomial time computation
Definition 40. A function symbol f is linear in a program terminating by ≺rpo if for each rule f(p1, · · · , pn) → r,
then there is at most one occurrence in r of a function symbol g with the same precedence than f, that is f ≈F g.

Definition 41.

1. A RPOQI
Pro-program is a program that (i) admits a quasi-interpretation, (ii) which terminates by ≺rpo and (iii)

each function symbol has a product status.

2. A RPOQI
Lin-program is a program that (i) admits a quasi-interpretation, (ii) which terminates by ≺rpo, and (iii)

each function symbol is linear and has a lexicographic status.

3. A RPOQI
Pro+Lin-program is a program that (i) admits a quasi-interpretation, (ii) which terminates by ≺rpo and

(iii) each function symbol which has a lexicographic status is linear, and others have a product status.

Tail recursive programs are RPOQI
Lin-programs as it is illustrated by the reverse program in Example 28. On

the other hand, the program that solves QBF in Example 36, is not a RPOQI
Lin-program, because of the definition of

verify (in the case of Exists(n, φ)) which leads to two recursive calls with substitution of parameters. Note that
lexicographic ordering captures the template of recursion with parameter substitutions which was the key ingredient
of the characterization of polynomial space functions [LM95] by tiering discipline.

Theorem 42. The set of functions computed by additive RPOQI
Lin-programs (resp. RPOQI

Pro-programs and RPOQI
Pro+Lin-

programs) is exactly the set of functions computable in polynomial time.

The upper-bound on time-usage is established by Theorem 47 below. The completeness of this characterization is
established by Theorem 54.

Example 43. The lcs example 6 is quite interesting and is an illustration of an important observation. Indeed, if
one applies the rules of the program following a call by value strategy, one gets an exponentially long derivation chain.
But the theorem states that the lcs function is computable in polynomial time. Actually, one should be careful not
to confuse the algorithm and the function it computes. This function (length of the longest common subsequence) is
a classical textbook example of so called “dynamic programming” (see chapter 16 of [CLR90]) and can in this way be
computed in polynomial time.

So, the theorem does not characterize the complexity of the algorithm, which we should call its explicit complexity
but the complexity of the function computed by this algorithm, which we should dub its implicit complexity.

7.2 RPOQI
Pro+Lin-programs are Ptime computable

In order to avoid an exponential explosion like, for instance, in the lcs case, we switch from the call-by-value semantics
previously defined to a call-by-value semantics with cache, see Figure 4. Hence, we simulate dynamic programming
techniques, which consist in storing each result of a function call in a table and avoiding to recompute the same
function call if it is already in the table. This technique is inspired from Andersen and Jones’ rereading ([AJ94]) of
Cook simulation technique over 2 way push-down automata ([Coo71]) and is called memoization.

The expression 〈C, t〉 ⇓ 〈C ′, w〉 means that the computation of t is w given a program f and an initial cache C.
The final cache C ′ contains C and each call which has been necessary to complete the computation.

More precisely, say that a configuration is a list such as (g, w1, · · · , wm, w) where 〈g, w1, · · · , wm〉 is a state, and
JgK (w1, · · · , wm) = w. When a term g(w1, · · · , wm) is considered, we search for a configuration (g, w1, · · · , wm, w)
in the current cache C. If such configuration exists, we use it to short-cut the computation and so we return w.
Otherwise, we apply a program equation, say l→ r, by matching g(w1, · · · , wm) with l. Then, we update C by adding
the configuration (g, w1, · · · , wm, w) to the current cache C.

Figure 3 shows what happens to the 〈lcs,ababa,baaba〉-call tree when memoization is applied. Notice that
identical subtrees are merged and the call-tree becomes a directed acyclic graph.

The key point for additive programs, is to establish that the size of a cache C is polynomially bounded in the size
of the input arguments.

Lemma 44. Suppose that 〈C0, f(t1, · · · , tn)〉 ⇓ 〈C,w〉. The size of the final cache C is bounded by a polynomial in
Lf(t1, · · · , tn) M.

Proof. Define Cg as the set ofm-uplets of T (C)-terms which are the arguments of states of g. That is, (u1, · · · , um) ∈ Cg
iff (g, u1, · · · , um, v) ∈ C. We have

#C =
∑
g∈F

#Cg
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where we write #S for the cardinal of a set S.
To give an upper-bound on the cardinality of Cg, we define two sets C∨g and C∧g . The idea is to separate the calls

which come from functions of strictly higher precedence and the ones which come from functions of the same precedence.
Consider the 〈f, v1, · · · , vn〉-call tree. Say that the covering graph of g is the subgraph of the 〈f, v1, · · · , vn〉-call tree
obtained by removing all states which are not labeled by functions h which has precedence equivalent to g, that h ≈F g.
Define two sets C∨g and C∧g as follows. C∨g contains all the roots of the covering graph of g labeled by g, and C∧g
contains all the other nodes of the covering graph labeled by g.

• We consider the C∨g ’s. Suppose that f ≈F g, but f 6= g. For the special case where g ≈F f, we have #C∨f = 1.
By definition, we have #C∨g = 0.
Suppose that g ≺F f. Then, (u1, · · · , um) ∈ C∨g . It follows that the cardinality of C∨g is bounded by

#C∨g ≤
∑
g≺Ff

#Cf

• We consider C∧g .

1. The status of g is product. Proposition 31 states that sub-calls of the same rank starting from f(v1, · · · , vn)
have arguments which are subterms of the vi’s. Therefore there are at most

∏
i≤n(|vi|+ 1) such sub-calls.

It follows from Lemma 14 that the number of sub-calls is bounded∏
i≤n

(|vi|+ 1) ≤ (d× Lf(t1, · · · , tn) M)d

where d is the maximal arity of a function symbol.

2. The status of g is lexicographic. But by definition of RPOQI
Lin-programs, there is at most one recursive

call starting from g for each rule application. Lemma 33(3) entails that the maximal length of a branch is
Lf(t1, · · · , tn) Md which is also a bound on the number of successive calls initiated by f.

From both previous points, we obtain that

#C∧g ≤ (#C∨g + 1)× dd × Lf(t1, · · · , tn) Md

Finally, we have
#Cg ≤ #C∨g + #C∧g

By combining previous inequalities, we see that the cardinality of C is polynomially bounded in Lf(t1, · · · , tn) M.

Example 45. Figures 5 and 6 show the covering graphs of lcs and max in the 〈lcs,ababa,baaba〉-call tree. Nodes
in C∨g have been squared while nodes of C∧g have been circled (g ∈ {lcs, max}).

Lemma 46. Let f be a RPOQI
Pro+Lin-program. For each constructor term t1, · · · , tn, the runtime of the call by value

interpreter with cache to compute f(t1, · · · , tn) is bounded by a polynomial in Lf(t1, · · · , tn) M.

〈lcs,a,aba〉 〈lcs,ba,ba〉 〈lcs,aba,a〉

〈lcs, ε,ba〉 〈lcs,a,a〉 〈lcs,ba, ε〉

〈lcs, ε, ε〉

〈lcs,ba,aba〉 〈lcs,aba,aba〉 〈lcs,baba,ba〉

〈lcs,aba,aaba〉 〈lcs,baba,aba〉

〈lcs,baba,baaba〉 〈lcs,ababa,aaba〉

〈lcs,ababa,baaba〉

〈max, 1, 2〉

〈max, 0, 1〉

〈max, 3, 2〉

〈max, 2, 1〉

〈max, 1, 0〉 〈max, 0, 0〉

〈max, 1, 1〉

〈max, 2, 2〉

〈max, 3, 3〉

〈max, 4, 4〉

Figure 3: The 〈lcs,ababa,baaba〉-call tree with memoization.
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(Constructor)
c ∈ C 〈Ci−1, ti〉 ⇓ 〈Ci, wi〉

〈C0, c(t1, · · · , tn)〉 ⇓ 〈Cn, c(w1, · · · , wn)〉

(Read)
〈Ci−1, ti〉 ⇓ 〈Ci, wi〉 (f, w1, · · · , wn, w) ∈ Cn

〈C0, f(t1, · · · , tn)〉 ⇓ 〈Cn, w〉

(Update)
〈Ci−1, ti〉 ⇓ 〈Ci, wi〉 f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = wi 〈Cn, rσ〉 ⇓ 〈C,w〉

〈C0, f(t1, · · · , tn)〉 ⇓ 〈C ∪ (f, w1, · · · , wn, w), w〉

Figure 4: Call-by-value interpreter with Cache of 〈X , C,F , E〉.

〈lcs,a,aba〉 〈lcs,ba,ba〉 〈lcs,ba,ba〉 〈lcs,aba,a〉

〈lcs, ε,ba〉 〈lcs,a,a〉 〈lcs,a,a〉 〈lcs,ba, ε〉

〈lcs, ε, ε〉 〈lcs, ε, ε〉

〈lcs,ba,aba〉 〈lcs,aba,aba〉 〈lcs,baba,ba〉

〈lcs,aba,aaba〉 〈lcs,baba,aba〉

〈lcs,baba,baaba〉 〈lcs,ababa,aaba〉

〈lcs,ababa,baaba〉

Figure 5: The lcs-covering graph of the call-tree.

Proof. Since an evaluation procedure memorizes all necessary configurations, the runtime is at most quadratic in the
size of the cache. Note that the exact runtime depends on the implementation strategy and in particular on the cache
management.

Theorem 47. Let f be an additive RPOQI
Pro+Lin-program (resp. RPOQI

Pro-program and RPOQI
Lin-program). For each

constructor term t1, · · · , tn, the runtime to compute f(t1, · · · , tn) is bounded by a polynomial in maxni=1 |ti|.

Proof. By Proposition 12, we have Lti M ≤ O(|ti|). For some polynomial P we have Lf(t1, · · · , tn) M ≤ P (maxni=1 |ti|),
because quasi-interpretations are polynomially bounded. Lemma 46 implies that the time is bounded by a polynomial
in maxni=1 |ti|.

In the general case, memoization is not used because one cannot decide which results will be reused and the cache

〈max, 1, 2〉

〈max, 0, 1〉

〈max, 3, 2〉

〈max, 2, 1〉

〈max, 1, 0〉 〈max, 0, 0〉

〈max, 1, 1〉

〈max, 2, 2〉

〈max, 3, 3〉

〈max, 4, 4〉

Figure 6: The max-covering graph of the call-tree.
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may become too big to be really useful. In our particular case, the termination ordering gives enough information on
the structure of the program to minimize the cache [Mar00].

We see that if a function symbol is linear, see Definition 40, then no result needs to be recorded. More generally,
consider the 〈f, t1, · · · , tn〉-call tree. When evaluating 〈f, t1, · · · , tn〉, the call by value semantics with cache stores all
values. Say that a separation set N is a set of states such that each chain starting from the root state 〈f, t1, · · · , tn〉
meets a state of N . If we know the value of each state of N , then values of the states below N -states are useless in
order to determine 〈f, t1, · · · , tn〉. And, we can forget them. Therefore, it is sufficient to store in a cache a separation
set N for each function symbol. Now say that a separation set N is minimal if for each state s ∈ N , N \ {s} is
not a separation set. We can require an implementation to keep a minimal separation set. To perform dynamically,
we have to compare configurations in the cache. Take two configurations (f, t1, · · · , tn, t) and (g, s1, · · · , sm, s). If
f(t1, · · · , tn) ≺rpo g(s1, · · · , sm) then we do not need anymore the configuration (f, t1, · · · , tn, t) and we can erase it
from the cache.

7.3 Beyond polynomial time
Theorem 48.

• The set of functions computed by affine RPOQI
Pro+Lin-programs (resp. RPOQI

Pro-programs and RPOQI
Lin-programs)

is exactly the set of functions computable in linear exponential time, that is in time bounded by 2O(n).

• The set of functions computed by multiplicative RPOQI
Pro+Lin-programs (resp. RPOQI

Pro-programs and RPOQI
Lin-

programs) is exactly the set of functions computable in linear double exponential time, that is in time bounded
by 22O(n)

.

Proofs are very similar to the one of Theorem 47. The kind of quasi-interpretation gives the different upper-bounds
on the time-usage as established in Proposition 12. The converse is again a consequence of Theorems 57 and 60.

8 Simulation of Parallel Register Machines

8.1 Parallel Register Machines
Following [LM95], we introduce Parallel Register Machines (PRM) which are able to model the essential features
of both traditional sequential computing like Turing Machines and alternating computations like Alternating Turing
Machines.

A PRM M works over the word algebra W generated by the constructors {0, ,ε} and consists in

1. a finite set S = {s0, s1, . . . , sk} of states, including a distinct state begin.

2. a finite list Π = {π1, . . . , πm} of registers; we write output for πm; Registers will only store values in W;

3. a function com mapping states to commands which are
[Succ(π = i(π), s′)], [Pred(π = p(π), s′)], [Branch(π, s′, s′′)],
[Forkmin(s′, s′′)], [Forkmax(s′, s′′)], [End].

A configuration of a PRM M is given by a pair (s, F ) where s ∈ S and F is a function Π → W which stores
register values. We note {π ← π′}F to mean that the value of the register π is the content of π′, the other registers
stay unchanged.

In order to have a choice mechanism to simulate alternation by the fork operation, we define an ordering J on W
: ε J y, 0(x) J (y), i(x) J i(y) if and only if x J y. We define the operations minJ and maxJ wrt J.

Next, we define a semantic partial-function eval : N × S ×Wm 7→ W, that maps the result of the machine in a
time bound given by the first argument.

• eval(0, s, F ) is undefined.

• If com(s) is Succ(π = i(π), s′) then eval(t+ 1, s, F ) = eval(t, s′, {π ← i(π)}F ).

• If com(s) is Pred(π = p(π), s′)], then eval(t + 1, s, F ) = eval(t, s′, {π ← p(π)}F ) where p is the predecessor
function on W;

• If com(s) is Branch(π, s′, s′′) then eval(t + 1, s, F ) = eval(t, r, F ), where r = s′ if π = 0(w) and r = s′′ if
π = (w);

• If com(s) is Forkmin(s′, s′′) then
eval(t+ 1, s, F ) = minJ(eval(t, s′, F ), eval(t, s′′, F ));
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• If com(s) is Forkmax(s′, s′′) then
eval(t+ 1, s, F ) = maxJ(eval(t, s′, F ), eval(t, s′′, F ));

• If com(s) is End then eval(t+ 1, s, F ) = F (output).

Let T : N → N be a function. A function φ : Wk → W is PRM-computable in time T if there is a PRM M such
that for each (w1, · · · , wk) ∈Wk, we have

eval(T (
k

max
i=1
|wi|),begin, F0) = φ(w1, · · · , wk)

where F0(πi) = wi for i = 1..k and otherwise F0(πj) = ε.

8.2 Space and Time bounded computation
A Register machines (RM) is a PRM without fork commands. A Turing machine can be simulated linearly in time
by a RM.

Proposition 49. A function φ is computable in polynomial (respectively exponential, doubly exponential) time iff φ
is RM-computable in polynomial time (resp. exponential, doubly exponential).

There are pleasingly well-known tight connections between space used by a Turing machine and time used by PRM.
The essence of the translation comes from the work of Savitch [Sav70] and Chandra, Kozen, Stockmeyer [CKS81].

Theorem 50. A function φ is computable in polynomial (resp. exponential, doubly exponential) space iff φ is PRM-
computable in polynomial time (resp. exponential, doubly exponential).

8.3 Time bounded simulation with lexicographic termination
Without loss of generality, we consider only unary functions in the following. It would be laborious to specify this
simulation in full details otherwise.

Lemma 51 (Lexicographic Plug and play lemma). Assume that φ : W → W is a PRM-computable function in time
bounded by T . Define f by

f : N×W → W
(n,w) 7→ φ(w) if n > T (|w|)
(n,w) 7→ ⊥ otherwise

Then,

1. the function f is computed by an additive RPOQI-program,

2. and, if f is computed by a RM, then f is computable by an additive RPOQI
Lin-program.

Proof. Suppose that f is computed by a PRM M . The simulation of the PRM M is done by following the rules of
the semantic partial function eval. For this, the set of constructors is C = {0, ,s, �, ε} ∪S where S is the set of states.

We show first that minJ and maxJ are additive RPOQI -program.

min(ε, w) → ε max(ε, w) → w
min(w, ε) → ε max(w, ε) → w

min(0(w), (w′)) → 0(w) max(0(w), (w′)) → (w′)

min((w),0(w′)) → 0(w′) max((w),0(w′)) → (w)

min(i(w), i(w′)) → i(min(w,w′)) max(i(w), i(w′)) → i(max(w,w′))

with i ∈ {0, }.
We associate the following quasi-interpretations:

Lε M = 0 L� M = 0 ∀q ∈ S, Lq M = 0

L0 M(X) = X + 1 L M(X) = X + 1 Ls M(X) = X + 1

Lmin M(W,W ′) = max(W,W ′) Lmax M(W,W ′) = max(W,W ′)

Next, we write a program to compute the semantic partial function eval.

(a) Eval(s(t), s, π1, · · · , πm)→ Eval(t, s′, π1 · · · , i(πj), · · · , πm)

if com(s) = Succ(πj = i(πj), s′),
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(b) Eval(s(t), s, π1, · · · , i(πj), · · · , πm)→ Eval(t, s′, π1, · · · , πj , · · · , πm)

if com(s) = Pred(πj = p(πj), s
′),

(c) Eval(s(t), s, π1, · · · ,0(πj), · · · , πm)→ Eval(t, s′, π1, · · · , πm)

if com(s) = Branch(πj , s
′, s′′),

(d) Eval(s(t), s, π1, · · · , (πj), · · · , πm)→ Eval(t, s′′, π1, · · · , πm)

if com(s) = Branch(πj , s
′, s′′),

(e) Eval(s(t), s, π1, · · · , πm)→ min(Eval(t, s′, π1, · · · , πm), Eval(t, s′′, π1, · · · , πm))

if com(s) = Forkmin(s′, s′′),

(f) Eval(s(t), s, π1, · · · , πm)→ max(Eval(t, s′, π1, · · · , πm), Eval(t, s′′, π1, · · · , πm))

if com(s) = Forkmax(s′, s′′),

(g) Eval(s(t), s, π1, . . . , πm)→ πm, if com(s) = End,

Finally, put f(t, w)→ Eval(t,begin, w, ε, . . . , ε). It is routine to check that f = JfK.
These programs admit the following quasi-interpretations:

LEval M(T, S,Π1, · · · ,Πm) = T + S +

m∑
i=1

Πi

Lf M(T,X) = T +X

The status of each function symbol is lexicographic. The precedence satisfies {min, max} ≺F Eval ≺F f. We see
that each rule is decreasing by ≺rpo. Therefore, f is a RPOQI -program.

Now, observe that Eval has always one occurrence in the right hand side of the rules except in the fork cases. So,
f is a RPOQI

Lin-program if f is computed by a RM.

8.4 Time bounded simulation with product termination

In [MM00], the simulation of RM is performed by a RPOQI
Pro-program in a different manner because the status of

function symbols is product and not lexicographic as in the above result. For this reason, we give details of the
simulation of a time bounded function in the case where symbols have a product status.

Lemma 52 (Product Plug and play lemma). Assume that φ : W→W is a RM-computable function in time bounded
by T . Define f by

f : N×W → W
(n,w) 7→ φ(w) if n > T (|w|)
(n,w) 7→ ⊥ otherwise

Then, f is computable by an additive RPOQI
Pro-program.

Proof. Compared with the previous proof, the simulation is performed in bottom-up way. For this, we use an extra
constructor c to encode tuples. And we define Step which gives the next configuration.

(a) Step(c(s, π1, · · · , πm))→ c(s′, π1 · · · , i(πj), · · · , πm)

if com(s) = Succ(πj = i(πj), s′)

(b) Step(c(s, π1, · · · , i(πj), · · · , πm))→ c(s′, π1, · · · , πj , · · · , πm)

if com(s) = Pred(πj = p(πj), s
′)

(c) Step(c(s, π1, · · · ,0(πj), · · · , πm)→ c(s′, π1, · · · , πm)

if com(s) = Branch(πj , s
′, s′′)

(d) Step(c(s, π1, · · · , (πj), · · · , πm)→ c(s′′, π1, · · · , πm)

if com(s) = Branch(πj , s
′, s′′)

(e) Step(c(s, π1, . . . , πm)→ c(s, π1, . . . , πm)

if com(s) = End
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The simulation is made by

Eval(ε, x)→ x

Eval(s(t), x)→ Step(Eval(t, x))

f(t, w) = Eval(t, c(begin, w, ε, . . . , ε))

The rules are ordered by putting Step ≺F Eval where each symbol has now a product status. A quasi-interpretation
of the rules is

Lc M(S,Π1, · · · ,Πm) = S +
∑
i

Πi + 1

LStep M(X) = X + 1

LEval M(T,X) = T +X

The others constructor assignments are identical to the ones in the previous simulation described in the proof of
Lemma 51

Lε M = 0 L� M = 0 ∀q ∈ S, Lq M = 0

L0 M(X) = X + 1 L M(X) = X + 1 Ls M(X) = X + 1

Unlike the previous proof, this simulation can not be extended in order to capture parallel computation.
Now, it remains to compute the clock, that is the length of the iteration of the main loop of the simulation in order

to complete the simulation.

8.5 Simulation of Polynomial computations
Proposition 53. Any polynomial is computed by an additive RPOQI

Lin-programs (resp. RPOQI
Pro-programs).

Proof. We define any polynomial by composition from the additive programs for the addition add and the multiplication
mult.

add(�, y)→ y

add(s(x), y)→ s(add(x, y))

mult(�, y)→ �
mult(s(x), y)→ add(y, mult(x, y))

The programs add and mult admits the following quasi-interpretations

Ladd M(X,Y ) = X + Y

Lmult M(X,Y ) = X × Y

where constructors have the quasi-interpretation

L� M = 0

Ls M(X) = X + 1

The programs add and mult terminates by ≺rpo by putting add ≺F mult with a product status. So, any polynomial
is a RPOQI

Pro-program. On the other hand, add and mult are linear and thus any polynomial is a also RPOQI
Lin-

program.

Theorem 54.

• A polynomial time function is computed by an additive RPOQI
Lin-program.

• A polynomial time function is computed by an additive RPOQI
Pro-program.

• A polynomial time function is computed by an additive RPOQI
Pro+Lin-program.
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Proof. Let φ be a function which is computed by a RM in time bounded by a polynomial P .
For the first case, the time bound P is computed by an additive RPOQI

Lin-program following Proposition 53. We
compose with Lemma 51, we conclude that φ is computed by an additive RPOQI

Lin-program.
For the second case, the time bound P is also an additive RPOQI

Pro-program following Proposition 53. We compose
with Lemma 52, we conclude that φ is computed by an additive RPOQI

Pro-program.
The last case is an immediate consequence of the previous constructions.

Theorem 55. A polynomial space function is computed by an additive RPOQI-program.

Proof. Let φ be a function which is computed by a PRM in time bounded by a polynomial P . Since P is also computed
by a RPOQI -program following Proposition 53 and by composing with Lemma 51, we conclude that φ is computed
by an additive RPOQI -program.

8.6 Simulation of exponential computations

Proposition 56. Let γ > 0 be a constant. The function λn.2γn is computed by an affine RPOQI
Lin-program (resp.

RPOQI
Pro-program).

Proof. The function λn.2γn is computed by

mkγ(�)→ �
mkγ(s′(x))→ s̃′(. . . (̃s′(mkγ(x))) . . .) γ times

d(x)→ add(x, x) add is defined in Prop 53
exp(�)→ s(�)

exp(̃s′(x))→ d(exp(x))

expγ(x)→ exp(mkγ(x))

We have
q
expγ

y
(n) = m where n = (s′)n(�) and m = (s)2γn(�).

Constructors have the following quasi-interpretation

L� M = 0

Ls M(X) = X + 1

Ls′ M(X) = 2γX + 2γ − 1

L̃s M(X) = 2X + 1

And this program admits the following quasi-interpretations

Lmkk M(X) = X

Ld M(X) = 2X

Lexp M(X) = X + 1

Lexpγ M(X) = X + 1

This program terminates by ≺rpo with a product status. So, λn.2γn is a RPOQI
Pro-program and also a RPOQI

Lin-
program.

Theorem 57. A exponential time function is computed by an affine RPOQI
Lin-program (resp. RPOQI

Pro-program or
RPOQI

Pro+Lin-program).

Theorem 58. An exponential space function is computed by an affine RPOQI-program.

8.7 Simulation of doubly exponential computations

Proposition 59. Let γ > 0 be a constant. The function λn.22γn is computed by an multiplicative RPOQI
Lin-program

(resp. RPOQI
Pro-program).

40 Theoretical Computer Science, 2011



Bonfante, Marion, Moyen QI: A way to control resources

Proof. The function λn.22γn is computed by

dmkγ(�)→ �
dmkγ(s′′(x))→ s̃′′(. . . (̃s′′(dmkγ(x))) . . .) γ times
square(x)→ mult(x, x) mult is defined in Prop 53

dexp(�)→ s(s(�))
dexp(̃s′′(x))→ square(dexp(x))

dexpγ(x)→ dexp(dmkγ(x))

We have
q
dexpγ

y
(n) = m where n = (s′′)n(�) and m = (s)22γn

(�).
Constructors have the following quasi-interpretation

L� M = 0

Ls M(X) = X + 1

Ls′′ M(X) = θγ(X)

L̃s′′ M(X) = (X + 2)2

where

θ0(X) = X

θk+1(X) = (θk(X) + 2)2 0 ≤ k < γ

And the program admits the following quasi-interpretations

Ldmkγ M(X) = X

Lsquare M(X) = X2

Ldexp M(X) = X + 2

Ldexpγ M(X) = X + 2

This program terminates by ≺rpo with a product status. So, λn.22γn is a RPOQI
Pro-program and also a RPOQI

Lin-
program.

Theorem 60. A doubly exponential time function is computed by a multiplicative RPOQI
Lin-program (resp. RPOQI

Pro-
program or RPOQI

Pro+Lin-program).

Theorem 61. A doubly exponential space function is computed by a multiplicative RPOQI-program.
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Abstract:
Resource Control Graphs are an abstract representation of programs. Each state of the program
is abstracted by its size, and each instruction is abstracted by the effects it has on the state
size whenever it is executed. The abstractions of instruction effects are then used as weights
on the arcs of a program’s Control Flow Graph.
Termination is proved by finding decreases in a well-founded order on state-size, in line with
other termination analyses, resulting in proofs similar in spirit to those produced by Size
Change Termination analysis.
However, the size of states may also be used to measure the amount of space consumed by the
program at each point of execution. This leads to an alternative characterisation of the Non
Size Increasing programs, i.e. of programs that can compute without allocating new memory.
This new tool is able to encompass several existing analyses and similarities with other studies
suggest that even more analyses might be expressable in this framework, thus giving hopes for
a generic tool for studying programs.
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1 Introduction

1.1 Motivations

The goal of this study is to predict usage and control computational resources, like space or time, that are used during
the execution of a program. For this, we introduce a new tool called Resource Control Graphs and focus here on
explaining how it can be used for termination proofs and space complexity management.

We present a data flow analysis of a low-level language by means of Resource Control Graph, and we try to illustrate
that this is a generic concept from which several program properties could be checked.

Usual data flow analyses (see [NNH99] for a detailed overview) use transfer functions to express how a given
property is modified when following the program’s execution. Then, a fixed point algorithm finds for each label a set
of all possible values for the property. For example, one might be interested in which sign a given variable can take at
each point. The instructions of the program give constraints on this (from one label to the next one). Iterating these
constraints with a fixed point algorithm can find the set of all possible signs for the variable at each label.

Here, we want to consider each execution separately. So, when iterating the transfer function and coming back to
an already treated label, instead of unifying the new constraint with the old one and iterating towards a fixed point,
we consider this as a new configuration. In the end, instead of obtaining one set associated to each label, we get a set
of so called “walks”, each associating one value to each occurrence of each label. For example, a first walk can tell that
if starting with a positive value at a given label, the variable remains positive, but another walk tells that if starting
with a negative value, the variable may become positive. In this case, the fixed point algorithm builds the set {+,−}
for each label.

Of course, we then need a way to study this set of walks and find common properties on them that yield some
information about the program.

The first problem we consider is the one of detecting programs able to compute within a constant amount of space,
that is without performing dynamic memory allocation. These were dubbed Non Size Increasing by [Hof99].

There are several approaches that try to solve this problem. The first protection mechanism is by monitoring
computations. However, if the monitor is compiled with the program, it could itself cause memory leak or other
problems. The second is the testing-based approach, which is complementary to static analysis. Indeed, testing
provides a lower bound on the memory usage while static analysis gives an upper bound. The gap between both bounds
is of some value in practice. Lastly, the third approach is type checking done by a bytecode verifier. In an untrusted
environment (like embedded systems), the type protection policy (Java or .Net) does not allow dynamic allocation.
Actually, the former approach relies on a high-level language that captures and deals with memory allocation features
[AC03]. Our approach guarantees, and even provides, a proof certificate of upper bound on space computation on a
low-level language without disallowing dynamic memory allocations.

The second problem that we study is termination of programs. This is done by adapting ideas of [LJBA01], [BA08]
and [AA02]. The intuition is that a program terminates whenever there is no more resource to consume.

There are also long term theoretical motivations for our work. Indeed a lot of work has been done in the last twenty
years to provide syntactic characterisations of complexity classes, e.g. by [BC92] or [LM93a]. Those characterisations
are the foundation of recent research on describing broad classes of programs that run within some specified amount
of time or space. Examples include works by [Hof99] as well as [NW06], [KJ09], [ACGZJ04] and [BMM11].

We believe that our Resource Control Graphs is able to encompass several of these analyses and express them in
a common framework. In this sense, Resource Control Graphs are an attempt to build a generic tool for program
analysis.

1.2 Coping with undecidability

All these theoretical frameworks share the common particularity of dealing with behaviours of programs (like time
and space complexity) and not only with the inputs/outputs relation, which only depends on the computed function.

Following [Jon97], we call a program property a subset of all programs (for a given, yet unspecified, language) and
we say that a property A is extensional if for all programs p, q computing the same function, we have p ∈ A⇔ q ∈ A.
That is, an extensional property is shared by all programs computing the same function.

On the other hand, properties not shared by programs computing the same function are called intensional. A
typical extensional property is termination. Indeed, all programs computing the same function must terminate on the
same inputs (where the function is defined). A typical intensional property is time complexity. Indeed, two programs
with different complexities can compute the same function; for example, insertion sort computes the sorting function
in time O(n2) while merge sort computes it in time O(n log(n)).

Classical complexity theory focuses on functions or problems and extensional properties. It defines complexity
classes (such as LogSpace, Ptime) as classes of problems and not classes of algorithms and studies complexity of
problems (e.g. SAT, QBF, . . . ) and relationship between classes of problems (“Is P different from NP ?”, . . . ) Here,
we want to consider intensional complexity, that is try to understand why a given algorithm is more efficient than
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another one to compute the same function, and we want to study classes of algorithms rather than classes of problems
or functions.

When studying the complexity of functions, one deals with extensional properties; however, the complexity of
algorithms is an intensional property. Consider for example the class C of functions computable in time O(n log(n)).
This is a class of functions, hence an extensional property. Consider now the corresponding program property: A is
the set of all programs computing a function from C. Obviously, the merge sort algorithm is in A. But the insertion
sort algorithm, with complexity O(n2) is also in A. Indeed, the function computed by the insertion sort, the sorting
function, is in C because there exists a O(n log(n)) program computing it.

On the other hand, the complexity of algorithms is an intensional property. Consider the program property B,
the set of all programs whose complexity is O(n log(n)). Now, the merge sort belongs to B because its complexity is
O(n log(n)) but the insertion sort does not belong to B because its complexity is O(n2). We no longer consider only
the computed function, but also the algorithm used to compute it. For this reason, “bad” programs are discarded.

A typical goal of intensional study would be to have a criterion to decide whether a given program computes in
polynomial time or not.

The study of extensional complexity quickly reaches the boundary of Rice’s theorem. Any extensional property of
programs is either trivial or undecidable. Intensional properties are even harder to decide as stated by [Asp08].

However, several very successful works do exist for studying both extensional properties (like termination) or
intensional ones (like time or space complexity of programs). As these works provide decidable criteria, they must be
either incomplete (reject a valid program) or unsound (accept an invalid program). Of course, the choice is usually to
ensure soundness: if the program is accepted by the criterion, then the property (termination, polynomial bound,. . . ) is
guaranteed. This allows, for instance, the criterion to be seen as a certificate in a proof carrying code paradigm [Nec97].

When studying intensional properties (usually complexity of algorithms), two different kinds of approaches exist.
The first one consists in restricting the syntax of programs so that any program necessarily satisfies the property.
The work on primitive recursive functions, where the recurrence schemata are restricted to only primitive recursion,
falls into this category. This approach gives many satisfactory results, such as the characterisations of Ptime by
[Cob62] or [BC92], the works of Leivant and Marion on tiering and predicative analysis [LM93a] or the works of
Jones on CONS-free programs [Jon00]. On the logical side, this leads to explicit management of resources in Linear
Logic [Gir87].

All these characterisations usually have the very nice property of extensional completeness in the sense that each
function in the class (of functions) considered can be computed by an algorithm with the property considered (e.g.,
a function is in Ptime if and only if it can be defined by bounded primitive recursion (Cobham)). Unfortunately,
intensionality is not their main concern: these methods usually do not capture natural algorithms, and programmers
have to rewrite their programs in a non-natural way. [Col98] show that there exists no primitive recursive algorithm
which computes min(x, y) in time O(min(x, y)) (i.e. one has to perform recursion on either x or y).

So, the motto of this first family of methods can be described as leaving the proof burden to the programmer
rather than to the analyser. If one can write a program with the given syntax (which, in some cases, can be a real
challenge), then certain properties are guaranteed. The other family of methods follow a different direction: let the
programmer write whatever he wants, but the analysis is not guaranteed to work.

Since any program can a priori be given to the analysis, decidability is generally achieved by using some kind
of weak semantics during analysis. That is, one considers more than all the executions a program can have. This
approach is more recent but has already some very successful results such as the Size Change Termination [LJBA01]
or the mwp-polynomials of [KJ09].

This second kind of methods can thus be described as not meddling with the programmer and let the whole proof
burden lay on the analysis. Of course, as the analysis is incomplete, one usually finds out that certain kinds of programs
are not analysed correctly and have to be rewritten. But this restriction is done a prosteriori and not a priori and it
can be tricky to find out what exactly causes the analysis to fail.

Resource Control Graphs are intended to live within this second kind of analysis. Hence, the toy language used as
an example is Turing-complete and is not restricted.

1.3 Outline

Section 2 introduces the stack machines, used everywhere in the remainder of this paper, as a simple yet powerful
programming language. Section 3 describes the core idea of Resource Control Graphs that can be summed up as
finding a decidable (recursive) superset of all the executions that still ensures a given property (such as termination or
a complexity bound). Then, Section 4 immediately shows how this can be used in order to detect Non Size Increasing
programs. Section 5 presents Vector Addition Systems with States that are generalised into Resource Systems with
States in Section 6. They form the backbone of the Resource Control Graphs. Section 7 presents the tool itself
and explains how to build a Resource Control Graph for a program and how it can be used to study the program.
Section 8 shows application of RCGs in building termination proofs similar to the Size Change Termination principle.
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Finally, Section 9 discusses how matrix algebra could be used in program analyses, leading to several possible further
developments.

1.4 Notations

In a directed graph1 G = (S,A), we write s a→s′ to say that a is an edge between s and s′. Similarly, we write
s0
a1→s1

a2→ . . .
an→sn to say that a1 . . . an is a path passing through vertices s0, · · · , sn. Or simply s0

w→sn if w = a1 . . . an.
The notation s → s′ means that there exists an edge a such that s a→s′, and +→, ∗→ are the transitive and reflexive-
transitive closures of →.

A partial order ≺ is a well partial order if there is no infinite decreasing sequence and no infinite anti-chain. That
is, for every infinite sequence x1, · · · , xn, . . . there are indexes i < j such that xi � xj . This means that the order
is well-founded (no infinite decreasing sequence) but also that there is no infinite sequence of pairwise incomparable
elements. The order induced by the divisibility relation on N, for example, is well-founded but is not a well partial
order since the sequence of all prime numbers is an infinite sequence of pairwise incomparable elements.

We use Z (resp. N) to denote the set of integers (resp. the set of integers ≥ 0). We also denote, Z = Z
⋃{+∞}.

When working with vectors of Zk, ≤ denotes the component-wise partial order: that is a ≤ b if and only if ai ≤ bi for
all 1 ≤ i ≤ k. This is a well partial order on Nk.

If w is a word and a a letter, we note a.w the word that begins with the letter a and ends with w. Similarly, if w
is a stack and a a value, a.w denotes the stack whose top is a and whose tail is w.

2 Stack machines

2.1 Syntax

A stack machine consists of a finite number of registers, each able to store a letter of an alphabet, and a finite number
of stacks, that can be seen as lists of letters. Stacks can only be modified by usual push and pop operations, while
registers can be modified by a given set of operators each of them assumed to be computed in a single unit of time.

Definition 62 ((Stack machine)). Stack machines are defined by the following grammar2:

(Alphabet) Σ finite set of symbols
(Programs) p ::= lbl1 : i1; . . . ; lbln : in;
(Instructions) I 3 i ::= if (test) then goto lbl0 else goto lbl1 |

r := pop(stk) | push(r, stk) |r := op(r1, · · · , rk) | end
(Labels) L 3 lbl finite set of labels
(Registers) R 3 r finite set of registers
(Stacks) S 3 stk finite set of stacks

Each operator has a fixed arity k and n is an integer constant. The syntax of a program induces a function next : L → L
such that next(lbli) = lbli+1 and a mapping ι : L → I such that ι(lblk) = ik. The pop operation removes the top
symbol of a stack and puts it in a register. The push operation copies the symbol in the register onto the top of the
stack. The if-instruction gives control to either lbl0 or lbl1 depending on the outcome of the test. Each operator is
interpreted with respect to a given semantic function JopK.

The precise sets of labels, registers and stacks can be inferred from the program. Hence if the alphabet is fixed,
the machine can be identified with the program itself.

The syntax lbl : if (test) then goto lbl0 can be used as a shorthand for lbl : if (test) then goto lbl0 else
goto next(lbl). Similarly, we can abbreviate if true then goto lbl as goto lbl, that is an unconditional jump to
a given label. The kinds of tests or operators allowed are not specified here. Of course, tests must be computable (for
obvious reasons) in constant time and space, so that they do not play an important part when dealing with complexity
properties. Comparisons between letters of the alphabet (e.g. ≤ if they are integers) or checking whether a stack is
empty are typical tests that can be used.

If the alphabet contains a single letter, then the registers are useless and the stacks can be seen as unary numbers.
The machine then becomes a standard counter machine [SS63].

1We use s ∈ S to designate vertices and a ∈ A to designate edges. The choice of using French initials (“Sommet” and “Arête”) rather
than the usual (V,E) is done to avoid confusion between vertices and the valuations introduced later.

2We use a bold face font for registers and stacks and a typewriter font for instructions
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i = ι(IP) = r := op(r1, · · · , rk) σ′ = σ{r← JopK(σ(r1), . . . , σ(rk))}
p ` 〈IP, σ〉 i→〈next(IP), σ′〉

ι(IP) = if (test) then goto lbl1 else goto lbl2 (test) is true

p ` 〈IP, σ〉(test)true→ 〈lbl1, σ〉

ι(IP) = if (test) then goto lbl1 else goto lbl2 (test) is false

p ` 〈IP, σ〉(test)false→ 〈lbl2, σ〉

i = ι(IP) = r := pop(stk) σ(stk) = a.w σ′ = σ{r← a, stk← w}
p ` 〈IP, σ〉 i→〈next(IP), σ′〉

i = ι(IP) = r := pop(stk) σ(stk) = ε

p ` 〈IP, σ〉 ß→⊥

i = ι(IP) = push(r, stk) σ′ = σ{stk← σ(r).σ(stk)}
p ` 〈IP, σ〉 i→〈next(IP), σ′〉

Figure 1: Small steps semantics

Example 63. The following program reverses a list in stack l and puts the result in stack l′ (assuming l′ is empty at
the beginning of the execution). It uses register a to store intermediate letters. The empty stack is denoted [].

0 : if l = [] then goto end; 3 : goto 0;
1 : a := pop(l); end : end;
2 : push(a, l′);

2.2 Semantics

Definition 64 ((Stores)). A store is a function σ assigning a symbol (letter of the alphabet) to each register and a
finite string in Σ∗ to each stack. Store update is denoted σ{x← v}.

Definition 65 ((States)). Let p be a stack program. A state of p is a pair θ = 〈IP, σ〉 where the Instruction Pointer
IP is a label and σ is a store. Let Θ be set of all states, Θ∗ (Θω) be the set of finite (infinite) sequences of states and
Θ∗ω be the union of the two.

Definition 66 ((Executions)). The operational semantics of Figure 1 defines a relation3 p ` θ i→θ′.
An execution of a program p is a sequence (finite or not) p ` θ0

i1→θ1
i2→ . . .

in→θn . . .
An infinite execution is said to be non-terminating. A finite execution is terminating. If the program admits no

infinite execution, then it is uniformly terminating.

We use ⊥ to denote runtime error. We may also allow operators to return ⊥ if we want to allow operators that
generate errors. It is important to notice that ⊥ is not a state, and hence, is not considered when quantifying over all
states.

If the instruction is not specified, we write simply p ` θ → θ′ and use +→, ∗→ for the transitive and reflexive-transitive
closures.

Definition 67 ((Traces)). The trace of an execution p ` θ0
i1→θ1

i2→ . . .
in→θn . . . is the instructions sequence i1 . . . in . . .

3Notice that the label i on the edge is technically not an instruction since for tests we also keep the information of which branch is
taken.
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Figure 2: Sequences of states, executions and admissible sequences

Definition 68 ((Length)). Let θ = 〈IP, σ〉 be a state. Its length |θ| is the sum of the number of elements in each
stack4. That is:

|θ| =
∑

stk∈S

|stk|

The length of a state corresponds to the usual notion of space consumption. Since there is a fixed number of
registers and each can only store a finite number of different values, the space needed to store all registers is always
bounded. So, we do not take registers into account while computing space usage.

The notion of length allows to define usual time and space complexity classes.

Definition 69 ((Running time, running space)). The time usage of an execution is the length of the corresponding
sequence (possibly infinite for non-terminating programs). Let f be an increasing function from N to N. We say that
the running- time of a program is bounded by f if the time usage of each execution is bounded by f(|θ|) where θ is
the first state of the execution.

The space usage of an execution is the least upper bound of the length of a state in it (if it exists, +∞ otherwise).
Let f be an increasing function from the non-negative integers to the non-negative integers. We say that the running-
space of a program is bounded by f if the space usage of each execution is bounded by f(|θ|) where θ is the first state
of the execution.

Definition 70 ((Complexity)). Let f : N→ N be an increasing function. The class T (f) is the set of functions that
can be computed by a program whose running time is bounded by f . The class S(f) is the set of functions that can
be computed by a program whose running space is bounded by f .

FPtime denotes the set of functions computable in polynomial time by a stack machine, that is f ∈ FPtime if
and only if f ∈ T (P ) for some polynomial P .

If we want to define classes such as LogSpace, then we must, as usual, use some read-only input stacks that can
only be poped but not pushed and some write-only output stacks. These play no role when computing the length of
a state.

Stack machines are obviously Turing-complete and each model can simulate the other in a straightforward way.

3 A taste of RCG
This section describes the idea behind Resource Control Graphs in order to get a better grip on the formal definitions
later on.

3.1 Admissible sequences
Consider an execution of a program. It can be described as a sequence of states. Clearly, not all sequences of states
describe an execution. So we have a set of executions, Ψ, which is a subset of the set of all sequences of states (finite
or infinite), Θ∗ω.

The undecidability results entail that, given a program, it is impossible to say whether the set Ψ of executions,
and the set Θω of infinite sequences of states, are disjoint. So, the idea here is to find a set A of admissible sequences
that is a superset of the set of all executions, and whose intersection with Θω can be computed. If this intersection is
empty, then a fortiori, there are no infinite executions of the program; but if the intersection is not empty, then we
cannot decide whether this is due to some non-terminating execution of the program or to some of the sequences added
for the sake of the analysis. This means that depending on the machine considered and the way A is built, we can be
in three different situations as depicted in Figure 2. We build A ⊃ Ψ such that A⋂Θω is decidable. If it is empty,
then the program uniformly terminates; otherwise, we cannot say anything. Of course, the undecidability theorem
implies that if we require A to be recursive (or at least recursively separable from Θω), then there is necessarily some

4Hence, it should more formally be |〈IP, σ〉| =
∑

stki∈S |σ(stki)| . Since explicitly mentioning the store everywhere would be quite
unreadable, we use stki instead of σ(stki) and, similarly, r instead of σ(r), when the context is clear.
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programs for which the situation is the one in the middle (in Figure 2), i.e. the program uniformly terminates, but
our analysis cannot determine that it does.

One conceptually simple way to represent all the possible executions (and only these), is to build a state-transition
graph. This is a directed graph where each vertex is a state of the program and there is an edge from vertex x to y if
and only if it is possible to go from state x to y in a single step of the operational semantics. Of course, since there
are infinitely many different stores, there are infinitely many possible states and the graph is infinite.

3.2 The folding trick

Using the state-transition graph to represent executions is not convenient since handling an infinite graph can be
tedious. To circumvent this, we must look into states and decompose them.

A state is actually a pair of one label and one store. The label corresponds to the control of the program while
the store represents memory. A first try to get rid of the infinite state-transition graph is then to only consider the
control part of each state.

Thus, there is only finitely many different nodes in the graph (since there are only finitely many different labels).
By identifying all states bearing the same label, it becomes possible to “fold” the infinite state-transition graph into
a finite graph, called the Control Flow Graph (CFG) of the program. The CFG is a usual tool for program analyses
and transformations and can directly be built from the program.

Definition 71 ((Control Flow Graph)). Let p be a program. Its Control Flow Graph (CFG) is a directed graph
G = (S,A) where:

• S = L. There is one vertex for each label.

• If ι(lbl) = if (test) then goto lbl1 else goto lbl2 then there is one edge from lbl to lbl1 labelled
(test)true and one from lbl to lbl2 labelled (test)false.

• If ι(lbl) = end then there is no edge going out of lbl.

• Otherwise, there is one edge from lbl to next(lbl) labelled ι(lbl).

Vertices and edges are named after, respectively, the label or instruction5 they represent. No distinction is made
between the vertex and the label or the edge and the instruction as long as the context is clear.

Example 72. The CFG of the reverse program is displayed on Figure 3.

With state-transition graphs, there was a one-to-one correspondence between executions of the program and (max-
imal) paths in the graph. This is no longer true with Control Flow Graphs. Now, to each execution corresponds a
path (finite or infinite) in the CFG. The converse, however, is not true. There are paths in the CFG that correspond
to no execution.

Let P be the set of paths in the CFG. Since we can associate a path to each execution, we can say that P is a
superset of Ψ.

This leads to a first try at building a set of admissible6 sequences by choosing A = P.
However, as soon as the graph contains loops, P contains infinite sequences. So this is quite a poor try at building

an admissible set of sequences, corresponding exactly to the trivial analysis “A program without loops uniformly
terminates”.

In order to do better, we need to plug back the memory into the CFG.

3.3 Walks

So, in order to take memory into account but still keep the CFG, we do not consider vertices any more but states
again. Clearly, each state is associated to a vertex of the CFG. Moreover, to each instruction i, we can associate a
function JiK such that for all states θ, θ′ for which p ` θ = 〈IP, σ〉 i→〈IP′, σ′〉 = θ′, we have σ′ = JiK(σ).

So, instead of considering paths in the graph, we can now consider walks. Walks are sequences of states following
a path where each new store is computed according to the semantics function JiK of the edge just followed.

The only case where the CFG has out-degree greater than 1 is for tests. In order to prevent the wrong branch to
be taken, the semantics function J(test)trueK can be a partial function only defined for stores where the test is true
(and conversely for the false branch of tests).

5Again, since the two branches of tests are separated, some edges do not correspond exactly to an instruction of the program. We
nonetheless continue to call these “instructions”.

6P is indeed recursive. By adapting Lemma 110, it is possible to show that P is an omega-regular language and hence can be recognised
by a Büchi’s automaton.
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Figure 3: CFG of the reverse program.

But if we do this exactly that way, then there is a bijection between the executions and the walks and everything
remains undecidable.

So the idea at this point is to keep both branches of the test possible, that is more or less replacing a deterministic
test by a non-deterministic choice between the two outcomes. This leads to a set of walks bigger than the set of
executions but, hopefully, recursively separable from the set of infinite sequences of states.

4 Monitoring space usage

In order to illustrate the ideas of the previous Section, we introduce here the notion of Resource Control Graph for
the specific case of monitoring space usage. In Section 7, this notion is fully generalised to define Resource Control
Graphs.

4.1 Space Resource Control Graphs

Definition 73 ((Weight)). For each instruction i, we define a weight ki as follows:

• The weight of any instruction that is neither push nor pop is 0.

• The weight of a push instruction is +1.

• The weight of a pop instruction is −1.

Proposition 74. For all states θ such that p ` θ i→θ′, we have |θ′| = |θ|+ ki.

It is important here that both θ and θ′ are states. Indeed, this means that when an error occurs (⊥), nothing is
said about the weight of the instruction causing the error.

Definition 75 ((Space Resource Control Graph)). Let p be a program. Its Space Resource Control Graph (Space-
RCG) is a weighted directed graph G such that:

• G is the Control Flow Graph of p.

• For each edge i, the weight ω(i) is ki.

Definition 76 ((Configurations, walks)). Let G = (S,A) be a graph. A configuration is a pair η = (s, v) where s ∈ S
is a vertex and v ∈ Z is the valuation. A configuration is admissible if and only if v ∈ N.

A walk is a sequence (finite or not) of configurations (s0, v0)
a1→ . . .

an→(sn, vn)
an+1→ . . . such that s0

a1→s1
a2→ . . .

an→sn
an+1→ . . .

and for all i > 0, vi = vi−1 + ω(ai). A walk is admissible if all its configurations are admissible.

Definition 77 ((Traces)). The trace of a walk is the sequence of all edges followed by the walk, in order.

Proposition 78. Let p be a program, G be its Space-RCG and p ` θ1 = 〈IP1, σ1〉 → . . . → θn = 〈IPn, σn〉 be an
execution with trace t, then there is an admissible walk in G, (IP1, |θ1|)→ . . .→ (IPn, |θn|), with the same trace t.

Proof. By construction of the Space-RCG and induction on the length of the execution.
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4.2 Characterisation of Space usage

Theorem 79. Let f be a total function N→ N. Let p be a program and G be its Space-RCG.
p ∈ S(f) if and only if for each initial state θ0 = 〈IP0, σ0〉 with execution p ` θ0

∗→θn, the trace of the execution is
also the trace of an admissible walk (IP0, |θ0|)→ (IP1, v1)→ . . .→ (IPn, vn) where, for each k, vk ≤ f(|θ0|).

Proof. Proposition 78 tells us that vk = |θk|. Then, both implications hold by definition of space usage.

Definition 80 ((Resource awareness)). A Space-RCG is f -resource aware if for any admissible walk (s0, v0)
∗→(sn, vn),

vn ≤ f(v0).

Non-admissible walks are not taken into account because they never correspond to real executions of the program.

Corollary 81. Let f : N→ N be a total function, p be a program and G be its Space-RCG.
If G is f -resource aware, then p ∈ S(f).

Here, the converse is not true because the Space-RCG can have admissible walks with uncontrolled valuations that
do not correspond to any real execution.

4.3 Non Size Increasingness

The study of Non Size Increasing (NSI) functions was introduce by [Hof99]. Former syntactical restrictions for
Ptime, such as the safe recurrence of [BC92], forbid certain iterations of functions which can yield super-polynomial
growth. However, Bellantoni-Cook approach excludes perfectly regular algorithms such as the insertion sort where
the insertion function is iterated. The idea behind NSI is then that iterating functions that do not increase the size of
data is harmless.

Hofmann detects Non Size Increasing programs in a typed functional language by adding a special type, 3, which
can be seen as the type of pointers to free memory. Here, the valuations of Space RCG play exactly the same role as
Hofmann’s 3, that is managing the memory freed by previous de-allocation and reuse it rather than re-allocating new
memory.

Even if this work was inspired by Hofmann’s, there is currently no explicit link or equivalence Theorem between
the programs detected by one or the other.

Definition 82 ((Non Size Increasing)). A program is Non Size Increasing (NSI) if its space usage is bounded by
λx.x+ α for some constant α.

NSI is the class of functions that can be computed by Non Size Increasing programs. That is, NSI =
⋃
α S(λx.x+

α).

Proposition 83. Let p be a program and G be its Space-RCG. If G is λx.x+ α-resource aware for some constant α,
then p is NSI.

Proof. This is a direct consequence of Theorem 79.

Theorem 84. Let p be a program and G be its Space-RCG. G is λx.x+α-resource aware (for some α) if and only if
it contains no cycle of strictly positive weight.

Proof. If there is no cycle of strictly positive weight, then let α be the maximum weight of any path in G. Since
there is no cycle of strictly positive weight, it is well-defined. Consider a walk (s0, v0)

∗→(sn, vn) in G. Since α is the
maximum weight of a path, we have vn ≤ v0 + α. Hence, G is λx.x+ α-resource aware.

Conversely, if there is a cycle of strictly positive weight, then it can be followed infinitely many times and provides
an admissible walk with unbounded valuations.

Building the Space-RCG can be done in linear time in the size of the program. Finding the maximum weight of a
path can be done in polynomial time in the size of the graph (and so in the size of the program) with Bellman-Ford’s
algorithm ([CLR90] Chapter 25.5). So we can detect NSI programs and find the constant α in polynomial time in the
size of the program.

Example 85. The Space-RCG of the reverse program (from Example 63) is displayed on Figure 4. Since it contains
no cycle of strictly positive weight, the program is Non Size Increasing. Moreover, since the maximum weight of any
path is 1, it can be computed in space λx.x+ 1, that is the constant α is 1 for this program.

Actually, the reverse program can be computed in space λx.x. This is not detected because we consider here all
paths and not only paths starting from 0 (the initial node, corresponding to the first label of the program). This could
be improved, and should be for any practical use, but the sharp bound is not needed in our theoretical framework.
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Figure 4: Space-RCG of the reverse program.

The set of NSI programs is undecidable. Hence, there exists some NSI programs that are not caught by the charac-
terisation (i.e. have a Space-RCG with a cycle of positive weight). However, we now prove extensional completeness,
that is for each NSI function f , there exists a program computing f whose Space-RCG has no cycle of positive weight.

Definition 86 ((Normalising programs)). Let p be a program and α be a constant. We define the program p̃α as
follows:

• There is an extra stack mem (empty at start) and an extra symbol 3.

• The α first instructions of p̃α are push(3,mem). That is, p̃α starts by pushing α copies of 3 on mem.

• The following instructions of p̃α are the instructions of p, except that each push is followed by a pop(mem) and
each pop is preceded by a push(3,mem).

Proposition 87. If p runs in space λx.x+ α, then p̃α computes the same function as p.

Proof. As long as they do not cause runtime error (i.e. poping an empty stack), the added instructions do not interfere
with the computed function because they only act on the new stack mem.

The only runtime error that mem can cause would be if one tries to pop it when its empty. However, if this
happens, then a push on a non-mem stack must have happened just before while mem was empty. In the state just
reached by this push, the sum of the lengths of the non-mem stacks would be x+ α+ 1 where x is the length of the
initial state. This contradicts the fact that p runs in space λx.x+ α.

Notice also that such a normalisation could be made for a program running in space f(x) for any computable
function f . However, in that case the simulation would require to compute f(x) from the input and then push
sufficiently many 3s. This would be quite tricky to do and require control over the space used to compute f(x).
Hence, adapting these ideas to classes of programs defined by their space complexity other than NSI cannot be done
in a straightforward way and caution must be exerted.

Lemma 88. Let p be a program. The Space-RCG of p̃α has no cycle of strictly positive weight.

Proof. By construction of p̃α. The first part (pushing α copies of 3 on mem) is done without any cycles in the control
flow, by actually using α copies of the push instruction. The second part (simulating p) has each push paired with
a pop (on another stack) and hence cannot generate paths of weight other than 0 or 1, and, especially, no cycle of
weight different from 0.

Theorem 89 ((Extensional completeness)). Let f be a function in NSI. There exists a program p computing f whose
Space-RCG has no cycle of strictly positive weight.

Proof. Since f is in NSI, it is computed by a program q running in space λx.x+α for some α. By Proposition 87 and
Lemma 88, p = q̃α also computes f and has a Space-RCG without strictly positive cycle.

This result means that this characterisation of NSI by programs whose Space-RCG have no cycle of strictly
positive weight is extensionally complete: each function in NSI can be computed by a program that fits into the
characterisation (that is, whose Space-RCG is λx.x+α-resource aware). Of course, intensional completeness (capturing
all Non Size Increasing programs) is far from reached (but is unreachable with a decidable algorithm): there exist Non
Size Increasing programs whose Space-RCG has cycle of positive weight (but, due to extensional completeness, the
functions computed by these programs can also be computed by another program whose Space-RCG has no cycle of
strictly positive weight).
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Figure 5: Space-RCG of a normalised program.

Example 90. The following two programs compute the same function, namely pushing five 0s onto stack l. The
leftmost one uses a loop whose number of iterations is fixed inside the program by the assignment at label 0, while
the rightmost one uses five copies of push.

Since the values of variables are not taken into account by the analysis, the Space-RCG of the first program
has a loop of strictly positive weight corresponding to the loop in the program. Hence, this first program is Non
Size Increasing, but not detected by the characterisation. This means that the characterisation is not intensionally
complete: some programs have the wanted property but are left out. This is, obviously, an unwanted fact but
nonetheless unavoidable because the set of Non Size Increasing programs is undecidable.

However, because of the extensional completeness, there must exist programs computing the same function that
fit into the characterisation. The second program is an example of such a program. Indeed, its Control Flow Graph
does not contain any cycles, hence, the Space-RCG does not have cycles either (and so, no cycle of positive weight).

0 : a := 5; 0 : push(0, l);
1 : if a = 0 then goto end; 1 : push(0, l);
2 : push(0, l); 2 : push(0, l);
3 : a := a− 1; 3 : push(0, l);
4 : goto 1; 4 : push(0, l);

end : end end : end

If one applies the normalisation of Definition 86 to the first program, one obtains:

0 : push(3,mem); 6 : if a = 0 then goto end;
1 : push(3,mem); 7 : pop(mem);
2 : push(3,mem); 8 : push(0, l);
3 : push(3,mem); 9 : a := a− 1;
4 : push(3,mem); 10 : goto 6;
5 : a = 5; end : end;

This program computes the same function. The first part (in the leftmost column) allocates a constant amount of
memory on a “free memory” stack. Since the amount of memory needed (the constant α in the Lemmas and Theorems
above) is known, this can be done with no loops by using several copies of push. Then, the program mimics the loop
of the first program. However, before allocating any new memory (that is, before performing any push), it starts by
removing some free memory from mem (with a pop). This ensures that no cycle in the Space-RCG has a strictly
positive weight.

4.4 Linear Space

Linear space seems to be closely related to NSI. Indeed, linear space functions can be computed in space λx.βx + α
and so NSI is a special case with β = 1. Hence we want to try and adapt our result to detect linear space usage.

Definition 91. FLinSpace denotes the set of functions computable in linear space by a stack machine, that if f ∈
FLinSpace if and only if f ∈ S(l) for some linear function l : x 7→ βx+ α.

The idea is quite easy: since we are allowed to use a factor of β more space than what is initially allocated, it is
sufficient to consider that every time some of the initial data is freed, β “tokens” (3) are released and can later be
used to control β different allocations.
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In order to do so, the most convenient way is to design certain stacks of the machine as input stacks and the others
must be initially empty. Then, a pop operation on an input stack would have weight −β instead of simply −1 to
account for this linear factor. However, doing so we must be careful that newly allocated memory (that is, further
push) is only counted as 1 when freed again (to avoid a cycle of freeing one slot, allocating β, freeing these β slots and
reallocating β2 and so on). In order to do so, we simply require that the input stacks are read-only in the sense that
it is not possible to perform a push operation on them.

Notice that any program can be turned into such a program by having twice as many stacks (one input and one
work for each) and starting by copying all the input stacks into the corresponding working stacks and then only dealing
with the working stacks.

With these programs, the invariant is not the length of states, but something slightly more complicated, namely β
times the length of input stacks plus the length of work stacks. We call this measure β-size. Globally, we use size to
denote some kind of measure on states that is used by the RCG for analysis. The terminology is close to the one used
for Size Change Termination [LJBA01], where values are assumed to have some (well-founded) “size ordering” which
is not specified and not necessarily related to the actual space usage of the data. Typically, termination of a program
working over positive integers can be proved using the usual ordering on N as size ordering, even if the integers are
all 32 bits integers, thus taking exactly the same space in memory.

Definition 92 ((Extended stack machines)). An extended stack machine is a stack machine with the following
modification:

There are two disjoint sets of stacks, Si is the set of input stacks and Sw is the set of working stacks. There are two
instructions popi and popw depending on whether an input or working stack is considered but only one push = pushw
instruction, that is it is impossible to push anything on an input stack.

The β-size of a state is β times the length of input stacks plus the length of working stacks, that is:

||θ||β = β
∑

stki∈Si

|stki|+
∑

stkw∈Sw

|stkw|

The weight of popi is −β, the weight of popw is −1, the weight of push is +1. The weight of any other instruction
is 0.

The β-Space RCG is built as the Space-RCG: the underlying graph is the control flow graph and the weight of
each edge is the weight of the corresponding instruction.

Proposition 78 becomes:

Proposition 93. Let p be a program, Gβ be its β-Space RCG and p ` θ1 = 〈IP1, σ1〉 → . . . → θn = 〈IPn, σn〉 be an
execution with trace t, then there is an admissible walk (IP1, ||θ1||β)→ . . .→ (IPn, ||θn||β) with the same trace t.

Then, adapting Theorem 79 and Theorem 84, we have:

Proposition 94. Let p be a program and Gβ be its β-Space RCG. If Gβ is λx.x+α-resource aware for some constant
α, then p ∈ S(λx.βx+ α).

Theorem 95. Let p be a program and Gβ be its β-Space RCG. Gβ is λx.x + α-resource aware (for some α) if and
only if it contains no cycle of strictly positive weight.

Corollary 96. Let p be a program. If there exists β such that its β-Space RCG contains no cycle of strictly positive
weight, then p computes a function in FLinSpace.

This can be checked in NPtime since β is polynomially bounded in the size of the program.
Also for FLinSpace, the normalisation process of programs can be performed. The first phase of the normalised

program consists in first pushing onto mem α copies of 3, then repeatedly copying each input stack onto the cor-
responding working stack and each time a symbol is copied, β − 1 new 3s are pushed onto mem (so that the global
space usage from now on is always βx+ α). This means that here also the characterisation is extensionally complete:
for each FLinSpace function, there exists one program computing it that fits into the characterisation.

Example 97. The following program “double-reverses” a list. It is similar to the reverse program but each element
is present twice in the result. The list l is an input stack (and hence cannot be pushed) while l′ is a working stack.

0 : if l = [] then goto end; 3 : pushw(a, l′);
1 : a := popi(l); 4 : goto 0;
2 : pushw(a, l′); end : end;

Its β-Space RCG is displayed on Figure 6. Since it contains no cycle of strictly positive weight if β ≥ 2, the program
is in LinSpace. More precisely, it can be computed in space λx.2x
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Figure 6: β-Space RCG of the double-reverse program.
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Figure 7: Two VASS

5 Vector Addition System with States
This section describes Vector Addition Systems with States (VASS) which are known to be equivalent to Petri
Nets [Reu89]. Resources Control Graphs are a generalisation of VASS.

5.1 Definitions
Definition 98 ((VASS, configurations, walks)). A Vector Addition System with States is a directed graph G = (S,A)
together with a weight function ω : A→ Zk where k is a fixed integer.

A configuration is a pair η = (s, v) where s ∈ S is a vertex and v ∈ Zk is the valuation. A configuration is
admissible if and only if v ∈ Nk.

A walk is a sequence (finite or not) of configurations (s0, v0)
a1→ . . .

an→(sn, vn) such that s0
a1→s1

a2→ . . .
an→sn and for all

i > 0, vi = vi−1 + ω(ai). A walk is admissible if all its configurations are admissible.
We say that the path a1 . . . an is the underlying path of the walk and the walk follows this path. Similarly, G is

the underlying graph for the VASS.

As for graphs and paths, we write η → η′ if there exists an edge a such that η a→η′ and +→, ∗→ for the closures.

Definition 99 ((Weight of a path)). Let V be a VASS and a1 . . . an be a path in it. The weight of edges is extended
to paths canonically: ω(a1 . . . an) =

∑
ω(ai), i.e. ω is a morphism between (A, ·) (the free monoid generated by the

edges) and (Zk,+).

Example 100. Figure 7 displays two VASS. More formally, the first one should be described as a graph G = (S,A)
with:

• S = {a, b, c, d}

• A = {aa1→b, aa2→c, ba3→c, ca4→d, da5→a}

• ω(a1) = (0,−1,+1), ω(a2) = (−1, 0, 0), ω(a3) = (0,+1,−2), ω(a4) = (0, 0,+1), ω(a5) = (0, 0,−1).

Every finite path is the underlying path of an admissible walk:

Lemma 101. Let V be a VASS and a1 . . . an be a finite path in it. There exists a valuation v0 such that for 0 ≤ i ≤ n,
v0 + ω(a1 . . . ai) ∈ Nk.
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Proof. Because the path is finite, the jth component of ω(a1 . . . ai) is greater than some αj (of course, this bound is
not necessarily reached with the same i for all components, but nonetheless such a bound exists for each component
separately). By putting βj = max(0,−αj) (that is 0 if αj is positive), then v0 = (β1, · · · , βk) verifies the property.

Example 102. Let us consider the first VASS of Figure 7 and the path aa1→ba3→c. This path has weight (0, 0,−1). If
we consider the initial valuation (0, 0, 0) and the corresponding walk (a, (0, 0, 0))

a1→(b, (0,−1, 1))
a3→(c, (0, 0,−1)), this

walk is not admissible because the second and third valuations have a strictly negative coefficient. However, following
the same path, it is always possible to take a initial valuation “big enough” in order to get an admissible walk. Here,
the walk (a, (0, 1, 1))

a1→(b, (0, 0, 2))
a3→(c, (0, 1, 0)) follows the same path and is admissible.

Lemma 103. Let (s0, v0)→ . . .→ (sn, vn) be an admissible walk in a VASS. Then, for all v′0 ≥ v0 (component-wise
comparison), (s0, v

′
0)→ . . .→ (sn, v

′
n) is an admissible walk (following the same path).

Proof. By monotonicity of the addition.

Example 104. Continuing the previous example, any valuation larger (component-wisely) than (0, 1, 1) leads to an
admissible walk when following the same path. So, among other, the walk starting at (a, (17, 14, 42)) and following
edges a1 and a3 is admissible.

Definition 105 ((Uniform termination)). A VASS is said to be uniformly terminating if it admits no infinite admissible
walk. That is, every walk is either finite or reaches a non-admissible configuration.

Theorem 106. A VASS is not uniformly terminating if and only if there exists a cycle whose weight is in Nk (that
is, is non-negative with respect to each component).

Proof. If such a cycle exists, starting and ending at vertex s, then by Lemma 101 there exists v0 such that the walk
starting at (s, v0) and following the cycle is admissible. After following the cycle once, the configuration (s, v1) is
reached. Since the weight of the cycle is non-negative, v1 ≥ v0. Then, by Lemma 103 the walk can follow the cycle
one more time, reaching (s, v2), and still be admissible. By iterating this process, it is possible to build an infinite
admissible walk.

Conversely, let (s0, v0) → . . . → (sn, vn) → . . . be an infinite admissible walk. Since there are only finitely many
vertices, there exists at least one vertex s′ appearing infinitely many times in it. Let (s′l, v

′
l) be the occurrences of the

corresponding configurations in the walk. Since the component-wise order over vectors of Nk is a well partial order,
there exists i, j such that v′i ≤ v′j . The cycle followed between s′i and s′j has a non-negative weight.

Example 107. The second VASS of Figure 7 is not uniformly terminating. Indeed, if we consider the cycle C =
a1a3a4a5a1a3a4a5a2a4a5, it has weight (1, 1, 0). By Lemma 101, there exists a valuation v = (m,n, p) such that the
walk starting at (a, (m,n, p)) and following this cycle is admissible (it is sufficient to choose (m,n, p) ≥ (2, 0, 0)). After
following the cycle once, the configuration is (a, (m + 1, n + 1, p)) from which the cycle can be followed once again,
thus reaching (a, (m+ 2, n+ 2, p)). Repeating this leads to an infinite admissible walk.

5.2 Decidability of the uniform termination
Definition 108 ((Linear parts, semi-linear parts)). Let (M,+) be a commutative monoid7. A linear part of M is a
subset of the form v + V ∗ where v ∈M and V is a finite subset of M . That is, if V = {v1, · · · , vp}, a linear part can
be expressed as: {

v +

i=p∑
i=1

nivi|ni ∈ N

}
A semi-linear part of M is a finite union of linear parts.

Recall that rational parts are built from +, union and Kleene’s star ∗. When dealing with words (that is the free
monoid generated by a finite alphabet), + is word concatenation (not commutative) and so rational parts are exactly
the regular languages.

Lemma 109. In a commutative monoid, semi-linear parts are exactly the rational parts.

Proof. Semi-linear parts are expressed as rational parts.
Conversely, it is sufficient to show that the set of semi-linear parts contains all finite parts and is closed by union,

sum and ∗.
Semi-linear parts contains finite part and are closed under union by definition. Closure under sum is obtained

because (a+A∗)+(b+B∗) = (a+b)+(A
⋃
B)∗ and sum is distributive over union ((A

⋃
B)+C = (A+C)

⋃
(B+C)).

7Recall that a commutative monoid is a monoid (a set with an associative internal operation admitting a neutral element) whose
operation is commutative. A typical example of commutative monoid is (N,×) (inverse for each element is not needed).
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The hard point is the closure under ∗ which is a consequence of commutativity. It holds because (v + V ∗)∗ =
(v + ({v}⋃V )∗)

⋃{0} (the key idea being that (a(b∗))∗ = a∗b∗ in a commutative monoid). See [Reu89] (Proposition
3.5) for details.

Lemma 110. The set of non-empty cycles in a graph is a rational part (of the free monoid generated by the edges).

Proof. Consider the graph as an automaton with each edge labelled by a unique label. The set of paths between two
given vertices is a regular language; specifically, the set of cycles that begin and end at vertex s is regular. The full
set of cycles is the union of those sets over all the (finitely many) vertices, and is consequently also regular.

Example 111. Consider again the VASS of Figure 7 or, rather, their underlying graph. The set of (possibly empty)
cycles from a to itself is described by the regular expression A = ((a1a3a4a5)|(a2a4a5))∗ and corresponds exactly to the
rational language recognised by this expression. Then the set of all (non-empty) cycles in these VASS is the language
recognised by the regular expression:

(((a1a3a4a5)|(a2a4a5))A)|(a3a4a5Aa1)|(a4a5A(a1a3|a2))|(a5A(a1a3|a2)a4)

where each of the four alternatives corresponds to the set of (non-empty) cycles from one vertex to itself.

Corollary 112. The set of weights of (non-empty) cycles in a VASS is a semi-linear part of Zk.

Proof. Since the weight function ω is a morphism between (A, ·) and (Zk,+), it preserves rational parts. Hence, the
set of weights of cycles is a rational part of Zk. Since + is commutative, it is also a semi-linear part.

Notice that the proofs are constructive. Hence the semi-linear part can be built effectively.

Example 113. For concision, we write here ωi instead of ω(ai).
First, let us look at the weights of cycles from a to itself. By applying the weight morphism (ω) to A, we obtain

the regular expression:
((ω1 + ω3 + ω4 + ω5)|(ω2 + ω4 + ω5))∗

To express this as a semi-linear part, we must change the alternatives (|) into union of sets. This leads to:

{ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}∗

which is a semi-linear part of Z3. For the first VASS, this is:

{(0, 0,−1), (−1, 0, 0)}∗ = {(−k, 0,−l)|k, l ∈ N}

Next, consider the expression describing cycles from b to itself: a3a4a5Aa1. When applying the weight to it, we
obtain:

{ω3 + ω4 + ω5}+ {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}∗ + {ω1}
By commutativity of addition, this can be expressed as the semi-linear part:

(ω1 + ω3 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}∗

Again, if we consider the first VASS, this is:

(0, 0,−1) + {(0, 0,−1), (−1, 0, 0)}∗ = {(−k, 0,−l)|k, l ∈ N, l > 0}

Then, we must do the same work for the three other alternatives (corresponding to cycles from a, c and d). This
leads, to the following semi-linear parts:

• for a, c and d: (ω1+ω3+ω4+ω5)+{ω1+ω2+ω4+ω5, ω2+ω4+ω5}∗
⋃

(ω2+ω4+ω5)+{ω1+ω2+ω4+ω5, ω2+ω4+ω5}∗

• for b: (ω1 + ω3 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}∗

The expression for b is different from the others because non-empty cycles at b must go at least once through the large
cycle while other non-empty cycle can go through the small cycle only.

The resulting semi-linear part of Zk describing weights of cycles corresponds to the union of these semi-linear parts,
namely:

{ (ω1 + ω3 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}∗ }⋃
{ (ω2 + ω4 + ω5) + {ω1 + ω2 + ω4 + ω5, ω2 + ω4 + ω5}∗ }
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For the first VASS, this is:

((0, 0,−1) + {(0, 0,−1), (−1, 0, 0)}∗)
⋃

((−1, 0, 0) + {(0, 0,−1), (−1, 0, 0)}∗)
= {(−k, 0,−l)|k, l ∈ N, k + l > 0}

For the second VASS, this is:

((−1, 1, 1) + {(−1, 1, 1), (3,−1,−2)}∗)
⋃

((3,−1,−2) + {(−1, 1, 1), (3,−1,−2)}∗)
= {(3l − k, k − l, k − 2l)|k, l ∈ N, k + l > 0}

Theorem 114. Uniform termination of VASS is in NPtime.

Proof. By Theorem 106, a VASS is not uniformly terminating if and only if there is a cycle whose weight is in Nk.
Since the set of weights for all cycles is a semi-linear part of Zk, we can consider in turn each linear part in it. The
full set intersects Nk if and only if at least one of its linear parts does. Thus, all we need is a method for deciding
whether a linear part of Zk intersects with Nk:

Let U = {u1, · · · , up} and u+ U∗ be a linear part of Zk. It intersects Nk if and only if there exist n1, · · · , np ∈ N
such that u+

∑
niui ≥ 0.

This can be solved in NPtime using usual integer linear programming techniques.

Since VASS and Petri nets are equivalent, this also shows that uniform termination of Petri nets is decidable.
Without going through the equivalence, a direct and simpler proof can be made for Petri nets. Such a proof can be
found in [Moy03], (Theorem 60, page 83).

Example 115. Consider again the two VASS of Figure 7. The set of weights of non-empty cycles of the first VASS
corresponds to the semi-linear part:

((0, 0,−1) + {(0, 0,−1), (−1, 0, 0)}∗)
⋃

((−1, 0, 0) + {(0, 0,−1), (−1, 0, 0)}∗)

The first linear part of the union, (0, 0,−1) + {(0, 0,−1), (−1, 0, 0)}∗, intersects N3 if and only if there exist n1, n2 ∈ N
such that:

(0, 0,−1) + n1 × (0, 0,−1) + n2 × (−1, 0, 0) ≥ (0, 0, 0)

This is clearly impossible.
Similarly, the second linear part cannot intersect N3. Hence, the set of weights of non-empty cycles does not

intersect N3 and the VASS is uniformly terminating.
For the second VASS, the weights correspond to the semi-linear part:

((−1, 1, 1) + {(−1, 1, 1), (3,−1,−2)}∗)
⋃

((3,−1,−2) + {(−1, 1, 1), (3,−1,−2)}∗)

There, for the first linear-part, the system becomes:

(−1, 1, 1) + n1 × (−1, 1, 1) + n2 × (3,−1,−2) ≥ (0, 0, 0)

Usual Integer Linear Programming techniques show that the system has a solution, for example with n1 = 1, n2 = 1,
corresponding to the cycle (a1a3a4a5)2(a2a4a5) whose weight is (1, 1, 0). Hence, the VASS is not uniformly terminating.

However, any infinite walk starting from, for example, the configuration (a, (0, 14, 0)) is not admissible. Deciding
whether a given configuration leads to an infinite admissible walk or not is a different problem from uniform termination.

It is worth noticing that in the second case, the cycle detected is not a simple cycle. So the problem is different
from the one of detecting simple cycles in graphs and requires a specific solution.

5.3 VASS as Resource Control Graphs
Before the formal definition of Resource Control Graphs, we show here how VASS can be used to build proofs of
uniform termination of programs.

In the rest of this section, we consider the following size function:

||〈IP, σ〉|| = (|stk1|, · · · , |stks|)stki∈S

that is, the vector whose components are the lengths of the different stacks of a given program. Moreover, we use (ei)
to denote the canonical basis of Zk, that is ei is the vector whose jth component is δi,j .
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Figure 8: The Resource Control VASS for the reverse program

Definition 116 ((Weights)). To each instruction, we assign the following weight :

• ω(r := pop(stki)) = −ei

• ω(push(r, stki)) = ei

• ω(i) = 0 for all other instructions.

Definition 117 ((Resource Control VASS)). Let p be a program. Its Resource Control VASS is a VASS whose
underlying graph is the Control Flow Graph of p and edge i has weight ω(i) as defined above.

Proposition 118. Let p be a program and G be its Resource Control VASS. If θ0 = 〈IP0, σ0〉 ∗→〈IPn, σn〉 = θn is an
execution of p, then (IP0, ||θ0||) ∗→(IPn, ||θn||) is an admissible walk of G with the same trace.

Proof. By induction on the length of the execution. Notice that executions leading to errors (⊥) are not taken into
account here.

Theorem 119. Let p be a program and G be its Resource Control VASS. If G is uniformly terminating, then p is
uniformly terminating.

Proof. If p is not uniformly terminating, then by the previous proposition there exists an infinitely long execution that
can be mapped onto an infinite admissible walk.

Since uniform termination of VASS is decidable, this allows to detect uniform termination of a broad class of
programs. Of course, the converse is not true since uniform termination of programs is not decidable.

Example 120. The Resource Control VASS of the reverse program is displayed on Figure 8. Since it is uniformly
terminating, so is the reverse program.

Weighted graphs, as used in Section 4 to prove Non-Size Increasingness of programs are the special case of VASS
when the dimension is one.

6 Resource Systems with States

Resource Systems with States (RSS) are a generalisation of the VASS seen in the previous section. For VASS, the only
information kept is a vector of integers, and only addition of vectors can be performed. When modelling programs,
this is not sufficient. Indeed, if one wants to closely represent the memory of a stack machine, a vector is not sufficient.
Moreover, vector addition is not powerful enough to represent common operations such as copy of a variable (x := y).

Hence, we now relax the constraints on valuations and weights. We allow valuations to be drawn from any set
and allow as weight any function mapping valuations to valuations. Notice that in the case of VASS, each weight is
addition of a vector v, which could be represented as the function λx.x+ v.

For the sake of generality, we even allow the sets of valuations to be different for each vertex. This may seem
strange, but a typical use of that is to have vectors with different numbers of components as valuations (that is the set
of valuations for vertex si would be Zki) and matrix multiplications as weights (where the matrices have the correct
number of rows and columns). Of course, one can always take the (disjoint) union of these sets, but this usually makes
the notations harder to read and understand. See Example 157 for more details.
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6.1 Graphs and States

Definition 121 ((RSS, configurations, walks)). A Resource System with States (RSS) is a tuple (G,V, V +,W, ω)
where

• G = (S,A) is a directed graph, S = {s1, · · · , sn} is the set of vertices and A = {a1, · · · , am} is the set of edges.

• V1, · · · , Vn are the sets of valuations. V is their union.

• V +
i ⊂ Vi are the sets of admissible valuations. V + is the union of them.

• Wi,j : Vi → Vj are the sets of weights. W is the union of them.

• ω : A→W is the weight function such that ω(a) ∈Wi,j if si
a→sj .

When it is clear what both the valuations and weight sets are, we name the RSS after the underlying graph G.
A configuration is a pair η = (s, v) where s = si ∈ S is a vertex of the graph and v ∈ Vi is a valuation. A

configuration is admissible if v ∈ V +
i is admissible.

A walk is a sequence (finite or not) of configurations (s0, v0)
a1→ . . .

an→(sn, vn)
an+1→ . . . such that s0

a1→s1
a2→ . . .

an→sn
an+1→ . . .

and for all i > 0, vi = ω(ai)(vi−1). A walk is admissible if all configurations in it are admissible.
The walk follows path p which is called either underlying path or trace of the walk.
As earlier, we write η → η′ if the relation holds for an unspecified edge and +→, ∗→ for the transitive and reflexive-

transitive closures.

The idea behind having both valuations and admissible valuations is that it allows V to have nice algebraic
properties not shared by V +. Moreover, it also allows the set of valuations to be the closure of the admissible
valuations under the weight functions, thus removing the deadlock problem of reaching something that would not be
a valuation (and replacing it by the more semantical problem of detecting non admissible valuations). Typically with
VASS, V is the ring Zk, and V + is Nk. Since weights can add any vector, with positive or negative components, to
a valuation, V is the closure of V + under this operation. Moreover, VASS do not suffer from the deadlock problems
that appear in Petri nets (but this is done by introducing the problem of deciding whether a walk is admissible).

Notice that either unions (for V , V + or W ) can be considered to be a disjoint union without loss of generality.

Definition 122 ((Weight of a path)). Let G be an RSS. The weight function can be canonically extended over all
paths in G by choosing ω(ab) = ω(b) ◦ ω(a).

(W, ◦) is a magma. It is not a monoid because the identity is not unique. There is a finite set of neutral elements,
the identities over each Vi.

Notice that we do not actually need the whole W . Only the part generated by the individual weights of edges is
necessary to handle an RSS. We overload the notation and call it W as well.

In the following, to improve readability, we write v~ω(a) instead of ω(a)(v) and ω(a) #ω(b) instead of ω(b) ◦ω(a).
When following paths, we now have: ω(ab) = ω(b) ◦ ω(a) = ω(a) # ω(b). So, this allows for a more natural expression
of weights of paths8.

Example 123. For the VASS of the previous section, we have Vi = Zk and V +
i = Nk for all i, and ω(ai) = λx.x+ ui

for some vector ui ∈ Zk. Or, we could describe VASS by saying that V = W = Zk, V + = Nk and ~ = # = +.
The notation with ~ and # is much more convenient, especially to easily handle weights of paths, as is done in the

lemmas and theorems of the previous section.

If we consider Vi as objects and ω ∈ W as arrows, we have a category. Indeed, identity exists for each Vi and
composition of two arrows is properly defined.

6.2 Properties of RSS

Order

Definition 124 ((Ordered RSS)). An ordered RSS is an RSS G = (G,V, V +,W, ω) together with a partial ordering
≺ over valuations such that the restriction of ≺ to V + is a well partial order.

For VASS, the component-wise order on vectors of the same length is the well partial order (over V + = Nk) that
was used in the previous section.

8From an algebraic point of view, ω is considered as a morphism between (A, ·) and (W, #), and ~ is a right-action ofW on V . Moreover,
(W, #) often appears to be isomorphic to a well known structure (usually a group, such as (Zk,+) for VASS).
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Definition 125 ((Monotonicity, positivity)). Let (G,V, V +,W, ω) be an ordered RSS. We say that it is increasing
if all weight functions ω(ai) are increasing with respect to ≺. Since the composition of increasing functions is still
increasing, the weight function of any path is increasing.

We say that (G,V, V +,W, ω) is positive if for each v ∈ V + and v′ ∈ V , v ≺ v′ implies v′ ∈ V +.

VASS are both increasing and positive. Monotonicity is the key of Lemma 103 while positivity is implicitly used
in the proof of Theorem 106 to say that the valuation reached after one cycle is still admissible.

Definition 126 ((Resource awareness)). Let G be an ordered RSS and f : V → V be a function. G is f -resource
aware if for any walk (s0, v0)

∗→(sn, vn) we have vn � f(v0)

Uniform termination

Definition 127 ((Uniform termination)). Let G be an RSS. G is uniformly terminating if there is no infinite admissible
walk over G.

Notice that if an RSS is not uniformly terminating, then there exists an infinite admissible walk that stays entirely
within one strongly connected component of the underlying graph. In the following, when dealing with infinite walks
we suppose without loss of generality that the RSS is strongly connected.

Theorem 106 can be generalised to RSS:

Theorem 128. If G does not uniformly terminate, then there is an admissible cycle (s, v)
+→(s, u) with v � u. If G

is increasing and positive, then this is an equivalence.

Proof. If an infinite admissible walk exists, then we can extract from it an infinite sequence of admissible configurations
(s′, vk) with fixed s′, since there is only a finite number of vertices. Since the order is a well partial order on V +, there
exists a i < j with vi � vj , thus leading to an admissible cycle.

If such a cycle exists, then it is sufficient to follow it infinitely many times to have an infinite admissible walk.
Monotonicity is needed to ensure that every time one follows the cycle, the valuation does indeed not decrease.
Positivity is needed to ensure that when going through never decreasing valuations one does not leave V +.

Proposition 129. Let G = (G,V, V +,W, ω) be an RSS.

1. If V is finite, then W is finite.

2. If V is finite, then uniform termination of G is decidable.

3. If both V and W are enumerable, then uniform termination for an ordered RSS G is semi-decidable.

Proof.

1. The set of functions F(V, V ) is finite and contains W .

2. If there are only finitely many valuations, any infinite walk eventually comes back to exactly the same config-
uration, hence the cycle of Theorem 128 becomes (s, v)

+→(s, v). Then it is possible to compute all the possible
weights of cycles (there are only finitely many of them) and check with each valuation whether the condition is
met. Notice that this does not require the RSS to be ordered.

3. By enumerating the cycles and the valuations simultaneously, computing the new valuation after going through
the cycle and checking with the ordering whether this satisfies Theorem 128.

Corollary 112 can be generalised:

Proposition 130. If (W, #) is commutative, then the set of weights of cycles of an RSS is semi-linear.

This allows us to easily find candidates for a generalisation of Theorem 114 if the set of “positive” weights is easily
expressible (as in the case of VASS). Among other properties: if it is itself semi-linear, then uniform termination is
decidable (because intersection between two semi-linear parts is decidable).

6.3 Equational versus constraint based approach

Up to now, the only weights we have considered are functions, meaning that if s a→s′, for each valuation v there is only
one valuation v′ such that (s, v)

a→(s′, v′). Sometimes, it is more convenient to have several possible results because
approximations of the values leads to a loss of information. In this case, the weights considered are relations rather
than functions and we require v′ ∈ ω̂(a)(v) rather than v′ = ω(a)(v).
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Constraints RSS

Definition 131 ((Constraints RSS, configurations, walks)).
A Constraints RSS is a tuple (G,V, V +,W, ω) where

• G = (S,A) is a directed graph.

• V +
i ⊂ Vi are, respectively, the sets of admissible valuations and valuations.

• Wi,j : Vi → P(Vj) are the sets of weights.

• ω̂ : A→W is the weight function such that ω̂(a) ∈Wi,j if si
a→sj .

Configurations and admissible configurations are defined as earlier.
A walk is a sequence (finite or not) of configurations (s0, v0)

a1→ . . .
an→(sn, vn)

an+1→ . . . such that s0
a1→s1

a2→ . . .
an→sn

an+1→ . . .
and for all i > 0, vi ∈ ω̂(ai)(vi−1). A walk is admissible if all configurations in it are admissible.

It is important to notice that even if weight functions return sets (that is, they are relations rather than functions),
each step of a walk has to choose one element from this set as a new valuation. That is, we do not consider configurations
with sets as valuations, but rather introduce some kind of non-determinism in the RSS. The main use for this is when
some valuations are in no way related to the previous ones and can be anything (e.g. if a value is provided via some
external mechanism such as a scanf instruction).

Definition 132 ((Weight of a path)). Let G be an RSS. The weight function can be canonically extended over all
paths in G by choosing ω̂(ab)(x) =

⋃
y∈ω̂(a)(x) ω̂(b)(y).

As earlier, uniform termination means that there exists no infinite admissible walk. However, monotonicity is now
expressed: x � y ⇒ ∀x′ ∈ ω̂(x),∃y′ ∈ ω̂(y)/x′ � y′.

Then, Theorem 128 becomes:

Theorem 133. Let G be a positive increasing Constraints RSS. G is not uniformly terminating if and only if there
is an admissible cycle (s, v0)

+→(s, v1) such that v0 � v1.

Proof. If an admissible infinite walk exists, then we can extract from it an admissible cycle in exactly the same way
as with Theorem 128.

Conversely, if a non-decreasing admissible cycle c exists, let (s, v0)
a→(s′, v′0)

∗→(s, v1) be the first, second and last
configurations when following the cycle. By hypothesis, v0 � v1.

Then, there exists v′1 ∈ ω̂(a)(v1) such that (s, v1)
a→(s′, v′1) and v′0 � v′1. By positivity of the VASS, v′1 is still

admissible.
By iterating this process, we build an admissible cycle (s, v1)

c→(s, v2) with v1 � v2. Then, this can be done ad
infinitum thus leading to an admissible infinite walk.

Constraints VASS

Let us show how this concept applies to VASS and why it can be useful when studying programs. Remember that
Z = Z

⋃{+∞}.
Definition 134 ((Constraints VASS)). A Constraints VASS is a directed graph G = (S,A) together with a weight
function ω : A→ Zk where k is a fixed integer.

A configuration is a pair η = (s, v) where s ∈ S and v ∈ Zk. It is admissible if v ∈ Nk.
A walk is a sequence (finite or not) of configurations (s0, v0)

a1→ . . .
an→(sn, vn) such that s0

a1→s1
a2→ . . .

an→sn and for all
i > 0, vi ≤ vi−1 + ω(ai). A walk is admissible if all configurations in it are admissible.

To express a Constraints VASS as a Constraints RSS, we should consider the weight function ω̂(a) : Zk → P(Zk)
such that ω̂(a)(v) = {v′|v′ ≤ v+ω(a)}. Then, the relation between valuations in a walk is the general vi ∈ ω̂(ai)(vi−1).
Since all constraints have the same shape, we can express this in a more readable way. Constraints VASS are positive
and increasing. When there is no +∞ in the weights, it is always “best” to choose the greatest possible valuation, that
is, use the (regular) VASS with the same underlying graph and weight function.

Example 135. Consider the following functional program computing Ackermann’s function:

Ack(0, n)→n+ 1

Ack(m+ 1, 0)→Ack(m, 1)

Ack(m+ 1, n+ 1)→Ack(m, Ack(m+ 1, n))
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Ack

(−1,+1)

(−1,+∞) (0,−1)

Figure 9: Constraints VASS for Ackermann’s function

For functional programs, an equivalent of the CFG is the call graph. There is one vertex for each function symbol
(here only one) and one edge for each call (here, 3). Since there are two positive integers in the program, it is natural
to choose (m,n) as valuation.

The first line does not perform any call, hence there is no edge corresponding to it in the graph (since termination
is studied here, the first line can never lead to non-termination, hence it is safe to have nothing corresponding to it in
the graph).

The second line performs one call where the arguments of the function go from (m+1, 0) to (m, 1), this corresponds
to adding (−1, 1) to the valuation.

The third line performs two calls. The inner call is from Ack(m + 1, n + 1) to Ack(m + 1, n) (embedded in some
context). That is, in this call, the arguments of the function go from (m+ 1, n+ 1) to (m+ 1, n), so the corresponding
edge is labelled (0,−1).

However, when considering the outer call in the last line the second argument becomes Ack(m+ 1, n) which cannot
be related to the parameter n in any easy way. So, using a regular VASS, this call would not be representable.

With a Constraints VASS, we can represent this last call. Indeed, not knowing anything on the result simply
means that we can relax all constraints on it which is represented by the vector (−1,+∞). The constraints VASS for
Ackermann’s function is displayed on Figure 9.

Since this Constraints VASS is uniformly terminating, so is Ackermann’s function.
This example shows that Constraints VASS are useful and that we can apply the ideas behind RCGs to functional

programs.

7 Resource Control Graphs

Instead of the weighted graphs or VASS used before, we now use any RSS to model programs. A set of admissible
valuations is given to each state and weight functions simulate the corresponding instruction.

Since we can now have any approximation of the memory (the stores) for valuations, we cannot simply use the
length of a state to abstract it. Instead, we consider given a size function that associates to each state (or to each
store) some size. The size function is unspecified in general. Of course, when using RCG to model programs, the first
thing to do is usually to determine a suitable size function (according to the studied property). Notice that depending
on the size function, weights of instructions can or cannot be defined properly (that is, some sizes are either too
restrictive or too loose and no function can accurately reproduce on the size the effect of a given instruction on actual
data). In this case, the RCG cannot be defined and another size function has to be considered.

7.1 Resource Control Graphs

Definition 136 ((RCG)). Let p be a program and G be its control flow graph. Let V + be a set of admissible
valuations (and ≺ be a well partial order on it). Let || • || : Θ→ V + be a size function from states to valuations and
V +
lbl be the image by || • || of all states 〈lbl, σ〉 for all stores σ.
For each edge i of G, let ω(i) be a function such that for all states θ, p ` θ i→θ′ implies ω(i)(||θ||) = ||θ′||. Let V

be the closure of V + over all the weight functions ω(i).
The Resource Control Graph (RCG) of p is the RSS built on G with weights ω(i) for each edge i, valuations V

and admissible valuations V + (ordered by ≺). V +
lbl being the admissible valuations for vertex lbl.

As stated before, we write v ~ ω(i) instead of ω(i)(v) and ω(i) # ω(j) instead of ω(j) ◦ ω(i).

Lemma 137. Let p be a program, G be its RCG and p ` θ0 → . . .→ θn be an execution with trace t. There exists an
admissible walk (s0, ||θ0||)→ . . .→ (sn, ||θn||) with the same trace t.

Theorem 138. Let p be a program and G be its RCG. If G is uniformly terminating, then p is also uniformly
terminating.
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Example 139. A Space-RCG as defined in Section 4 is a special case of general RCG. In this case, ||θ|| = |θ|, which
leads to V +

lbl = V + = N for each label lbl. Similarly, ω(i) = λx.x+ ki with ki as in Definition 73. Since k ∈ Z, the
closure of V + over the weight functions is V = Z.

In this case, resource awareness of the Space-RCG (or β-Space-RCG) guarantees a resource bound on the program
execution.

Example 140. For a better representation of programs, the size can be the vector where each component is the
length of a stack: ||〈IP, σ〉|| = (|stk1|, · · · , |stks|)stki∈S . This corresponds exactly to what is done with the Resource
Control VASS of Section 5.3. As shown, this allows to decide uniform termination of several programs.

This termination analysis is close to the Size Change Termination [LJBA01] in the sense that the size of data is
monitored and a well ordering on it ensures that it cannot decrease forever. It is sufficient to prove uniform termination
of most common lists programs such as reversing a list or insertion sort. It also accepts some programs that are not
handled by the original SCT, because it can take into account not only size decreases, but also increases. In this
way, a program that would loop on something like pop pop push (2 pops and 1 push) is not caught by SCT but
is proved uniformly terminating with this analysis. In this sense, it is closer to the SCT with difference constraints
(δSCT) [BA08].

This method is in NPtime since, as we have shown, uniform termination of VASS is in NPtime. The original SCT,
as well as fan-in free δSCT, is Pspace-complete. However, this simple method does not allow for data duplication or
copy. Lee, Jones and Ben-Amram already claimed in the original paper on SCT that there exists a poly-time algorithm
for SCT dealing with “programs whose size-change graphs have in- and out-degrees bounded by 1”. It is easy to check
that VASS can only model such kind of programs accurately9, hence the NP bound is not a big surprise.

Moreover, this method has a fixed definition of size and hence does not detect termination of programs whose
termination argument does not depend on the decrease of the length of a list. Among others, any program working
solely on integers (represented as letters of the alphabet) is not analysed correctly.

Example 141. This representation can be improved. Typically, using Resource Control VASS, it is impossible to
detect anything happening to registers. If we have a suitable size function || • || : Σ→ N for registers10, we can choose
||〈IP, σ〉|| = (||r1||, · · · , ||rr||)ri∈R. In this case, depending on the operators, weight could be either vector addition or
matrix multiplication (to allow the copy of a register).

Remark 142. Taking exactly the image of || • || as the set of admissible valuations V + might be a bit too difficult.
Indeed, this set might have any shape and is probably not really easy to handle. So, it is sometimes more convenient
to consider a superset of it in order to easily decide whether a valuation is admissible or not. The convex hull (in V )
of the image of || • || is a typical example of such a superset. Notice that it is very similar to the idea of trying to find
an admissible set of sequences of states which is more manageable than the set of executions. Here, we try to find an
admissible set of valuations which is more manageable than the actual set of sizes. For more details on how to build
and manage such a superset, see the work of [Ave06].
Remark 143. The size function is not fixed and may depend on the property one wants to study, the program being
analysed or even each particular program point, as can be seen in the coming example. We do not address here the
problem of finding a suitable size function for a given program. As hinted, it might be a simple vector of functions over
stacks and registers but it can also be a more complicated function such as a linear combination or so. Hence, with a
proper size function, one is able not only to check that a given register (seen as an integer) is always positive but also
that a given register is always bigger that another one. This is similar to Avery’s functional inequalities [Ave06].

Obviously, the problem of finding a suitable size function is undecidable (for each terminating programming, there
exists a suitable size function). However, many programs can be analysed with a uniform family of similar size
functions. hence, it is interesting to have a tool to automatically infer good size function from programs, such as
convex-hull analysis.

Example 144. Let us consider the following program, working on integers (that is, the alphabet is the set of 32 bits
positive integers11 and overflow or underflow throws an exception):

0 : i := 0; 4 : if i < n then goto 2;
1 : if regi ≥ n then goto 5; 5 : i := i + 1;
2 : i := i + 1; end : end;
3 : some instructions modifying neither i nor n

This is simply a loop for(i=0;i<n;i++) (in a C-like syntax). If we consider a size function that simply takes the
vector of the registers, that is ||〈IP, σ〉|| = (i,n), then the loop has weight (+1, 0) and thus lead to a cycle of positive

9And cannot even model all those programs due to the restriction on copying variables.
10Note that the size function used here is in no way related to the length of a state. It plays no role when computing the space usage of

a state and may simply be seen as an ordering over the alphabet.
11Corresponding to the C type unsigned.
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weight. However, a clever analysis of the program could detect that inside the loop we must necessarily have n− i > 0
and thus suggest the size ||〈IP, σ〉|| = n− i. Using this, the loop has weight −1 and we can prove uniform termination
of the program.

As stated, we do not address here the problem of finding a correct size function for a given program. This problem
is undecidable in general. But invariants can often be automatically generated, usually by looking at the pre- and
post-conditions of the loops.

Notice also that this inequality must hold only in the loop. Indeed, at label 5, we have i > n. Hence using this
size function everywhere would cause troubles since then ||(5, σ)|| is not admissible.

Having different sets of valuations for each labels, that is a size function operating differently on each label, can
solve this problem. By choosing ||〈IP, σ〉|| = (i,n) for IP = 0, 1, 5, end and ||〈IP, σ〉|| = (i,n,n− i) otherwise, we can
ensure that the “natural” sets of admissible valuations (N2 and N3) indeed correspond to the image of the size function
(or at least a manageable superset of it).

In this case, of course, we need the weight between labels 1 and 2 to take into account new components appearing
in the valuation. Here, this can be done by using a matrix multiplication since the new component in the valuation is
a linear combination of the existing ones. See Example 157 for the complete construction of the RCG.

7.2 Constraints RCG

Constraints RSS can also be used instead of RSS to model programs and build RCG as done with the Ackermann’s
function of Example 135. In that case, the relation required between weights and sizes is:

for all states θ verifying p ` θ i→θ′, ||θ′|| ∈ ω̂(i)(||θ||).
Then, the simulation Lemma and uniform termination Theorem are still true:

Lemma 145. Let p be a program, G be its Constraints RCG and p ` θ0 → . . . → θn be an execution with trace t.
There exists an admissible walk (s0, ||θ0||)→ . . .→ (sn, ||θn||) with the same trace t.

Proof. Because ||θi|| belongs to ω̂(a)(θi−1) and can thus always be chosen as the new valuation.

Theorem 146. Let p be a program and G be its RCG. If G is uniformly terminating, then p is also uniformly
terminating.

8 δ-Size Change Termination

In Section 4, we have used RCG in order to have an analysis of running space similar to the Non Size Increasing
approach of Hofmann. In this section, we use RCG to analyse termination of programs in a way similar to the
Size Change Termination of Lee, Jones and Ben-Amram and, more precisely, to the δ-Size Change Termination of
Ben-Amram.

We consider here the (Z,min,+) semi-ring and denote min as ⊕ and + as ⊗. These operations are canonically
extended to define multiplication of matrices12 fromM(Z).

8.1 Matrices and graphs

Definition 147 ((Constraint graph)). Let M be a square matrix of dimension n. Its constraint graph is a weighted
directed graph G such that:

• There are n vertices Xi, 1 ≤ i ≤ n plus an extra vertex Y .

• If Mi,j 6= +∞, there is an edge of weight Mi,j from Xi to Xj .

• There is an edge of weight 0 from Y to Xi, for all i.

Definition 148 ((l-weight)). Let G be a directed weighted graph. The l-weight from a to b is the minimum weight
of all paths of length l from a to b, and +∞ if there is no such path.

The coefficient Mk
i,j is the k-weight from Xi to Xj in the constraint graph of M .

Lemma 149. The system X ≤ X ⊗M has a solution if and only if there is no strictly negative coefficient in the
diagonal of Mk, for all k. In that case, it admits a non-negative solution.

It is possible to decide in polynomial time whether such a system admits a solution.
12That is, given two matrices A and B, (A⊕B)i,j = Ai,j⊕Bi,j = min(Ai,j , Bi,j) and (A⊗B)i,j =

⊕
k Ai,k⊗Bk,j = mink(Ai,k+Bk,j).

Similarly, if X is a vector and M a matrix, then (X ⊗M)j =
⊕
kXk ⊗Mk,j = mink(Xk +Mk,j).
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Proof. The matrix inequality corresponds to the set of inequalities {Xj ≤ mini(Xi +Mi,j)|j ≤ n} which can, without
modifying the set of solutions, be expressed as {Xj ≤ Xi +Mi,j |i, j ≤ n}.

If for every k > 0 there is no strictly negative coefficient in the diagonal of Mk, the constraints graph G has no
cycle of strictly negative weight. In this case, we can choose for Xi the weight of the shortest path from Y 13. This
is well defined because there is no cycle of strictly negative weight and provides a solution for the system because
Xj ≤ Xi +Mi,j holds for all i, j by definition of shortest paths.

Conversely, if there is a path of strictly negative weight, then it is easy to see that by adding the inequalities
corresponding to the edges in this path one eventually infers the contradiction Xi < Xi and the system must have no
solution.

If there is a solution X, then X + (1, . . . , 1) is also a solution. Hence, there exists a solution where all values are
non-negative.

The system admits a solution if and only if the constraint graph has no cycle of strictly negative weight. This can
be decided in polynomial time by Bellman-Ford’s algorithm.

8.2 Size Change Termination

We explain here how to build RCG in order to perform the same kind of analysis as the Size-Change Termination with
difference constraints (δSCT) of [BA08]. Here, we use matrices rather than Size Change Graphs following the work
of [AA02] where similar SCT matrices are used (but over a 3-valued set, thus mimicking the initial SCT and not the
work with difference constraints).

In this whole section, we consider a fixed program p, and for each label lbla in it a fixed integer ka. Let Va = Zka
and V +

a = Nka be sets of (admissible) valuations associated with each label. We consider a size function || • || such
that for each label lbla and for each store σ, ||〈lbla, σ〉|| ∈ V +

a .

Definition 150 ((Size Change Matrix)). Let i be an instruction in p corresponding to an edge from lbla to lblb in
G. The Size Change Matrix (SCT matrix) of i is a ka × kb matrix M (i) ofMka,kb(Z) such that for all states θa with
p ` θa i→θb, ||θb|| ≤ ||θa|| ⊗M (i).

If ||θa|| = (x1, · · · , xka) and ||θb|| = (y1, · · · , ykb), we have for each j: yj ≤ mink{xk +M
(i)
k,j} where the coefficients

of M (i) can be any integer or +∞.

Definition 151 ((Size Change RCG)). The Size Change RCG (SCT-RCG) of p is the Constraints RCG for p built
with admissible valuations Nka , and valuations Zka for vertex lbla. The weight for any edge i is such that ω̂(i)(v) =
{v′|v′ ≤ v ⊗M (i)} where M (i) is the SCT matrix for i.

As for Constraints VASS, the common shape of constraints allows to use a weight function ω(i) = M (i) instead of
the weight relation ω̂ and require along a walk that vi ≤ ω(ai)(vi−1) rather than vi ∈ ω̂(ai)(vi−1).

The uniform termination Theorem for Constraints RCG (Theorem 146) tells us that if the SCT-RCG is uniformly
terminating then so is p.

SCT-RCG are both increasing and positive, so it is possible to apply Theorem 133.

Theorem 152. Let G be the SCT-RCG of p. It is uniformly terminating if and only if it does not contain a cycle c
of weight M (c) such that X ≤ X ⊗M (c) admits a solution.

Proof. If the system X ≤ X ⊗M (c) admits a solution, then it admits an arbitrarily large solution. Hence, there exists
an admissible cycle (s,X)

c→(s,X ⊗M (c)) and by Theorem 133, the SCT-RCG is not uniformly terminating.
Conversely, if the SCT-RCG is not uniformly terminating then, by Theorem 133, there exists a cycle of weight M

such that X ≤ X ⊗M has a solution.

Remark 153. The reader familiar with the original works of [LJBA01] or [BA08] may wonder why there is no idem-
potence condition in Theorem 152. As a matter of fact, it happens that any square matrix M on the (Z,min,+)
semi-ring has a power M ′ = Mk which is strongly sign idempotent, that is the coefficients M ′ni,j , for all n > 0 all have
the same sign [Moy08].

The matrices we use here, as well as the Size Change Graphs in the other works, represent the flow of data. The
idea behind idempotence is that we want to detect a cycle in the program such that the corresponding flow of data is
also circular, that is each variable flows to itself.

The dangerous cycles (with respect to termination) are those that (i) have an idempotent flow of data and (ii)
do not have a decrease in one of the data. Indeed, these cycles could be repeated infinitely many time, leading to a
potential infinite execution.

13We consider here ’shortest’ path in term of ’lowest weight’ path. This weight cannot be more than 0 –there is a 0-weighted edge from
Y to all other vertices– but can be strictly negative.
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Figure 10: A Size Change Termination RCG.

However, as stated for matrices at the beginning of the remark, each flow of data eventually becomes idempotent
if repeated sufficiently many times. Hence, finding a cycle whose weight M is such that X ≤ X⊗M admits a solution
is sufficient to get a cycle with idempotent flow of data by repeating this cycle.

With RCG, the notion of valuation makes the inequality X ≤ X ⊗M pretty natural, since it exactly corresponds
to what happens to valuations after going through the cycle. The original RCG works, however, does not have this
notion of valuation but only the matrices (or graphs), seen as a description of the modification on the size of variables
(independently to the actual values of the variables, that is the valuations). Hence, the idempotence condition was
natural in this framework but the notion of RCG shows that one can actually get rid of it.

Notice that the flow of data is somewhat taken into account in Lemma 149 where we consider the sign of the
coefficients of the diagonal of Mk. The coefficients on the diagonal of Mk describe how the data flows from xi to itself
after repeating the cycle k times.

By Lemma 149, the individual condition on cycles is decidable in polynomial time. The general condition, however,
is undecidable. Nevertheless, if the matrices are fan-in free, that is in each column of each SCT matrix, there is at
most one non-+∞ coefficient, then the problem is Pspace-complete. See [BA08] for details. Notice that in this paper,
Ben-Amram uses mostly SCT graphs and not SCT matrices. The translation from one to the other is, however,
quite obvious. Similarly we present here directly a condition on the cycles of the SCT-RCG without introducing the
multipaths. This is close to the “graph algorithm” introduced in [LJBA01].

The simple Size Change Principle of [LJBA01] can be seen as an approximation of the δSCT principle where only
labels in {−1, 0,+∞} are used. Since this only gives way to finitely many different SCT matrices, this is decidable in
general (Pspace-complete).

Example 154. Consider the following program (adapted from [LJBA01] fifth example):

0 : if y = 0 then goto end; 5 : goto0;
1 : if x = 0 then goto 6; 6 : x := y;
2 : a := x; 7 : y := y− 1;
3 : x := y; 8 : goto0;
4 : y := a− 1; end : end;

It can be proved terminating by choosing the size function ||θ|| = (x,y,a). With this size, its SCT-RCG is displayed
on Figure 10. For reasons of convenience, instructions 2 − 4, as well as 6 − 7 are represented as a single edge (with
a single matrix). This allows to completely forget the register a and so use (x,y) as size. Similarly, the other SCT
matrices are not depicted since they are the identity matrix. Because the SCT-RCG is uniformly terminating, so is
the program.

When working with this simple Size Change Principle (or any other restriction where there can be only finitely
many different weights), Theorem 152 gives an algorithmic way of detecting uniform termination of the SCT-RCG.
Indeed, when there are only finitely many different weights, there are only finitely many tuples (s,M, r) such that
there exists a path from s to r whose weight is M . Then, it is possible to build all these tuples in an incremental way
by starting with tuples (s,M, r) corresponding to each edge of the SCT-RCG and adding new tuples by composing
existing ones with matching edges. This is the core idea of the “graph algorithm” of [LJBA01].

68 ACM Transactions on Computational Logic, 2009



J.-Y. Moyen Resource Control Graphs

0

e 1

26

8 5

1 0 −1
0 0 1
0 1 0

 1 0 −1
0 0 0
0 1 1



Figure 11: MMSS as a RCG.

9 More on matrices

9.1 Matrix Multiplication System with States
If we use vectors as valuations and (usual) matrix multiplication as weights, we can define Matrix Multiplication
Systems with States (MMSS) in a way similar to VASS. Admissible valuations are still the ones in Nk but k is not
fixed for the RSS and may depend on the current vertex.

Definition 155 ((Matrix Multiplication System with States)). A Matrix Multiplication System with States (MMSS)
is an RSS G = (G,V, V +,W, ω) where:

• Vi = Zki , V +
i = Nki for some constant ki (depending on the vertex si).

• Weights are matrices with integer coefficients.

• # = ~ = ×.
Using this, it is quite easy to model copy instructions of counters machines (x := y) simply by using the correct

permutation matrix as a weight. To represent increment or decrement of a counter, an operation which was quite
natural with VASS, we now need a small trick known as homogeneous coordinates14. One can simply represent the n
counters as an n+1 component vector whose first component is always 1. Then, incrementing or decrementing a variable
becomes a linear combination of components of the vector which can perfectly be done with matrix multiplication.
For example, here is how one can model the copy (x := y) and the increment (x := x + 1).

(1, x, y)×

 1 0 0
0 0 0
0 1 1

 = (1, y, y) (1, x, y)×

 1 1 0
0 1 0
0 0 1

 = (1, x+ 1, y)

Example 156. Using homogeneous coordinates, the program of Example 154 has the MMSS depicted on Figure 11.
Here, matrix multiplication is done on the usual (Z,+,×) ring and not on the (Z,min,+) semi-ring as for SCT-RCG.

Example 157. Similarly, use of homogeneous coordinates allows to build an MMSS to prove uniform termination
of the program of Example 144. It is depicted on the left part of Figure 12 (where label 3 has been omitted). The
interesting thing here is the use of vectors of different lengths at different labels, thus allowing to add the constraint
n − i ≥ 0 only inside the loop. This example shows both the use of disjoint sets of valuations and how to work with
the functional inequalities of [Ave06].

But there is even more. VASS are able to forbid a x 6= 0 branch of a test being taken in an admissible walk if
x is 0 simply by decrementing x and then incrementing it immediately after. The net effect is null but if x is 0, the
intermediate valuation is not admissible. This can still be done with MMSS. VASS, like Petri nets, are however not
able to test if a component is empty, that is forbid the x = 0 branch of a test to be taken if x is not 0.

With MMSS, we can perform this test against 0. It is indeed sufficient to multiply the correct component of the
valuation by −1. If it is different from 0, then the resulting valuation is not admissible.

So, using these tricks it is possible to perfectly model a counters machine by an MMSS: each execution of the
machine corresponds to exactly one admissible walk in the MMSS and each admissible walk in the MMSS corresponds
to exactly one execution of the machine.

This leads to the following theorem:
14Homogeneous coordinates were originally introduced by A. F. Möbius. They are used, for instance, in computer graphics for exactly

the same purposes as we do here: representing a translation by a matrix multiplication.
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Figure 12: MMSS for loop and unary addition.

Theorem 158. Uniform termination of MMSS is not decidable.

Example 159. Consider the following program, performing addition in unary (that is, repeatedly decrementing x
while incrementing y until x is 0).

0 : if x = 0 then goto end; 3 : goto 0;
1 : x := x− 1; end : end;
2 : y := y + 1;

Right side of Figure 12 depicts an MMSS for this program such that there is a one-to-one correspondence between
executions of the program and admissible walks of the MMSS. The size used is (1,x,y), the 1 appearing because of
homogeneous coordinates. Notice that we need to add an intermediate label for the x 6= 0 branch of the test in order
to generate the temporary valuation containing x−1, only used to force admissible walks with x = 0 to take the other
branch.

On the other branch of the test, the −1 in the center of the matrix ensures that if x > 0 in the valuation at vertex
0, then following this edge leads to a non-admissible valuation. That is, this edge can only be followed if x = 0.

Since such a construction can be done for any counter machine (the unary addition program uses all possible in-
structions for counter machines) and since counter machines are Turing-complete, this shows why uniform termination
of MMSS is not decidable in general.

This simulation of programs by matrix multiplications raises a surprising question. Indeed, matrix multiplications
are only able to perform linear operations on data, while some programs can obviously perform non-linear operations.

This apparent contradiction is solved when we think more closely on how RSS work. Each walk in an MMSS
corresponds to a matrix multiplication (because ω is a morphism), hence to a linear transformation on data. However,
two different walks give rise to two different matrices, hence two different linear transformations.

When simulating a program, each different input results in following a different (admissible) walk in the MMSS.
Hence, each different input value is subject to a different linear transformation. Of course, the other walks (that is,
the other linear transformations) also exist and are considered for this datum when looking at the set of walks, but
non-admissibility allows to dismiss them and only keep one.

So, from a transformation point of view, we can look at MMSS as a set of linear transformations for which the
admissibility mechanism selects the proper transformation to apply on each piece of data.

For example, if we consider a program performing multiplication of two integers x and y, it is likely a loop
on x, adding y to the result each time. The corresponding MMSS has multiple paths (infinitely many) that can
each be a candidate for a walk once actual input data is provided. Different paths correspond to following the
loop 1, 2, 3, . . . , k, . . . times. Then, the walk corresponding to each of these paths performs the linear transformation
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(1, x, y) 7→ (1, x− k, ky) representable by the matrix: 1 −k 0
0 1 0
0 0 k


However, when performing all these transformations on actual data, only those with k ≤ x have an admissible result
and only the one with k = x has all its intermediate valuations admissible. So, the admissibility mechanism selects
the right linear transformation to apply.

When simulating a program computing a (non-linear) function by an MMSS, the simulation actually considers the
function as being piecewise linear, computes the result of all the possible linear transformations implied and selects
the one corresponding to current data. In general, it is possible that each linear transformation is only valid for a
single value.

9.2 Tensors

Moreover, the study can go further. Indeed, using matrices of matrices (that is, tensors), we can represent the adjacency
graph of an MMSS (a matrix where component (i, j) is the coefficient of the edge from vertices i to j). That is, a
first order program can be represented as such a tensor. However, it may then be possible to uses these tensors (and
tensor multiplication) in order to study second-order programs. In turn, the second order programs would probably
be representable by a tensor (with more dimensions) and so on.

This could lead to a tensor algebra representing high order programs.

Example 160. Here is a tensor representing the MMSS of the unary addition (as depicted in Figure 12). This is
simply the connectivity matrix of the graph where each edge is itself weighted by a matrix.

0

 1 −1 0
0 1 0
0 0 1

 0 0 0

 1 0 0
0 −1 0
0 0 1


0 0

 1 1 0
0 1 0
0 0 1

 0 0 0

0 0 0

 1 −1 0
0 1 0
0 0 1

 0 0

0 0 0 0

 1 0 1
0 1 0
0 0 1

 0 1 0 0
0 1 0
0 0 1

 0 0 0 0 0

0 0 0 0 0 0


9.3 Polynomial time

Another interesting approach of program analysis using matrices is the one done by [NW06] and [KJ09]. The programs
they study are similar to our stack machines except that the (conditional) jump is replaced by a fixed iteration structure
(loop) where the number of iterations is bounded by the length of a given stack.

Then, they assign to each basic instruction a matrix, called a certificate which contains information on how
to polynomially bound the size of the registers (or stacks) after the instruction by their size before executing the
instruction. When sequencing instructions, the certificate for the sequence turns out to be the product of the certificates
for each instruction. A certificate for a loop is some kind of multiplicative closure of the certificate for the body, and
a certificate for an if-statement is the least upper bound of the two branches.

If a certificate for the program exists, then the result of the program is polynomially bounded by the inputs. This
bound on size can then be turned into a bound on the running time, given the shape of the loops.

So, these certificates can very well be expressed in an MMSS where the valuation would give information on the size
of registers (depending on the size of the inputs of the program) and the weights of instructions are these certificates.
This is exactly a Resources Control Graph for the program. If the program is certified, then this RCG is polynomially
resource aware.
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10 Conclusion
We have introduced a new generic framework for studying programs. This framework is highly adaptable via the size
function and can thus study several properties of programs with the same global tool. Analyses apparently different
such as the study of Non Size Increasing programs or the Size Change Termination can quite naturally be expressed
in terms of Resource Control Graphs, thus showing the adaptability of the tool.

Moreover, other analyses look like they can also be expressed in this way, thus giving hopes for a very generic
tool to express and study programs properties such as termination or complexity. It is even likely that higher order
programs could be studied that way, thus giving insights for a better understanding of higher order complexity.

The theory of algorithms is still not well established. This work is really on the study of programs and not of
functions. Further works in this direction will shed some light on the very nature of algorithms and hopefully give one
day rise to a theoretical framework as solid as our knowledge of functions. Here, the study of MMSS and the tensors
multiplication suggests that a tensors algebra might be used as a mathematical background for a theory of algorithms.
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Abstract:
Quasi-interpretations are a technique for guaranteeing complexity bounds on first-order func-
tional programs: in particular, with termination orderings, they give a sufficient condition for
a program to be executable in polynomial time [MM00], which we call the P-criterion here.
We study properties of the programs satisfying the P-criterion in order to improve the un-
derstanding of its intensional expressive power. Given a program, its blind abstraction is the
non-deterministic program obtained by replacing all constructors with the same arity by a
single one. A program is blindly polytime if its blind abstraction terminates in polynomial
time. We show that all programs satisfying a variant of the P-criterion are in fact blindly
polytime. Then we give two extensions of the P-criterion: one relaxing the termination or-
dering condition and the other (the bounded-value property) giving a necessary and sufficient
condition for a program to be polynomial time executable, with memoisation
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1 Introduction

Implicit computational complexity

Implicit computational complexity (ICC) explores machine-free characterisations of complexity classes, without refer-
ring to explicit resource bounds but instead viewing them as consequences of restrictions on program structures. For
the most part, ICC has been developed in the functional programming paradigm by taking advantage of ideas from
primitive recursion [BC92, Lei94], proof-theory and linear logic [Gir98], rewriting systems and functional program-
ming [Jon99, BCMT01, BMM01, Mar03, BMM11], type systems [LM93b, Hof99], and so on.

ICC results usually include both a soundness and a completeness statement: the former saying that all programs
of a given language (or those satisfying a criterion) satisfy a certain quantitative property; the latter saying that
all functions (or problems) of the corresponding functional complexity class can be programmed in this language.
For instance, in the case of polynomial time complexity, soundness refers to the possibility of evaluating programs in
polynomial time, whereas completeness, which has an extensional nature, refers to the class FP of functions computable
in polynomial time (or the class Ptime of problems solvable in polynomial time). Theorems of this kind have been
given for many systems, including ramified recursion [BC92, Lei94], variants of linear logic [Gir98] and fragments of
functional languages [Jon99]. Our main aim here is not just to define another characterisation of polynomial time
computable functions, but rather to begin a study of existing characterisations in order to understand their properties
better – intensional expressivity in primis.

Expressivity

One of the main motivations for ICC comes from programming language theory, because ICC suggests ways to
control the complexity properties of programs, which is a difficult issue because of its infinite nature. However,
extensional correspondence with complexity classes is usually not enough: a programming language (or a static analysis
methodology for it) offering guarantees in terms of program safety is plausible only if it captures enough interesting and
natural algorithms. In turn, this cannot be guaranteed by merely requiring that the system corresponds extensionally
to a complexity class. This issue has been pointed out by several authors [MM00, Hof99, Mar03], and advances have
been made in the direction of more liberal ICC systems: some examples are type systems for non-size-increasing
computation [Hof99] and quasi-interpretations [BCMT01, BMM11]. However, it is not always easy to measure the
improvements offered by a new ICC system, which are usually just illustrated by providing examples, though some
experiments [AM08] have been done to compare some rewriting-based criteria on data bases of examples from term
rewriting.

We think that in order to compare in a more appropriate way the algorithmic aspects of ICC systems and, in
particular, to understand their limitations, specific analytic methods should be developed. Indeed, what we need are
sharp results on the intensional expressive power of existing systems and on the intrinsic limits of implicit complexity
as a way to isolate large (but decidable) classes of programs with bounded complexity. To do this, we aim to
establish properties (like necessary conditions) of the programs captured by an ICC system. Such a characterisation
is provided in [DL07], where Cobham’s definitions by bounded recursion on notation are shown to correspond exactly
to hereditarily polytime primitive recursive programs. In the current paper, we undertake an analogous study, but for
an ICC system closer to programming practice. More specifically, we give a sufficient condition that all programs in
some existing ICC systems must satisfy.

Quasi-interpretations

Quasi-interpretations (QI) can be considered as a static analysis methodology for inferring asymptotic resource bounds
for first-order functional programs written as constructor term rewriting systems. Used with termination orderings,
they allow us to define various criteria to guarantee either space or time complexity bounds [BMM05, Ama05, BMP07,
BMM11]. QIs offer several advantages: in particular, the language for which they are defined is simple to use, and,
more importantly, the class of programs captured by this approach is large compared to that of other ICC systems.
For instance, this class contains all primitive recursive programs from Bellantoni and Cook’s function algebra [Moy03],
but also general recursive programs (non primitive recursive). One of the proposed criteria, which we will call the
P-criterion here, says that programs with certain QIs and recursive path orderings can be evaluated in polynomial
time [BMM11]. A key point when proving that programs satisfying the P-criterion can be evaluated in polynomial
time is the adoption of a caching mechanism, following [Mar03].

In this paper, we focus our attention on QIs, and prove a strong necessary condition for first-order functional
programs to have a (uniform) QI. More precisely, we present a program transformation called blind abstraction, which
collapses the constructors of a given arity to a single constructor, and modifies the rewriting rules accordingly. In
general, this produces non-confluent programs, the efficiency of which can be measured by considering all possible
evaluations of the program.
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c ∈ C ti ↓ vi
(Constructor)

c(t1, · · · , tn) ↓ c(v1, · · · , vn)

∃j, tj /∈ T (C) ti ↓ vi f(v1, · · · , vn) ↓ v
(Split)

f(t1, · · · , tn) ↓ v
f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = vi rσ ↓ v

(Function)
f(v1, · · · , vn) ↓ v

Figure 1: Call by value semantics with of a program 〈X , C,F , E〉

The blind abstraction of a polytime first-order functional program is not itself polytime in general: blinding
introduces many execution paths that are not available in the original program. However, we show that under certain
assumptions, blinding a program satisfying the P-criterion with a (uniform) QI always produces a polytime program,
independently of non-confluence.

We cannot claim this result to be a breakthrough, but it does represent one of the first attempts to delineate the
class of programs captured by a mainstream ICC system. Indeed, it implies that any polynomial time program whose
blind abstraction is not polytime cannot have a quasi-interpretation. As we will show in Section 4, there are many
natural programs in this class.

Outline of the paper
We begin in Section 2 by describing the syntax and operational semantics of programs, followed by termination
orderings and QIs in Section 3. We introduce blind abstractions in Section 4 and give the main property of the
P-criterion (with respect to blinding) in Section 5, with applications to safe recursion. In Section 3.4, we consider a
particular class of QIs, the compatible QIs, and study their properties. Finally, in Section 7, we define a generalisation of
the previous termination ordering and of QIs (the bounded-values property), which also guarantees polytime soundness.

A preliminary version of this work was presented at the Eighth International Workshop on Logic and Computational
Complexity in 2006 [BdLM06].

2 Programs as term rewriting systems
In Sections 2 and 3 we will recall some definitions and results from [BMM11], and adapt them to non-deterministic
programs.

We should stress that we are actually interested in the study of deterministic programs, but as soon as we consider
abstractions of programs, we will obtain non-deterministic rewriting systems, and, in order to analyse them, we will
need our definitions and results to handle non-deterministic systems.

2.1 The syntax and semantics of programs
We consider first-order term rewriting systems (TRS) with disjoint sets X , F and C of variables, function symbols and
constructor symbols, respectively.

Definition 161 (Syntax). The sets of terms and equations are defined by:

(constructor terms) T (C) 3 v ::= c(v1, · · · , vn)
(terms) T (C,F ,X ) 3 t ::= x | c(t1, · · · , tn) | f(t1, · · · , tn)
(patterns) P 3 p ::= x | c(p1, · · · , pn)
(equations) D 3 d ::= f(p1, · · · , pn)→ t

where x ∈ X , f ∈ F and c ∈ C. We shall use a type writer font for function symbols and a bold face font for
constructors.

Definition 162 (Programs). A program is a tuple f = 〈X , C,F , E〉 where E is a set of equations in D. Each variable
in the right-hand side of an equation also appears in the left-hand side of the same equation. The program has a main
function symbol in F , which we shall also call f.

In other words, our programs are constructor (term-rewriting) systems – see the Examples of TRSs and special
rewriting formats chapter in [KdV03].

The domain of computation is the constructor algebra T (C). A substitution σ is a mapping from variables to terms.
We use S to denote the set of constructor substitutions, that is, substitutions σ with range T (C). Our programs are
not necessarily deterministic, in other words, the TRS is not necessarily confluent. Non-confluent programs will be
interpreted here by relations.
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nil ↓ nil
f(s1nil) ↓ nil

nil ↓ nil
f(s1nil) ↓ nil

nil ↓ nil
append(nil,nil) ↓ nil

append(f(s1nil), f(s1nil)) ↓ nil
f(s0s1nil) ↓ nil

Figure 2: Example of reduction proof.

We shall begin by considering a call-by-value semantics, which is defined in Figure 1. The meaning of t ↓ v is that
t evaluates to the constructor term v. A derivation π of the judgement t ↓ v will be called a reduction proof. The
program f computes a relation JfK ⊆ T (C)n × T (C) defined by:

— for all ui ∈ T (C), we have v ∈ JfK (u1, · · · , un) if and only if there is a derivation for f(u1, · · · , un) ↓ v.
The size |J | of a judgement J = t ↓ v is the sum |t| + |v| of the size of the two terms composing the judgement.

The size |π| of any reduction proof π is the sum of |J | over all the occurrences of judgements J in π. In deterministic
programs, the size |π| of π : t ↓ v can be safely considered as the cost of computing v from t.

The following is an example of program that we will use throughout the paper (i ∈ {0, 1}):

f(s0six) → append(f(s1x), f(s1x))
f(s1x) → x
f(nil) → nil
append(six, y) → siappend(x, y)
append(nil, y) → y

Figure 2 shows a derivation π.
The semantic rules in Figure 1 can be either active or passive.

Definition 163 (Classifying terms, rules and judgements). The passive semantic rules are Constructor and Split; the
only active rule is Function. Let π : t ↓ v be a reduction proof. If we have

e = g(q1, · · · , qn)→ q σ ∈ S qiσ = ui qσ ↓ u
s = g(u1, · · · , un) ↓ u

,

then we say that term s (respectively, judgement J = s ↓ u) is active in π. We say that e is the equation activated by
s (respectively, J) in π and qσ (respectively, qσ ↓ u) is the activation of s (respectively, J) in π. Other judgements
(conclusions of Split or Constructor rules) are said to be passive.

Notice that the set of active terms in a derivation π is exactly the set of terms of the form f(v1, · · · , vn) appearing
in π, where vi are constructor terms. Since the program may be non-deterministic, the equation activated by a term
s depends on the reduction and on the occurrence of s in π, and not just on s.

Our aim now is to prove that the size |π| of any reduction proof f(v1, · · · , vn) ↓ u does not really depend on passive
judgements in π. This will motivate our study of the combinatorics of reduction by way of call-trees, which we shall
define later.

Proposition 164. For all programs, there exists a polynomial p : N2 → N such that for every derivation proof
π : f(v1, · · · , vn) ↓ u, if A is the number of active judgements in π and S is the maximum size of any active judgement
in π, then |π| ≤ p(A,S).

Proof. First, observe that for each program, there exists a polynomial r : N → N such that for any reduction proof
π, for any active term t in it and for any activation s of t, we have |s| ≤ r(|t|). That is, the size of s is polynomially
bounded by the size of t. This is because any program consists of a finite set of equations, each of them leading to at
most a polynomial increase in size. Now consider any occurrence of a passive judgement H inside a reduction proof π.
Clearly, in the path from H to the root of π, there is at least an active judgement (by hypothesis, π : f(v1, · · · , vn) ↓ u,
so the conclusion of π is an active judgement itself): take the one that is immediately below H. In this way we can
associate with any active judgement J in π a set of passive judgements DJ such that any passive judgement is in some
DJ . We will now show that in DJ there are at most r(S) judgement occurrences. Consider the (Function) rule with
J as conclusion. The premise H of this (Function) rule is simply an activation of its conclusion, so its size is bounded
by r(S). Moreover, the left-hand side of any passive judgements in DJ is a subterm of the left-hand side of H, so
there are at most r(S) such passive judgements. This implies that the number of rule instances in the reduction proof
π is at most

A+A · r(S).
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But what about the size of passive judgements in π? The left-hand side of any passive judgement has size at most r(S).
Indeed, any passive judgement in DJ can be written as t ↓ v, where t is a subterm of an activation of the left-hand
side of J . We now note that if v is the right-hand side of any passive judgement in π, then |v| ≤ max{S, |u|}, where u
is the right-hand side of the conclusion of π (this follows by induction on π). As a consequence, |v| ≤ S, because the
right-hand side of the conclusion of π is part of an active judgement itself. Putting everything together, we get

|π| ≤ (A+A · r(S))(r(S) + S),

so p(x, y) is simply (x+ xr(y))(r(y) + 2y), which completes the proof.

c ∈ C 〈Ci−1, ti〉 ⇓ 〈Ci, vi〉
(Constructor)

〈C0, c(t1, · · · , tn)〉 ⇓ 〈Cn, c(v1, · · · , vn)〉

∃j, tj /∈ T (C) 〈Ci−1, ti〉 ⇓ 〈Ci, vi〉 〈Cn, f(v1, · · · , vn)〉 ⇓ 〈C, v〉
(Split)

〈C0, f(t1, · · · , tn)〉 ⇓ 〈C, v〉

(f, v1, · · · , vn, v) ∈ C
(Read)

〈C, f(v1, · · · , vn)〉 ⇓ 〈C, v〉

f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = vi 〈C, rσ〉 ⇓ 〈C ′, v〉
(Update)

〈C, f(v1, · · · , vn)〉 ⇓ 〈C ′ ∪ {(f, v1, · · · , vn, v)}, v〉

Figure 3: Memoisation semantics of a program 〈X , C,F , E〉.

We will now consider a call-by-value semantics with memoisation for confluent programs, following [MM00]. The
idea is to maintain a cache C to avoid recomputing the same results several times. Each time a function call is
performed, the semantics looks in the cache C. If the same call has already been computed, the result can be given
immediately, otherwise we need to compute the corresponding value and store the result in the cache (for later reuse).
The memoisation semantics is defined in Figure 3. The Update rule can only be triggered if the Read rule cannot,
that is, if there is no v such that (f, v1, · · · , vn, v) ∈ C. In other words, memoisation corresponds to an automation of
the algorithmic technique of dynamic programming. The expression 〈C, t〉 ⇓ 〈D, v〉 means that the result of reducing
t is v, given a program f and an initial cache C. The final cache D contains C together with all the calls required to
complete the computation. The size |J | of a judgement 〈C, t〉 ⇓ 〈D, v〉 is now the sum |t| + |v|. The size |π| of any
reduction proof π : 〈C, t〉 ⇓ 〈D, v〉 is the sum of |J | over all the occurrences of the judgements J in π.

〈∅,nil〉 ⇓ 〈∅,nil〉
〈∅, f(s1nil) ⇓ 〈C,nil〉 〈C, f(s1nil)〉 ⇓ 〈C,nil〉

〈C,nil〉 ⇓ 〈C,nil〉
〈C, append(nil,nil)〉 ⇓ 〈D,nil〉

〈∅, append(f(s1nil), f(s1nil))〉 ⇓ 〈D,nil〉
〈∅, f(s0s1nil)〉 ⇓ 〈E,nil〉

Figure 4: Example of reduction proof.

Figure 4 shows a reduction proof π of our example program in the memoisation semantics, where we have used the
following abbreviations:

C = {(f(s1nil),nil)}
D = {(f(s1nil),nil), (append(nil,nil),nil)}
E = {(f(s1nil),nil), (append(nil,nil),nil), (f(s0s1nil),nil)}.

We also need to classify the rules, terms and judgements in the memoisation semantics.

Definition 165 (Classifying terms, rules and judgements). Constructor and Split are passive semantic rules; Update
is an active rule; and Read is a semi-active rule. Active terms and judgements, activated equations, activations and
dependencies are defined in a similar way to the call-by-value case. Semi-active terms and judgements are similarly
defined from semi-active rules.
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As in the call-by-value semantics, we can concentrate our attention on active judgements when reasoning about
the size of π of a reduction.

Proposition 166. Consider the memoisation semantics of Figure 3. For all programs, there exists a polynomial p
such that for all derivation proofs π : 〈∅, f(v1, · · · , vn) ⇓ 〈C, u〉, if A is the number of distinct active judgements in π
and S is the maximum size of an active judgement in π, then |π| ≤ p(A,S).

Proof. We first observe that the conclusions of active rule instances in π are distinct from each other. So A is indeed
the number of active rule instances in π. The total number of active and passive rule instances can be bound as in
Proposition 164 by

A+A · r(S).

Since semi-active judgements form a subset of the set of leaves in π and since the number of premises of a rule is
statically bounded (by (k + 1), where k is the maximum arity of a symbol), the number of semi-active judgements is
polynomially bounded by the number of non-leaf judgements in π.

Bounding the size of any judgement in π requires a little more care than in Proposition 164. We can proceed as
follows by considering a sub-derivation ρ : 〈D, t〉 ⇓ 〈E, v〉 in π:

• The size |t| of t is at most r(S).

• The cardinals of D and E are bounded by A.

• The size of elements of D and E is bounded by S.

• The size |v| of v is at most S.

This concludes the proof.

Lemma 167. Consider the memoisation semantics of Figure 3. Let J = 〈D, t〉 ⇓ 〈E, v〉 be a semi-active judgement
in a proof π : 〈∅, t〉 ⇓ 〈C, v〉. Then there exists an active judgement H = 〈F, t〉 ⇓ 〈G, v〉 in π. We say that H is the
active judgement corresponding to J .

Proof. The proof follows from the fact that the pair can only be in the cache if an active judgement put it there.

There is no obvious way to use memoisation with non-confluent programs. Indeed, the same function call can lead
to several different results. Several ideas could be used to define a memoisation semantics for non-confluent programs,
but they all have problems, so we will not use any of them here and only use memoisation when the program is
confluent. For sufficient conditions to check that a program is confluent, see, for instance, Huet’s work [Hue80].

2.2 Call trees and call dags

Following [BMM11], we will now present call-trees, which we shall use as a tool throughout the paper. Note that this
is not a new kind of semantics for programs but an analysis tool, which we will use to study both the call-by-value and
memoisation semantics of execution. A call-tree indeed provides a static view of an execution and describes all function
calls. Hence, we can study dependencies between function calls without taking care of the extra details provided by
the underlying rewriting relation.

Definition 168 (States). A state is a tuple (f, v1, · · · , vn, v) where f is a function symbol of arity n, v1, · · · , vn are
constructor terms and v ∈ JfK (v1, · · · , vn). Assume that η = (f, v1, · · · , vn, v) and µ = (g, u1, · · · , un, u) are two
states. A transition is a triplet η e; µ such that:

1. e is an equation f(p1, · · · , pn)→ t of E ,

2. there is a substitution σ such that piσ = vi for all 1 ≤ i ≤ n,

3. there is a subterm g(s1, · · · , sm) of t such that siσ ↓ ui for all 1 ≤ i ≤ m.

We write ∗; for the reflexive transitive closure of
⋃
e∈E e.

The above definition of a state is slightly different from, though essentially equivalent to, the one given in [BMM11].

Definition 169 (Call trees). Consider the call-by-value semantics. Let π : t ↓ v be a reduction proof. Its set of call
trees is the set of trees Θπ obtained by only keeping active terms in π.

Mathematical Structures in Computer Science, 2012 79



Blind abstractions Baillot, dal Lago, Moyen

In other words, if t is passive, that is,

b ∈ F
⋃
C πi : ti ↓ vi

(Constructor) or (Split)
b(t1, · · · , tn) ↓ b(v1, · · · , vn)

,

then Θπ =
⋃

Θπi . If t is active, that is,

f(p1, · · · , pn)→ s ∈ E σ ∈ S piσ = vi ρ : sσ ↓ v
(Function)

f(v1, · · · , vn) ↓ v
,

then Θπ only contains the tree whose root is (f, v1, · · · , vn, v) and children are Θρ.
The following is the only element of Θπ, where π is the reduction proof in Figure 2:

(f, s0s1nil,nil)

vv �� **
(f, s1nil,nil) (f, s1nil,nil) (append,nil,nil,nil)

When using the memoisation semantics, some function calls are not recomputed but instead fetched from the cache,
so it is convenient to represent the dependencies of function calls by a directed acyclic graph (dag) rather than by a
tree.

Definition 170 (Call dags). Consider the memoisation semantics. Let π : 〈C, t〉 ⇓ 〈D, v〉 be a reduction proof. Its
set of call dags Θπ is defined as in Definition 169 by keeping active terms, and by replacing each semi-active term by
a link to the corresponding active term, according to Lemma 167.

For instance, the following dag is the only element of Θπ, where π is the reduction proof in Figure 4:

(f, s0s1nil,nil)

�� 		 **
(f, s1nil,nil) (append,nil,nil,nil)

Fact 1 (Call tree arity). Let f be a program and consider the call-by-value semantics. There exists a fixed integer k
such that given a derivation π of a term of the program and a tree T of Θπ, all nodes in T have at most k children.

Proof. For each right-hand side term r of an equation of f, consider the number of maximal subterms of r with a
function as head symbol. We can then take k to be the maximum of these integers over the (finite) set of equations
of f.

Lemma 171. Consider the call-by-value semantics. Let π be a reduction proof, T be a call-tree in Θπ and consider
two states η = (f, v1, · · · , vn, v) and µ = (g, u1, · · · , un, u) such that µ is a child of η. Then there is an equation e such
that t = f(v1, · · · , vn) activates e in π and η e; µ. Conversely, if η e; µ, then µ is a child of η in T .

Proof. The proof is by a trivial induction on the structure of π.

This implies that in the deterministic case our definition of call trees is equivalent to the one in [BMM11]. However,
we did need a new definition in order to deal with non-determinism.

Recall that the size |π| of a reduction proof π (in either the call-by-value or memoisation semantics) takes into
account all the symbol occurrences in π: in this way, it can be considered to be a reasonable approximation to the
execution time. As a consequence, bounding execution time in a computation boils down to:

1. bound the size (number of nodes) in the call tree or call dag; and

2. bound the size of the states appearing in the call tree (dag).

Proposition 172. For any program f:
Call-by-value semantics: There is a polynomial pf : N2 → N such that whenever π : f(u1, · · · , un) ↓ v and the set
Θπ of call trees contains aπ ∈ N states whose size is at most sπ ∈ N, then |π| ≤ pf(aπ, sπ).
Memoisation semantics: Assume f is deterministic. There is a polynomial qf : N2 → N such that whenever
π : 〈∅, f(u1, · · · , un)〉 ⇓ 〈C, v〉 and the set Θπ of call dags contains aπ ∈ N states whose size is at most sπ ∈ N, then
|π| ≤ qf(aπ, sπ).

Proof. This is an easy corollary of Propositions 164 and 166.
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The naive model where each rule takes unary time to be executed is not very realistic with the memoisation
semantics. Indeed, each Read and Update rule needs to perform a lookup in the cache, and this would in practice
take time proportional to the size of the cache (and the size of elements in it). However, the size of the final cache is
exactly the number of Update rules in the proof (because only Update modifies the cache), and the size of terms in
the cache is bounded by the size of active terms (only active terms are stored in the cache). So Proposition 172 gives
a polynomial bound on the execution time.

3 Orderings and quasi-interpretations

This section presents a new way of looking at concepts and results that have already appeared in the literat-
ure [BMM11].

3.1 Termination orderings

Definition 173 (Precedence). Let f = 〈X , C,F , E〉 be a program. A precedence �F is a preorder over F ⋃ C.
We use ≈F to denote the associated equivalence relation. A precedence is compatible with f if for each equation
g(p1, · · · , pn) → r and each symbol b appearing in r, we have b �F g, and it is separating if for each c ∈ C, f ∈ F ,
c ≺F f (that is, constructors are the smallest elements of ≺F , and functions are the biggest). It is fair if for all
constructors c and d with the same arity, we have c ≈F d, and it is strict if for all distinct constructors c and d, we
have c and d are incomparable.

Any strict precedence can be canonically extended into a fair precedence.

s = ti or s ≺ppo ti
f ∈ F ⋃ C

s ≺ppo f(. . . , ti, . . .)

∀i si ≺ppo f(t1, · · · , tn) g ≺F f
f, g ∈ F ⋃ C

g(s1, · · · , sm) ≺ppo f(t1, · · · , tn)

(s1, · · · , sn) ≺prpo (t1, · · · , tn) f ≈F g ∀i si ≺ppo f(t1, · · · , tn)
f, g ∈ F ⋃ C

g(s1, · · · , sn) ≺ppo f(t1, · · · , tn)

Figure 5: Definition of ≺ppo

Definition 174 (Product extension). Let ≺ be an ordering over a set S. Its product extension is an ordering ≺p over
tuples of elements of S such that (m1, · · · ,mk) ≺p (n1, · · · , nk) if and only if:

1. ∀i,mi � ni; and

2. ∃j such that mj ≺ nj .

Definition 175 (PPO). Given a separating precedence �F , the recursive path ordering ≺ppo is defined in Figure 5.
If ≺F is strict (respectively, fair) and separating, then the ordering is the Product Path Ordering PPO (respectively,
the Extended Product Path Ordering EPPO).

Of course, we could consider other ordering extensions. The usual choices are the lexicographic extension, leading
to Lexicographic Path Ordering or the Multiset extension, leading to Multiset Path Ordering. It is also possible to add
a notion of status to function symbols [KL80] indicating with which extension the parameters must be compared. This
leads to the more general Recursive Path Ordering (RPO). However, here we will only use the (extended) Product
Path Ordering, and will not describe any of the others.

Given a precedence �F , an equation l → r is decreasing with respect to �F if we have r ≺ppo l. A program is
ordered by PPO if there is a separating precedence ≺F on F such that each equation is decreasing with respect to
≺F . Recall that ≺ppo guarantees termination [Der82]. Notice that in our case, since patterns cannot contain function
symbols, if there is a precedence such that the program is ordered by the corresponding ≺ppo, then there is also a
compatible one with the same condition.

Lemma 176. Let f be a program and ≺F be a separating precedence compatible with it. Let η = (f, v1, · · · , vn, v) be
a state in a call tree (respectively, dag) T and µ = (g, u1, · · · , um, u) be a descendant of η in T . Then g �ppo f.

Proof. The claim follows from the fact that the precedence is compatible with f.
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Proposition 177 (Computing by rank). Let f be a program and ≺F be a separating precedence compatible with it.
Let T be a call dag. Let AT be the maximum number of descendants of a node with the same precedence:

AT = max
η=(f,v1,··· ,vn,v)∈T

|{µ = (g, u1, · · · , um, u), η is an ancestor of µ and g ≈F f}|

The size of T (the number of nodes) is polynomially bounded by AT .

Proof. Let f be a function symbol. Its rank is rk(f) = maxg≺Ff rk(g) + 1. Let d be the maximum number of function
symbols in the right-hand side of f and k be the maximum rank. We will prove by induction on k − i that there are
at most Bi = kk−i × dk−i ×Ak−i+1

T nodes in T at rank i:

• If k − i = 0, then i = k, and there are at most AT = kk−kdk−kAk−k+1
T = Bk nodes at rank k.

• Suppose the hypothesis is true for all ranks j > i. Each node has at most d children. Hence, there are at
most d

∑
k≥h>iBh nodes at rank i whose parent has rank different from i. Each of these nodes has at most AT

descendants at rank i, so there are at most d×AT × k
∑
k≥h>iBh nodes at rank i. But

d ·AT ·
∑
k≥h>i

Bh ≤ d ·AT ·
∑
k≥h>i

kk−h · dk−h ·Ak−h+1
T

≤ d ·AT ·
∑
k≥h>i

kk−(i+1) · dk−(i+1) ·Ak−(i+1)+1
T

≤ d ·AT · k · kk−(i+1) · dk−(i+1) ·Ak−(i+1)+1
T

= kk−i · dk−i ·Ak−i+1
T .

So Bi is polynomially bounded in AT , as is the size of the call tree (dag).
This concludes the proof.

Thus, to bound the number of nodes in a call-dag (and thus, by Proposition 172 bound the derivation’s size), it
suffices to establish the bound rank by rank.

Proposition 178. Let f be a program terminating by PPO, T be a call dag and η = (f, v1, · · · , vn, v) be a node in T .
The number of descendants of η in T with the same rank as η is polynomially bounded by |η|.
Proof. Because of the PPO termination ordering, if µ = (g, u1, · · · , um, u) is a descendant of η with f ≈F g, then ui is
a subterm of some vj . There are at most |vj | subterms of vj , so there are at most c · d ·max |vi| possible nodes (where
c is the number of functions with the same precedence as f and d is the maximum arity of symbols in f).

This is point (2) in the proof of [BMM11], Lemma 51. Notice that this only works on a call dag (because identical
nodes collapse) and not on a call tree.

3.2 Quasi-interpretations
We restrict ourselves to additive QIs as defined in [BMM11].

Definition 179 (Assignment). An assignment of a symbol b ∈ F ⋃ C whose arity is n is a function LbM : (R)n → R
such that:
Subterm: LbM(X1, · · · , Xn) ≥ Xi for all 1 ≤ i ≤ n.
Weak monotonicity: LbM is increasing with respect to each variable:

for all 1 ≤ i ≤ n, Xi ≤ Yi ⇒ LbM(X1, · · · , Xn) ≤ LbM(Y1, · · · , Yn)

Additivity: LcM(X1, · · · , Xn) =
∑n
i=1Xi + a if c ∈ C (where a ≥ 1).

Polynomial: LbM is bounded by a polynomial.

We extend assignments L·M to terms in the canonical way. Given a term t with n variables, the assignment LtM is a
function (R)n → R defined by the rules

Lb(t1, · · · , tn)M = LbM(Lt1M, · · · , LtnM)
LxM = X.

Given two functions f : (R)n → R and g : (R)m → R such that n ≥ m, we say that f ≥ g if and only if
∀X1, · · · , Xn ∈ R : f(X1, · · · , Xn) ≥ g(X1, · · · , Xm). There are some wellknown and useful consequences of such
definitions. We have LsM ≥ LtM if t is a subterm of s. Then, for every substitution σ, we have LsM ≥ LtM implies that
LsσM ≥ LtσM.
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Definition 180 (Quasi-interpretation). A program assignment L·M is an assignment of each program symbol. An
assignment L·M of a program is a quasi-interpretation (QI) if for each equation l→ r,

LlM ≥ LrM.

In the following, unless explicitly specified, L·M will always denote a QI and not an assignment.

Lemma 181. There exists a constant a such that for any constructor term v, we have |v| ≤ LvM ≤ a|v|.

Proof. By induction, we can show that the constant a depends on the constants in the QI of constructors.

Lemma 182. Assume f has a QI. Let η = (f, v1, · · · , vn, v) and µ = (g, u1, · · · , um, u) be two states such that η ∗; µ.
Then, Lg(u1, · · · , um)M ≤ Lf(v1, · · · , vn)M.

Proof. The claim follows from the fact that g(u1, · · · , um) is a subterm of a term obtained by reduction from
f(v1, · · · , vn).

Proposition 183. Let f be a program (of arity n) admitting a QI. Then there is a polynomial pf : Nn → N such that
for every π : 〈∅, f(v1, · · · , vn)〉 ⇓ 〈D, v〉, the size of any active judgement in π is bounded by pf(|v1|, · · · , |vn|).

Proof. Let g(u1, · · · , um) ↓ r be an active judgement in π. The size of

s = g(u1, · · · , um)

is bounded by
m ·max |ui|+ 1 ≤ m ·maxLuiM + 1 ≤ m · LsM + 1.

By Lemma 182, LsM ≤ LtM, where t = f(v1, · · · , vn). But by the polynomiality of QIs, there is a polynomial p such that
LtM ≤ p(Lv1M, · · · , LvnM). Since vi are constructor terms, LviM ≤ a|vi|. Moreover, |r| ≤ LrM ≤ LsM. The claim then follows
easily.

If we now combine this bound on the size of active terms with the bound on the number of active terms of
Proposition 178, we can apply Proposition 172 and conclude that programs terminating by PPO and admitting a QI
are polynomial time computable. In fact, all polytime functions can be obtained in this way.

Theorem 184 (P-criterion, [BMM11]). Any deterministic program f that

1. terminates by PPO and

2. admits a QI

is executable in polynomial time with the memoisation semantics. Conversely, any function in FP can be represented
by a program of this kind.

4 Blind abstractions of programs

4.1 Definitions
Our idea is to associate with a given program f an abstract program f obtained by forgetting each piece of data and
replacing it by its shape: for instance, strings over a finite alphabet are replaced by tally integers (their length), binary
trees over a finite alphabet by binary trees without labels, and so on. Note that in this way, even if f is deterministic,
the associated f will not be deterministic in general.

To do this we will first define a target language:
Variables: X = X ,
Function symbols: We define the map (·) on function symbols by f = g if and only if f = g. Then F = {f/f ∈ F}.
Constructor symbols: We define the map (·) on constructor symbols by c = d if and only if c and d have the same
arity. Then C = {c/c ∈ C}.

This language defines a set of values T (C), a set of terms T (C,F ,X ) and a set of patterns P.
The blinding map is the natural map B : T (C,F ,X ) → T (C,F ,X ) induced by the maps above: basically, it just

identifies constructors of the same arity. It induces similar maps on values and patterns. We will write t (respectively,
p) for B(t) (respectively, B(p)).

For instance, binary strings built from constructors {s0, s1,nil} will be mapped to unary strings (or tally integers)
corresponding to their length, built from {s,0}, where s0 = s1 = s and nil = 0.

The blinding map extends to equations in the expected way: given an equation d = l→ r of the language (X ,F , C),
we set d = B(d) = l → r. Finally, given a program f = 〈X , C,F , E〉, its blind image is f = 〈X , C,F , E〉, where the
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Prim. Rec. programs

A B

Blindly Ptime

programs C

Ptime programs

Figure 6: Subclasses of programs

equations are obtained by E = {d/d ∈ E}. Observe that even if f is an orthogonal program, this will not necessarily be
the case for f because some patterns are identified by B. The denotational semantics of f can be viewed as a relation
over the domain T (C).

We have mentioned strings over a binary alphabet, but note that on some other datatypes, such as lists over tally
integers, the blinding map might just act as the identity and thus not have much interest. Other notions of abstractions
are probably worth considering, but we will stick here to the blinding map for simplicity.

4.2 Complexity definitions
Definition 185 (Strongly polytime). We say a (possibly) non-deterministic program f (of arity n) is strongly polytime
if there exists a polynomial pf : Nn → N such that for any sequence v1, · · · , vn and any π : f(v1, · · · , vn) ↓ u, we have
|π| ≤ pf(|v1|, · · · , |vn|).

Of course, similar definitions would also make sense for complexity bounds other than polynomial time. In the
case of a deterministic program, this definition coincides with that of a polynomial time program.

Definition 186 (Blindly polytime). A program f is blindly polytime if its blind abstraction f is strongly polytime.

Fact 2. If a program f is blindly polytime, it is polynomial time in the call-by-value semantics.

Indeed, it is sufficient to observe that any execution (derivation proof) of f can be mapped by B to an execution
of f. But, of course, not all f executions are obtained in this way. Note that for our running example in Figure 7, f
terminates in polynomial time, but this is not the case for f. Indeed, if we use the denotation

n = s . . . s︸ ︷︷ ︸
n

0,

we have that f(n) can be reduced in an exponential number of steps, with a π : f(n) ↓ 0.

f f

f(s0six) → append(f(s1x), f(s1x))
f(s1x) → x
f(nil) → nil

append(six, y) → siappend(x, y)
append(nil, y) → y

f(ssx) → append(f(sx), f(sx))
f(sx) → x
f(0) → 0

append(sx, y) → s append(x, y)
append(0, y) → y

Figure 7: Blind abstraction of our running example

Note that the property of being blindly polytime is indeed a strong condition since it means, in some sense, that
the program will terminate with a polynomial bound for reasons that are indifferent to the actual content of the input
but only depend on its size. For instance, one can check that the insertion sort algorithm, written in a natural way,
gives a blindly polytime program (see Example 187).

Another way to think of blinding is to imagine that some errors might occur during the execution of the program,
where by an error we mean that a constructor in the current term is replaced by another constructor of same arity
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(for instance, a 0-bit in a string is replaced by a 1-bit): blindly polytime programs are then programs that remain
polynomial time, no matter how many errors occur during the execution.

Our motivation for introducing blind abstraction and the notion of a blindly polytime program is to provide a more
abstract method for comparing different ICC systems than just simply providing examples handled by one system but
not by the other. Indeed, this kind of abstraction gives a way to subdivide the class of polytime programs into smaller
classes.

To illustrate our idea, consider the picture given in Figure 6. The fat lines represent classes of programs defined
by an intensional property (being polytime or blindly polytime). Imagine we have three ICC criteria A, B and C
implying that any program satisfying one of these criteria is polytime. If one criterion, say B, is only able to validate
blindly polytime programs while another one, C, can handle non-blindly polytime programs, then one can argue that
C is more accurate than B. Moreover, if A only validates primitive recursive programs while B validates some blindly
polytime programs that are not primitive recursive, then B is more accurate than A.

isort isort

insert(nil) → s1nil
insert(s0x) → s0insert(x)
insert(s1x) → s1s1x

isort(nil) → nil
isort(s0x) → s0isort(x)
isort(s1x) → insert(isort(x))

insert(0) → s0
insert(sx) → sinsert(x)
insert(sx) → ssx

isort(0) → 0
isort(sx) → sisort(x)
isort(sx) → insert(isort(x))

Figure 8: Insertion sort program.

bsort

bubble(nil, b) → < nil, b >
bubble(sinil, b) → < sinil, b >
bubble(s0six, b) → let < y, b′ >= bubble(six, b) in < s0y, b

′ >
bubble(s1s1x, b) → let < y, b′ >= bubble(s1x, b) in < s1y, b

′ >
bubble(s1s0x, b) → let < y, b′ >= bubble(s1x, b) in < s0y, false >

bsort(x) → let < y, b >= bubble(x, true) in
if b then y else bsort(y)

bsort

bubble(0, b) → < 0, b >
bubble(s0, b) → < s0, b >
bubble(ssx, b) → let < y, b′ >= bubble(sx, b) in < sy, b′ >
bubble(ssx, b) → let < y, b′ >= bubble(sx, b) in < sy, b′ >
bubble(ssx, b) → let < y, b′ >= bubble(sx, b) in < sy, false >

bsort(x) → let < y, b >= bubble(x, true) in
if b then y else bsort(y)

Figure 9: Bubble sort program.

Example 187. Figures 8 and 9 list two programs for sorting binary strings. The first uses insertion sort while the
second uses bubble sort. In the first case, since we are working on binary strings, it is sufficient to have an auxiliary
function to insert 1 into a sorted string and pre-pend 0 at the beginning of the result. In the second case, we need to
introduce pairing (and let in) as well as a boolean value as a flag to check whether a permutation occurred or not.
This is a quite straightforward extension of the language. In bsort, the flag is initially set to true, and is turned to
false when an exchange is performed. Booleans and boolean tests remain unchanged by the blinding map.

Both programs are polytime. The first terminates by PPO and admits a QI, and hence satisfies the P-criterion.
However, it does not follow the safe recursion schemata [BC92] because the result of isort is used to control the
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recursion of insert. The insertion sort is also blindly polytime. Indeed, every recursive call decreases the length of
the string whatever the precise value of the elements is.

On the other hand, the bubble sort program is not blindly polytime or even blindly terminating. Indeed, the length
of the string does not decrease and termination is ensured only because the elements inside the string are reordered.
In fact, the same comparison can be done several times, and the termination of the algorithm is due to the fact that
the same comparison always yields the same result. This is no longer true after blinding the program because the
comparison between elements of the string then becomes non-deterministic.

We will now discuss the behaviour of the blinding map with respect to criteria on TRS based on recursive path
orderings (RPO) and QIs [BMM11].

4.3 Blinding and recursive path orderings
We want to examine what happens with the ordering through the blinding operation. We have the following lemma.

Lemma 188. Let f be a program. If f terminates by PPO, then f terminates by PPO.

Indeed, F and F are in one–one correspondence, and it is easy to see that if ≺F is a precedence that gives a PPO
ordering for f, then the corresponding ≺F does the same for f.

The converse is not true – see, for example, Figure 7 where the first equation terminates by PPO on the blind side
but not on the non-blind side. However, we do have the following proposition.

Proposition 189. Let f be a program. The following statements are equivalent:

1. f terminates by EPPO.

2. f terminates by EPPO.

3. f terminates by PPO.

Proof. Just observe that PPO and EPPO coincide on T (C,F ,X ), and that t ≺EPPO s implies t ≺EPPO s.

4.4 Blinding and quasi-interpretations
Assume the program f admits a quasi-interpretation L·M. Then, in general, this does not imply that f admits a quasi-
interpretation. Indeed one reason why L·M cannot be simply converted into a quasi-interpretation for f is because, in
general, a quasi-interpretation might give different assignments to several constructors of the same arity – for instance,
when Ls0M(X) = X + 1 and Ls1M(X) = X + 2. Then, when considering f, there is no natural choice for LsM.

However, in most examples encountered in practice, a restricted class of quasi-interpretations is used.

Definition 190 (Uniform assignments). An assignment for f = 〈X , C,F , E〉 is uniform if all constructors of the
same arity have the same assignment: for each c,d ∈ C, we have arity(c) = arity(d) implies LcM = LdM. A quasi-
interpretation of f is uniform if it is defined by a uniform assignment.

We now have the following proposition.

Proposition 191. The program f admits a uniform quasi-interpretation if and only if f admits a quasi-interpretation.

5 Linear programs and call-by-value semantics

5.1 Definitions and main property
We want to use the blinding transformation to examine the properties of programs satisfying the P-criterion (The-
orem 184). In fact, when we do this, we will restrict our attention to particular programs, specifically, linear programs.
Essentially, this means that only one recursive call is allowed in recursive definitions (equations). This is a fairly nat-
ural restriction when we want to control the complexity since it prevents an exponential blowup on the number of
recursive calls at execution time. Indeed, many common programs are linear. This notion was used in [BMM11], in
combination with lexicographic path ordering (LPO). We will now give a formal definition.

Definition 192 (Linearity). Let f be a program terminating by a recursive path ordering given by a precedence �F ,
and g be a function symbol in f. We say that g is linear in f with respect to �F if, in the right-hand side term of
any equation for g, there is at most one occurrence of a function symbol h with same precedence as g. The program
f is linear with respect to �F if all its function symbols are linear with respect to �F .

We will not mention the precedence �F explicitly when there is no ambiguity.
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Proposition 193. Let f be a (possibly non-deterministic) program that:

1. terminates by PPO;

2. admits a quasi-interpretation; and

3. is linear.

Then f is strongly polytime.

Before giving the proof, we note that compared with Theorem 184 (the P-criterion Theorem from [BMM11]), the
program here does not need to be deterministic, though linearity is assumed for all function symbols.

We have considered here the linearity assumption because we are interested in nondeterministic programs and
memoisation is problematic when there is non-determinism (see Section 2.1); linearity is a sufficient condition to avoid
the use of memoisation and maintain the complexity properties.

Proof. We consider a derivation proof π : f(v1, · · · , vn) ↓ u. As the program has a quasi-interpretation, Proposition 183
gives a bound S on the size of active judgements which depends polynomially on |v1|, · · · , |vn|. Let T be a call tree
associated to π and η = (f, v1, · · · , vn, v) be a node in it. Now consider the subset of nodes of T obtained by keeping
η, the sons of η with same precedence as f and proceeding hereditarily in this way. We call this set the set of
descendants of η = (f, v1, · · · , vn, v) with the same precedence as f, and the linearity of the program actually implies
that this set is a branch; so the number of its elements corresponds to its depth. Termination by PPO ensures that if
µ = (g, u1, · · · , um, u) is the child of η with f ≈F g, then |ui| ≤ |vi|, and there is at least one j such that |uj | < |vj |.
So, the number of descendants of η with the same precedence is bounded by

∑n
i=1 |vi|. This thus bounds the number

of active judgements by rank. So we can now use Proposition 164 and conclude that |π| is polynomially bounded in
A,S, and thus also in |v1|, · · · , |vn|. Therefore f is strongly polytime.

Theorem 194. Let f be a (possibly non-deterministic) program that:

1. terminates by PPO;

2. admits a uniform quasi-interpretation; and

3. is linear.

Then f is blindly polytime.

Proof. Note that:

• f terminates by PPO, so, by Lemma 188, f also terminates;

• the quasi-interpretation for f is uniform, so, by Proposition 191, f admits a quasi-interpretation;

• f is linear, so f is linear too.

So, by Proposition 193, we can deduce that f is strongly polytime. Therefore f is blindly polytime.

5.2 Bellantoni–Cook programs
To show an example application of Theorem 194 to a simple class of programs, we will consider the class of Bellan-
toni–Cook safe recursive programs [BC92]. Of course, this is a very particular case, but we think it is interesting since
this class is an important reference in the implicit computational complexity literature.

Let BC be the class of Bellantoni–Cook programs written in a Term Rewriting System framework as in [Moy03].
Function arguments are classified as either safe or normal arguments – recurrences can only occur over normal
arguments and their result can only be used in a safe position. We use here a semi-colon to distinguish between
normal (on the left) and safe (on the right) parameters.

Definition 195 (Bellantoni–Cook programs). The class BC is the smallest class of programs containing the initial
functions:
Constant: 0
Successors: si(x), i ∈ {0, 1}
Projection: πn,mj (x1, · · · , xn;xn+1, · · · , xm)→ xj

Predecessor: p(;0)→ 0

p(; si(x))→ x
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Conditional:
C(;0, x, y)→ x

C(; s0(z), x, y)→ x

C(; s1(z), x, y)→ y
and closed by:

Safe recursion:
f(0, x1, · · · , xn; y1, · · · , ym)→g(x1, · · · , xn; y1, · · · , ym)

f(si(z), x1, · · · , xn; y1, · · · , ym)→hi(z, x1, · · · , xn; y1, · · · , ym,
f(z, x1, · · · , xn; y1, · · · , ym)), i ∈ {0, 1}

with g, hi ∈ BC (previously defined)
Safe composition:

f(x1, · · · , xn; y1, · · · , ym)→ g(h1(x1, · · · , xn; ), ..., hp(x1, · · · , xn; );

l1(x1, · · · , xn; y1, · · · , ym), ..., lq(x1, · · · , xn; y1, · · · , ym))

with g, hi, lj ∈ BC.

It is easy to see that any BC program terminates by PPO and is linear.

Proposition 196 (Quasi-interpretations for BC-programs). A BC-program admits the following quasi-interpretation:

L0M = 1

LsiM(X) = X + 1

LπM(X1, · · · , Xn+m) = max(X1, · · · , Xn+m)

LpM(X) = X

LCM(X,Y, Z) = max(X,Y, Z).

For functions defined by safe recursion or composition,

LfM(X1, · · · , Xn;Y1, · · · , Ym) = qf(X1, · · · , Xn) +max(Y1, · · · , Ym)

with qf defined as follows:

• if f is defined by safe recursion, then

qf(A,X1, · · · , Xn) = A(qh0(A,X1, · · · , Xn) + qh1(A,X1, · · · , Xn)) + qg(X1, · · · , Xn);

• if f is defined by safe composition, then

qf(X1, · · · , Xn) = qg(qh1(X1, · · · , Xn), ..., qhp(X1, · · · , Xn)) +
∑
i

qli(X1, · · · , Xn).

Proof. It is easy to check that all the conditions of Definitions 179 and 180 are satisfied.

6 Semi-lattice of quasi-interpretations
The study of necessary conditions on programs satisfying the P-criterion has drawn our attention to uniform quasi-
interpretations. This suggests we should consider quasi-interpretations with fixed assignments for constructors and
examine their properties as a class.

Definition 197 (Compatible assignments). Let f be a program and L·M1, L·M2 be two assignments for f. We say that
they are compatible if for any constructor symbol c we have LcM1 = LcM2. A family of assignments for f is compatible
if its elements are pairwise compatible. We will use similar definitions for quasi-interpretations.

Each choice of assignments for constructors thus defines a maximal compatible family of quasi-interpretations for
a program f: all quasi-interpretations for f that take these values on C. We consider the extensional order ≤ on
assignments defined by L·M1 ≤ L·M2 if and only if

∀b ∈ C
⋃
F ,∀~x ∈ (R+)k, LbM1(~x) ≤ LbM2(~x).

Given two compatible assignments L·M1 and L·M2, we use L·M1 ∧ L·M2 to denote the assignment L·M0 defined by

∀c ∈ C, LcM0 =LcM1 = LcM2

∀g ∈ F , LgM0 =LgM1 ∧ LgM2

where α∧β denotes the greatest lower bound of {α, β} in the point-wise order. Then we have the following proposition.
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Proposition 198. Let f be a program and let L·M1 and L·M2 be two compatible quasi-interpretations for it. Then
L·M1 ∧ L·M2 is also a quasi-interpretation for f.

To establish this Proposition, we need some preliminary Lemmas. We will continue to use the denotation L·M0 =
L·M1 ∧ L·M2.

Lemma 199. For any g of f we have that LgM0 is monotone and satisfies the subterm property.

Proof. To prove monotonicity, we will assume ~x ≤ ~y for the product ordering. Then, for i = 1 or 2

LgM0(~x) = LgM1(~x) ∧ LgM2(~x) ≤ LgMi(~x) ≤ LgMi(~y),

using the monotonicity of LgMi. Since this is true for i = 1 and 2, we have

LgM0(~x) ≤ LgM1(~y) ∧ LgM2(~y) = LgM0(~y).

It is also easy to check that LgM0 satisfies the subterm property.

Lemma 200. Let t be a term. We have LtM0 ≤ LtMi for i = 1, 2.

Proof. The proof is by induction on t, using the definition of LgM0 and LcM0, together with the monotonicity property
of Lemma 199.

Lemma 201. Let g(p1, · · · , pn)→ t be an equation of the program f. We have

LgM0 ◦ (Lp1M0, · · · , LpnM0) ≥ LtM0.

Proof. As patterns only contain constructor and variable symbols, by the definition of L·M0, if p is a pattern, we have
LpM0 = LpM1 = LpM2. Let i = 1 or 2. We have

LgMi(Lp1Mi(~x), · · · , LpnMi(~x)) ≥ LtMi(~x) (because L·Mi is a quasi-interpretation)
≥ LtM0(~x). (from Lemma 200)

So
LgMi(Lp1M0(~x), · · · , LpnM0(~x)) ≥ LtM0(~x),

since LpjMi = LpjM0. We write
~y = (Lp1M0(~x), · · · , LpnM0(~x)).

Since LgM1(~y) ≥ LtM0(~x) and LgM2(~y) ≥ LtM0(~x), by the definition of LgM0, we get LgM0(~y) ≥ LtM0(~x), which concludes the
proof.

We can now proceed with the proof of Proposition 198.

Proof of Proposition 198. We need to check that the conditions of Definitions 179 and 180 of assignment and quasi-
interpretation, respectively, are satisfied. Observe that Lemma 199 ensures that L·M0 satisfies the Weak Monotonicity
and Subterm conditions, and Lemma 201 ensures it satisfies the condition with respect to the equations of the program.
The Additivity condition is satisfied because L·M1 and L·M2 are compatible and satisfy this condition by assumption.
Finally, the Polynomial condition is satisfied because if LbM1 and LbM2 are bounded by polynomials, then so is LbM1∧LbM2.
Therefore, L·M0 is a quasi-interpretation.

Proposition 202. Let f be a program and Q be a non-empty family of compatible quasi-interpretations for f. Then
∧L·M∈QL·M is a quasi-interpretation for f. Therefore, maximal compatible families of quasi-interpretations for f have
an inferior semi-lattice structure for ≤.

Proof. It is sufficient to generalise Lemmas 199 and 201 to the case of an arbitrary family Q and to apply the same
argument as in the proof of Proposition 198.

Remark 203. Note that if, starting from two quasi-interpretations L·M1 and L·M2, we define the assignment L·M = L·M1∨L·M2

in a similar way to L·M1∧ L·M2 with the point-wise lowest upper bound, then, in general, L·M is not a quasi-interpretation.
Indeed, the following counter-example shows that the statement of Proposition 198 is not satisfied in this case.

Take f, g, h ∈ F , c ∈ C and the equation

g(c(x))→ f(h(g(x))).
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Now consider L·M1 and L·M2 given by

LgM1(x) = x

LfM1(x) = x+ 1

LhM1(x) = x

LgM2(x) = x

LfM2(x) = x

LhM2(x) = x+ 1.

Thus we have,

LgM(x) = x

LfM(x) = x+ 1

LhM(x) = x+ 1.

Hence, Lg(c(x))M = x+ 1, but Lf(h(g(x)))M = x+ 2.

7 Extending the P-criterion
Blind abstraction suggests we consider not only the PPO ordering from the P-criterion, but also an extension that
is invariant under the blinding map, viz. the EPPO ordering (see Subsection 4.3). It is thus natural to ask whether
EPPO enjoys the same property as PPO. We prove in this section that if we consider programs over strings, with
EPPO we can still bound the size of the call-dag, and thus generalise the P-criterion. We will also consider the
bounded-value property, which is an extension of the notion of QI. Here we bound the number of nodes in the call-dag
with a given precedence, and then Proposition 177 bounds the total number of nodes in the call-dag.

In this Section we restrict consideration to deterministic programs handling strings over a finite alphabet (that is,
words), so we take C = {s0, · · · , sm,nil}, where each si has arity 1 and nil has arity 0. We call these programs over
unary constructors.

Example 204. We will first show that EPPO is (intensionally) strictly more powerful than PPO. It is quite obvious
that any program terminating by PPO also terminates by EPPO. The following program works overs binary integers
(that is, there are two successors) represented with least significant bit first (that is, s0s1nil corresponds to the integer
10, in other words, 2). The program computes (in a slightly contrived way) xy using a ’fast exponentiation algorithm’
in base 4, that is, using the recurrence x4y = ((xy)2)2, and similar rules for other cases (we will omit the base cases
here). The rules for multiplication and squaring are quite standard, so they are not included here. The equation in
parentheses following each rule explains what it means.

pow(x, s0s0y)→ sq(sq(pow(x, y))) (x4y = ((xy)2)2)

pow(x, s1s0y)→ mult(x, sq(pow(x, s0y))) (x4y+1 = (x2y)2 × x)

pow(x, s0s1y)→ sq(mult(x, pow(x, s0y)) (x4y+2 = (x2y × x)2)

pow(x, s1s1y)→ mult(x, sq(mult(x, pow(x, s0y)))) (x4y+3 = (x2y × x)2 × x)

This program does not terminate by PPO since the last rule is not ordered by PPO (because s0y is not comparable
with s1s1y). However, the blind abstraction of this program does terminate by PPO, and the program itself terminates
by EPPO. Indeed, with a fair precedence, s0 and s1 have the same precedence, hence s0y ≺eppo s1s1y.

Fact 3. Since we are working over words (unary constructors), patterns are either constructor terms (that is, words),
or have the form p = s1(s2 · · · sn(x) · · · ) where the si for 1 ≤ i ≤ n are constructors. In the second case, we will write
p = Ω(x) with Ω = s1s2 · · · sn.

The length of a pattern is the length of the corresponding word, so |p| = |Ω|.

Proposition 205. In a program terminating by PPO or EPPO, the only calls at the same precedence that can occur
are of the form

f(p1, · · · , pn)→ C[g1(q1
1 , · · · , q1

m), . . . , gp(q
p
1 , · · · , qpl )]

where C[·] is some context, f ≈F gk, and pi and q
k
j are patterns. Moreover, each variable appearing in a qki appears

in pi.

Proof. The claim is a direct consequence of the termination ordering.
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Since we will only consider individual calls, we will put in the context all but one of the gk: f(p1, · · · , pn) →
C[g(q1, · · · , qm)].

Definition 206 (Production size). Let f be a program terminating by EPPO. Let

f(p1, · · · , pn)→ C[g(q1, · · · , qm)]

be a call in it where f ≈F g. The production size of this call is max1≤i≤m{|qi|}. The production size of an equation
is the greatest production size of any call (at the same precedence) in it. That is, if we have an equation

e = f(p1, · · · , pn)→ C[g1(q1
1 , · · · , q1

m), . . . , gp(q
p
1 , · · · , qpl )]

where f ≈F gk for 1 ≤ k ≤ p, then its production size is

Ke = max
1≤k≤p,1≤j≤l

|qkj |.

The production size of a function symbol is the maximum production size of any equation defining a function with
the same precedence:

Kh = max
g≈Fh

max
e=g(...)→t

Ke.

Definition 207 (Normality). Let f be a program. A function symbol h in it is normal if the patterns in the definitions
of functions with the same precedence are bigger than its production size:

∀g ≈F h,∀g(q1, · · · , qm)→ r ∈ E , |pi|Kh.

A program f is normal if all the function symbols in it are normal.

If a program is normal, this means that during recursive calls every constructor produced at a given moment will
be consumed by the following pattern matching.

Lemma 208. An EPPO-program can be changed into an equivalent normal program (normalised) with at most an
exponential growth in the size of the program.

The exponential is in the difference between the size of the biggest production and the size of the smallest pattern
(with respect to each precedence).

Proof sketch. The idea is to extend the small pattern matchings so that their length reaches the length of the biggest
production. This is illustrated by the following example:

f(s1(s1(s1(x))))→f(s0(s0(x)))

f(s0(x))→ f(x).

In this case, the biggest production has size 2, but the shortest pattern matching only has size 1. We can normalise
the program as follows:

f(s1(s1(s1(x))))→f(s0(s0(x)))

f(s0(s0(x)))→f(s0(x))

f(s0(s1(x)))→f(s1(x)).

Even if the process does extend productions as well as patterns, and increases the number of equations, it does terminate
because only the smallest patterns, hence the smallest productions (due to termination ordering) are extended in this
way.

Notice that the exponential growth in Lemma 208 is indeed in the initial size of the program and does not depend
on the size of any input. Since the size of the call-dag is bounded by the size of the inputs, this does not hamper the
polynomial bound on execution time. The normalisation process of Lemma 208 preserves termination by PPO and
EPPO and does not decrease the time complexity. Hence, bounding the time complexity of the normalised program is
sufficient to bound the time complexity of the initial program. We will only consider normal programs in the following.

Let f be a program and g be a function. We will enumerate all the occurrences of symbols of same precedence
as g in the right-hand side of f and label them g1, · · · , gn. This is simply an enumeration, and not a renaming of
the symbols, and if a given symbol appears several times (in several equations or in the same one), it will be given
several labels (one for each occurrence) with this enumeration. Now, a path in the call-dag staying only at the same
precedence as g is canonically identified by a word over {g1, · · · , gn}. We -write η ω; µ, where ω is a word, to denote
the fact that the state η is an ancestor of µ and ω is the path between them.
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Lemma 209. Let η1 = (f, v1, · · · , vn, v) and η2 = (g, u1, · · · , um, u) be two states such that η1
e; η2 and both function

symbols have the same precedence. Then |vi| ≥ |ui| for 1 ≤ i ≤ n and there exists j such that |vj | > |uj |.

Proof. The claim is a consequence of the termination proof by EPPO.

The following Proposition is a consequence of Lemma 209.

Proposition 210. Let η = (f, v1, · · · , vn, v) be a state. Any branch in the call-dag starting from η has at most
n× (max1≤i≤n|vi|) nodes with the same precedence as f.

Lemma 211. Suppose we have labels α, β and γ, and nodes in the call dag such that η α; η1
β
; µ1

γ
; ξ1 and

η
β
; η2

α; µ2
γ
; ξ2. Then ξ1 = ξ2.

Proof. Let us write ξ1 = (f, s1, · · · , sn, s), ξ2 = (g, t1, · · · , tm, t). Since labels are unique, we have f = g, and thus
n = m. It is sufficient to show that the ith components are the same for 1 ≤ i ≤ n. We use v, v1, u1, p1, v2, u2, q2 to
denote the ith parameters of η, η1, µ1, ξ1, η2, µ2, ξ2, respectively. Since we are working on words, an equation e has,
with respect to the ith argument, the form

f(. . . ,Ωe(x), . . .)→ C[g(. . . ,Υe(x), . . .)],

and the fact that the program is normal implies that |Υe| ≤ |Ωe| (previous Lemma). Using a similar denotation for
the equation corresponding to the label α, we have

f(. . . ,Ωα(x), . . .)→ C[g(. . . ,Υα(x), . . .)].

In this case, we write Ωα(x) ↪→ Υα(x) as a short-hand notation, and define Ωβ , Υβ , Ωγ , Υγ similarly. So, in our case,
we have

v = Ωα(x1) ↪→ Υα(x1) = v1 = Ωβ(y1) ↪→ Υβ(y1)

= u1 = Ωγ(z1) ↪→ Υγ(z1) = p1

v = Ωβ(x2) ↪→ Υβ(x2) = v1 = Ωα(y2) ↪→ Υα(y2)

= u2 = Ωγ(z2) ↪→ Υγ(z2) = q2

Because of normalisation, |Ωβ | ≥ |Υα|. Hence, y1 is a suffix of x1, which is itself a suffix of v. Similarly, z1 and z2 are
suffixes of v. Since they are both suffixes of the same word, it is sufficient to show that they have the same length in
order to show that they are identical:

|x1| =|v| − |Ωα|
|y1| =|v| − |Ωβ | = |v| − |Ωα|+ |Υα| − |Ωβ |
|z1| =|v| − |Ωα|+ |Υα| − |Ωβ |+ |Υβ | − |Ωγ |
|z2| =|v| − |Ωβ |+ |Υβ | − |Ωα|+ |Υα| − |Ωγ |.

Hence z1 = z2, so q1 = q2.

We say that two words have the same commutative image if there exists a permutation on the order of letters
mapping the first word to the second.

Proposition 212. Let ω1, ω2 be words and α be a label such that η ω1; µ1
α; ξ1 and η ω2; µ2

α; ξ2. If ω1 and ω2 have
the same commutative image, then ξ1 = ξ2.

Proof. This is a generalisation of the previous proof, and not an induction on it. If ω1 = α1, · · · , αn, then the size in
the last node is

|x′| = |q| =
∑
|Ωαi |+

∑
|Υαi | − |Ωα|,

which only depends on the commutative image of ω1.

So, when using the semantics with memoisation, the number of nodes (at a given precedence) in the call-dag is
roughly equal to the number of paths modulo commutativity. So any path can be associated with the vector whose
components are the number of occurrences of the corresponding label in it.

Proposition 213. Let T be a call-dag and η = (f, v1, · · · , vn, v) be a node in it. Let I = n × (max |vj |) and M be
the number of function symbols with the same precedence as f. The number of descendants of η in T with the same
precedence as f is bounded by (I + 1)M , which is a polynomial in |η|.
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Proof. Any descendant of η with the same precedence can be identified with a word over {f1, · · · , fM}. By Propos-
ition 210, we know that these words have length at most I, and by Proposition 212, we know that it is sufficient to
consider these words modulo commutativity. Modulo commutativity, words can be identified with vectors with as
many components as the number of letters in the alphabet and whose sum of components is equal to the length of the
word. Let Dn

i be the number of elements from Nn whose sum is i. This is the number of words of length i over an
n-ary alphabet modulo commutativity. It is clear that Dn

i−1 ≤ Dn
i (take all the n-tuples whose sum is i− 1, then add

1 to the first component and you obtain Dn
i−1 different n-tuples whose sum of components is i). Now, to count Dn

i ,
we choose a value j for the first component, then find n − 1 components whose sum is i − j. There are Dn−1

i−j such
elements.

Dn
i =

∑
0≤j≤i

Dn−1
i−j =

∑
0≤j≤i

Dn−1
j ≤ (i+ 1)×Dn−1

i ≤ (i+ 1)n−1 ×D1
i ≤ (i+ 1)n.

This concludes the proof.

Definition 214 (Bounded values). A program f = 〈X , C,F , E〉 has polynomially bounded values if and only if for
every n-ary function symbol g ∈ F , there is a polynomial pg : N → N such that for every state η′ appearing in a call
tree for η = (g, v1, · · · , vn), we have |η′| ≤ pg(|η|).

Proposition 215. Any deterministic program f over unary constructors that

1. terminates by EPPO and

2. has polynomially bounded values

is executable in polynomial time with the memoisation semantics. Conversely, any function in FP can be represented
by a program of this kind.

Since admitting a QI implies having polynomially bounded values, we have that a program over unary constructors
terminating by EPPO and admitting a QI is polytime.

Proof. Proposition 213 bounds the size of the call dag by rank. The bounded-values property bounds the size of nodes
in the call dag. So we can apply Proposition 166 to bound the size of any derivation. The converse is obtained from
the P-criterion (Theorem 184).

Theorem 216. Let f be a deterministic program over unary constructors terminating by EPPO. Then the following
two conditions are equivalent:

1. f has polynomially bounded values;

2. f is polytime in the call-by-value semantics with memoisation.

Note that the interest in this last result is rather theoretical, as we do not provide here a new way to determine
if a program admits polynomially bounded values (admitting a QI is a sufficient condition). However, it does exactly
delineate those EPPO programs over unary constructors that are polytime in the semantics with memoisation.

Proof. The implication (1) ⇒ (2) is given by Proposition 215 For the converse, it is sufficient to observe that a state
appearing in the call dag also appears in the final cache. Since the size of any term in the cache is bounded by
the size of the proof (because we need to perform as many Constructor rules as needed to construct the term), it is
polynomially bounded because the program is polytime.

In fact, we conjecture that the statements of Proposition 215 and Theorem 216 hold not only for programs with
unary constructors, but also for programs with arbitrary constructors, but we leave further investigations of this
question for future works.

Remark 217. The notion of a sup-interpretation [MP09] has been introduced to generalise quasi-interpretations. How-
ever, not all programs admitting a sup-interpretation satisfy the bounded-values condition. Indeed sup-interpretations
only relate the interpretation of a term to the interpretation of its normal form (see [MP09], Section 4.2, Definition
4.7), while the notion of a program with polynomially bounded values requires that, in addition, all intermediates
states of the call-tree are also bounded. As a counter-example, consider the program defined by

f(0, y)→0

f(sx, y)→f(x, db(y))

db(0)→0

db(s(x))→s(s(db(x)))
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This program can be given a sup-interpretation for all its symbols,

θ(f)(X,Y ) =X

θ(db)(X) =2X,

and, as expected,

θ(s)(X) =X + 1

θ(0) =0

However, the final call of f during the execution of f(sn(0), 0) is f(0, sm(0)) with m = 2n, so it is exponentially large,
and the program does not have polynomially bounded values.

To handle this, sup-interpretations come together with the notions of fraternities (to detect recursive calls) and
weight (which, having the subterm property of QI, tame the recursive calls). As stated in [MP09], Theorem 5.3,
programs with the quasi-friendly property (that is, sup-interpretation plus other conditions) also have the bounded-
values property.

On the other hand, any program satisfying the bounded-values properties admits a sup-interpretation, that is to
say, a sup-interpretation can be attributed to all its function symbols. More precisely, these sup-interpretations can
be chosen to be polynomials. It is sufficient for that to take for any function symbol g of the program a polynomial
pg as given by Definition 214.

BC
PPO lin.
+QI

Prim. Rec. programs

Ptime programs

Blindly Ptime

programs

Figure 10: Subclasses of programs

8 Conclusions
We have introduced blind abstractions of first-order functional programs and exploited them to help us gain an
understanding of the intensional expressive power of quasi-interpretations. In particular, we have shown that linear
programs that admit product path-ordering and uniform quasi-interpretation are necessarily blindly polytime. This
has suggested an extension of product path-ordering for which we have proved that the P-criterion still holds. Finally,
we have delineated a property (polynomially bounded values) that describes those deterministic programs admitting
product path-orderings that are executable in polynomial time.

We have introduced the notion of blindly polytime programs and shown that this notion can be used to compare
ICC systems in a more general way than by exhibiting examples caught by one and not by the other. The comparison
between the Bellantoni–Cook BC class and our ‘blind P-criterion’ is illustrated in Figure 10.

Further work includes investigations into the conditions characterising the class of programs captured by quasi-
interpretations. In particular, the question is still open as to whether being blindly polytime is a necessary and
sufficient condition for a program to have a (polynomially bounded) sup-interpretation or to be quasi-friendly [MP09],
provided some sort of path-ordering for it exists.

Another direction is to try to find notions similar to blindly polytime that would help comparing and classifying
ICC systems. We have seen that being blindly polytime is a condition independent of the primitive recursion scheme.
In order to better understand the relative power of ICC systems, it would be useful to have other similar classes of
programs and thus complete the picture in Figure 10.
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Abstract:
We consider the partition lattice Πκ on any set of transfinite cardinality κ and properties of
Πκ whose analogues do not hold for finite cardinalities. Assuming the Axiom of Choice we
prove: (I) the cardinality of any maximal well-ordered chain is always exactly κ; (II) there are
maximal chains in Πκ of cardinality > κ; (III) if, for every cardinal λ < κ, we have 2λ < 2κ,
there exists a maximal chain of cardinality < 2κ (but ≥ κ) in Π2κ ; (IV) every non-trivial
maximal antichain in Πκ has cardinality between κ and 2κ, and these bounds are realized.
Moreover we can construct maximal antichains of cardinality max(κ, 2λ) for any λ ≤ κ; (V) all
cardinals of the form κλ with 0 ≤ λ ≤ κ occur as the number of complements to some partition
P ∈ Πκ, and only these cardinalities appear. Moreover, we give a direct formula for the number
of complements to a given partition; (VI) Under the Generalized Continuum Hypothesis, the
cardinalities of maximal chains, maximal antichains, and numbers of complements are fully
determined, and we give a complete characterization.
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Let κ be a cardinal and let S be a set of cardinality κ. The set of partitions of S forms a lattice when endowed
with the binary relation ≤, called refinement, defined by P ≤ Q if and only if each block of P is a subset of a block
of Q. This lattice is called the partition lattice on S, and is denoted Π(S). By the standard correspondence between
partitions and equivalence relations, it follows that Π(S) is isomorphic to the lattice Equ(S) of equivalence relations
on S ordered by set inclusion on S × S.

As the particulars of S do not affect the order-theoretic properties of Π(S) we shall without loss of generality restrict
our attention to the lattice Πκ = Π(κ). Initiated by a seminal paper by Ore [Ore42], many of the properties of Πκ

that hold for arbitrary cardinals κ are well-known. Indeed, it is known that Πκ is complete, matroid (hence atomistic
and semimodular), non-modular (hence non-distributive) for κ ≥ 4, relatively complemented (hence complemented),
and simple [Bir40, §8-9], [RS92], [Grä03, Sec. IV.4].

For properties depending on κ, only a few results exist in the literature for infinite κ. Czédli has proved that if
there is no inaccessible cardinal ≤ κ then the following holds: If κ ≥ 4, Πκ is generated by four elements [Czé96a],
and if κ ≥ 7, Πκ is (1+1+2)-generated [Czé99] (for κ = ℵ0, slightly stronger results hold [Czé96b]). It appears that
no further results are known, beyond those holding for all cardinalities, finite or infinite. The aim of the present work
is to prove a number of results concerning Πκ that depend on κ being an infinite cardinal.

1 Preliminaries and notation

We work in ZF with the Axiom of Choice (AC). As usual, a set S is well-ordered if and only if it is totally ordered
and every non-empty subset of S has a least element. Throughout the paper, we use von Neumann’s characterization
of ordinals: a set S is an ordinal if and only if it is strictly well-ordered by ( and every element of S is a subset of S.
The order type of a well-ordered set S is the (necessarily unique) ordinal α that is order-isomorphic to S. Cardinals
and ordinals are denoted by Greek letters α, β, δ, γ, . . . for ordinals and κ, λ, . . . for cardinals. We denote by ωκ the
initial ordinal of κ, and by |α| the cardinality of α. The cardinality of a set is denoted |S| and its powerset is denoted
P(S). For a cardinal κ, we denote by κ+ its successor and by κ− its predecessor cardinal. Note that κ− is defined
only if κ is a successor cardinal.

Many standard results on cardinal arithmetic can be found in [HSW99], among other places, and are used frequently
throughout the proofs.

Recall that a chain in a poset (P,≤) is a subset of P that is totally ordered by ≤. Similarly, an antichain in
(P,≤) is a subset of P such that any two distinct elements of the subset are ≤-incomparable. A chain (respectively,
antichain) in (P,≤) is maximal if no element of P can be added to the chain without losing the property of being a
chain (respectively, antichain). Observe that if P contains a bottom element, ⊥, or a top element, >, it belongs to
any maximal chain. A chain C in (P,≤) is saturated if, for any two elements Q < S of the chain, there is no element
R ∈ P\C such that Q < R < S and C∪{R} is a chain; notably, a chain containing ⊥ and > is maximal if and only if
it is saturated. We say that a chain is endpoint-including if it contains a least and a greatest element, not necessarily
equal to ⊥ and >, respectively. By the Maximal Chain Theorem [Hau14], every chain in a poset is contained in a
maximal chain.

We denote partitions (and equivalences) of κ by capital italic Roman letters P,Q, . . ., and denote subsets of Πκ

such as chains and antichains by capital boldface letters C,D, . . .; If P = {Bδ} is a partition, we call its elements, Bδ,
blocks. It is easily seen that ⊥ = { {γ} | γ ∈ κ } and > = {κ}; that is, the set of all singleton subsets of κ, respectively
the singleton set containing all elements of κ.

As is usual, if P,Q ∈ Πκ, we write P ≺ Q if P < Q and no R ∈ Πκ exists such that P < R < Q. Furthermore,
P � Q denotes that either P ≺ Q or P = Q.

It follows that P ≺ Q if and only if Q can be obtained by merging exactly two distinct blocks of P. If X is a
subset of Πκ, we write P ≺X Q if P,Q ∈ X with P < Q, and there exists no R ∈ X such that P < R < Q. A subset
X ⊆ Πκ is called covering if P ≺X Q implies P ≺ Q.

A block B induces an equivalence relation on κ, defined by δ ≡B γ if and only if both δ, γ ∈ B, and a partition
P naturally induces an equivalence relation defined by δ ≡P γ if and only if there is a block B ∈ P with δ ≡B γ.
Conversely, any equivalence relation corresponds to the partition whose blocks are the maximal sets of equivalent
elements. This one-to-one correspondence allows us to consider a partition as its corresponding equivalence relation
when convenient, and vice versa.

If P ∈ Πκ contains exactly one block B with |B| ≥ 2 and the remaining blocks are all singletons, we call P a
singular partition, following Ore [Ore42].

If C ⊆ Πκ, then its greatest lower bound ∧C is the partition that satisfies x ≡∧C y if and only if x ≡P y for all
P ∈ C. That is, the blocks of ∧C are all the nonempty intersections whose terms are exactly one block from every
partition P ∈ C. Conversely, its least upper bound ∨C is the partition such that γ ≡∨C δ if and only if there exists
a finite sequence of partitions P1, . . . ,Pk ∈ C and elements β0, . . . , βk,∈ κ such that γ = β0 ≡P1 β1 ≡P2 β2 ≡P3

· · · ≡Pk βk = δ. A set of partitions is called complete if it contains both the least upper bound and greatest lower
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bound of all its subset, and closed if this is true for every nonempty subset, i.e., a closed set need not include ⊥ and
>.

Finally, the cofinality cf(κ) of an infinite cardinal κ is the least cardinal λ such that a set of cardinality κ can be
written as a union of λ sets of cardinality strictly smaller than κ: cf(κ) = min

{
|I| | κ =

∣∣⋃
i∈I Ai

∣∣ ∧ ∀i ∈ I, |Ai| < κ
}
.

Since κ =
⋃
i∈κ{i}, we always have cf(κ) ≤ κ.

If cf(κ) = κ, then the cardinal κ is called regular, otherwise it is called singular. Under AC, which is assumed
throughout this paper, every infinite successor cardinal is regular. König’s Theorem [Kön05] implies cf(2κ) > κ, and
we additionally have 2κ ≤ 2λ whenever κ < λ. By Easton’s theorem [Eas70], these are the only two constraints
on permissible values for 2κ when κ is regular and when only ZFC is assumed. In contrast, when the Generalized
Continuum Hypothesis (GCH) is assumed, cardinal exponentiation is completely determined.

For infinite κ, Πκ has cardinality 2κ which provides a weak upper bound on the cardinality of its subsets, in
particular maximal chains, maximal antichains, and sets of complements.

2 Results
We summarize here the main contributions of the paper.

Theorem (Well-ordered chains: Theorem 232). Let κ be any cardinal. The cardinality of a maximal well-ordered
chain in Πκ is always exactly κ.

Theorem (Long chains: Theorem 235). Let κ be an infinite cardinal. There exist chains of cardinality > κ in Πκ.

Theorem (Short chains: Theorem 250). Let κ be an infinite cardinal such that for every cardinal λ < κ we have
2λ < 2κ. Then there exists a maximal chain of cardinality < 2κ (but ≥ κ) in Π2κ .

Theorem (Antichains: Theorems 251 and 253). Let κ be an infinite cardinal. Each non-trivial maximal antichain in
Πκ has cardinality between κ and 2κ, and these bounds are tight (there exists maximal anti-chains with each of these
two cardinalities).

Theorem (Complements: Theorems 260, 262, and 270). Let κ be an infinite cardinal. All cardinals of the form κλ

with 0 ≤ λ ≤ κ occur as the number of complements to some partition P ∈ Πκ, and these are the only cardinalities
the set of complements can have.

For non-trivial partitions P /∈ {⊥,>}, the number of complements is between κ and 2κ, i.e. κλ with 1 ≤ λ ≤ κ.
The number of complements to P is 2κ unless (i) P contains exactly one block B of cardinality κ, and (ii) |κ \B| < κ.
If P contains one block B of size κ, then P has κ|κ\B| complements.

Theorem (Full characterizations under GCH, Theorem 271). Under the Generalized Continuum Hypothesis, when κ
is an infinite cardinal:

1. Any maximal well-ordered chain in Πκ always has cardinality κ.

2. Any general maximal chain in Πκ has cardinality

(a) κ−, κ, or κ+ (and all three are always achieved) if κ is a successor cardinal; and

(b) either κ or κ+ (and both are achieved) if κ is a limit cardinal.

3. Any non-trivial maximal antichain in Πκ has cardinality either κ or κ+, and both are achieved.

4. Any non-trivial partition has either κ or κ+ complements. P /∈ {⊥,>} has κ complements if and only if (i) P
contains exactly one block, B, of cardinality κ, and (ii) |κ \B| < cf(κ); otherwise, P has κ+ complements.

3 Some basic properties

3.1 Saturated chains in complete lattices
In this section, we prove a few properties of chains on complete lattices (not necessarily the partition lattice) that will
be used in the later sections.

Definition 218. Let C be a chain in a complete lattice L. Define the lower, respectively upper, subchain relative to
x ∈ L as C−x = { y ∈ C | y < x } and C+

x = { y ∈ C | x < y }.

Lemma 219. Let C be a closed chain in a complete lattice L, and x ∈ L such that C ∪ {x} is a chain, and the sets
C−x and C+

x are nonempty.
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• If x /∈ C, then ∨C−x ≺C ∧C+
x .

• If x ∈ C, then either (i) ∨C−x = x = ∧C+
x , (ii) ∨C−x ≺C ∧C+

x , or (iii) ∨C−x ≺C x ≺C ∧C+
x .

This also implies that when x ∈ C, ∨C−x �C x �C ∧C+
x .

This is easily proved by checking each case. The key points are: i) Because the chain C is closed, there exists no
y ∈ C with ∨C−x < y < ∧C+

x ; and ii) x ∈ C⇒ ∨C−x ≤ x ≤ ∧C+
x .

Lemma 220. An endpoint-including chain C in a complete lattice L is saturated if and only if it is closed and
covering; and it is maximal if and only if it is complete and covering.

Proof. Let in the following C be a chain in a complete lattice L, such that C has minimal element cmin and maximal
element cmax. Since C is totally ordered, cmin = ∧C is its unique least element, and cmax = ∨C is its unique greatest
element.

Saturated implies closed. Assume that there exists a nonempty subset D ⊆ C with greatest lower bound
∧D /∈ C. By construction,

cmin = ∧C < ∧D < ∨C = cmax (.1)

Let x be an arbitrary element of C. Since C is a chain, either d ≤ x for some d ∈ D, which implies ∧D ≤ x; or x < d
for all d ∈ D which implies x ≤ ∧D. It follows that C ∪ ∧D is a chain. This together with Equation (.1) contradicts
that C is saturated. Dually we prove that ∨D ∈ C for every nonempty D ⊆ C. Hence C is saturated only if it is
closed.

Saturated implies covering. Assume C is not covering, i.e. there exists x, z ∈ C with x ≺C z but x 6≺L z.
The second relation implies that there exists y ∈ L \C with x < y < z. Because x ≺C z, every other element of C is
either smaller than x or larger than z, hence comparable with y, whereby C ∪ {y} is a chain. Hence C is saturated
only if it is covering.

Closed and covering implies saturated. Assume that C is closed and covering, and choose any x ∈ L with
cmin < x < cmax for which C ∪ {x} is still a chain. Then cmin ∈ C−x and cmax ∈ C+

x , so both sets are nonempty. If
x /∈ C, Lemma 219 implies ∨C−x ≺C ∧C+

x , and, because C is covering, ∨C−x ≺ ∧C+
x . But ∨C−x ≤ x ≤ ∧C+

x , so this
implies x = ∨C−x or x = ∧C+

x , contradicting x /∈ C, as both are in C. Hence, C is saturated.
Maximal is equivalent to complete and covering. A maximal chain is a saturated chain that contains > and

⊥; and a complete sublattice is a closed sublattice that contains > and ⊥, yielding the lemma’s second statement.

3.2 Meets and joins of chains in Πκ

Definition 221. Let C be a chain in Πκ. We define the lower and upper subchains relative to x, y ∈ κ as C−x,y =
{P ∈ C | x 6≡P y } and C+

x,y = {P ∈ C | x ≡P y };

Lemma 222. Let C be a chain in Πκ and D be any set of κ-partitions.

1. x ≡∧D y if and only if x ≡P y for all P ∈ D;

2. x ≡∨C y if and only if x ≡P y for some P ∈ C;

(3) If C is closed, given elements x, y ∈ κ for which C−x,y and C+
x,y are both nonempty, we have

(a) ∧C+
x,y ∈ C+

x,y,

(b) ∨C−x,y ∈ C−x,y,

(c) ∨C−x,y ≺C ∧C+
x,y (and, if C is covering, ∨C−x,y ≺ ∧C+

x,y).

Proof.

1. This is the definition of ∧D.

2. By definition of x ≡∨C y, there exist finite sequences {xi} and {Pi} such that x = x0 ≡P1 x1 ≡P2 x2 ≡P3

· · · ≡Pn xn = y. But because C is totally ordered, the finite set {Pi} ⊂ C has a greatest element Pk, and thus
x0 ≡Pk x1 ≡Pk · · · ≡Pk xn, whereby x ≡Pk y.

(3) (a) follows immediately from (1), and (b) from the negation of (2). For (c), notice that (a) and (b) imply
∨C−x,y 6= ∧C+

x,y, whereby ∨C−x,y < ∧C+
x,y. Because every P ∈ C lies either in C−x,y or C+

x,y, no P ∈ C can have
the property ∨C−x,y < P < ∧C+

x,y, whereby ∨C−x,y ≺C ∧C+
x,y. The final statement is simply the definition of

covering.
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Corollary 223. Given a non-empty chain C, each block of ∨C is the union, and each block of ∧C is the intersection,
of an increasing sequence of blocks, one from each P ∈ C.

Proof. Fix x ∈ κ, and for each P ∈ C let BP be the block of P containing x. Let B (resp. B′) be the block of ∧C
(resp. ∨C) that contain x. The second equivalence in each case are Lemma 222(1-2). The statement for the greatest
lower bound is derived as

y ∈ B ⇔ x ≡∧C y ⇔ ∀P ∈ C, x ≡P y ⇔ ∀P ∈ C, y ∈ BP ⇔ y ∈
⋂
P∈C

BP

and for the least upper bound as

y ∈ B′ ⇔ x ≡∨C y ⇔ ∃P ∈ C, x ≡P y ⇔ ∃P ∈ C, y ∈ BP ⇔ y ∈
⋃
P∈C

BP

Notice that the choice of x, hence also of the BP in the union, is far from unique. These lemmas essentially state
that “nothing happens when going to the limit”. All the equivalences between elements that are present in the limit
(e.g., the join) were actually already here in some partition of the chain. Notably, if the chain is well-ordered, the
“merge” between two elements must happen between a (partition indexed by an) ordinal and its successor, and does
not suddenly appear at a (partition indexed by a) limit ordinal.

3.3 Restriction
Definition 224 (Restriction). Given a partition P of κ, we define its restriction to λ ≤ κ as Puλ = {B ∩ λ | B ∈ P }\
{∅}, which is a partition of λ. Similarly, a set D of partitions restricts to a subset of Πλ as Duλ = {P u λ | P ∈ D }.

Lemma 225. (i) >κ uλ = >λ; (ii) ⊥κ uλ = ⊥λ; (iii) P < Q implies P uλ ≤ Quλ; (iv) if C is a chain, so is Cuλ;
(v) if P,Q are comparable, then P u λ < Qu λ implies P < Q; and (vi) P ≺ Q implies P u λ � Q u λ.

All these Facts can be checked easily by direct applications of the definitions.

Lemma 226. If C is a chain in Πκ and λ ≤ κ, then (∨C) u λ = ∨ (C u λ), and (∧C) u λ = ∧ (C u λ).

Proof. Let λ ≤ κ, and C be a chain in Πκ. If C is empty, then the result follows directly from Lemma 225(i-ii) and
the definition of meet and join on the empty set.

Assume now that C is nonempty, and fix x ∈ λ. For each P ∈ C, let BP be the block of P containing x, and BP̃
be the block of P̃ = P u λ containing x.
Greatest lower bound. Let B be the block in ∧C, and Bλ be the block in ∧ (C u λ), that contains x. Applying
Corollary 223 to both Bλ and to B yields

Bλ =
⋂

P̃∈Cuλ

BP̃ =
⋂
P∈C

BP̃ =
⋂
P∈C

(BP ∩ λ) = (
⋂
P∈C

BP) ∩ λ = B ∩ λ

Note that restriction is not injective, hence we may have P 6= P ′ but P u λ = P ′ u λ. In this case, BP̃ = BP̃′ , thus
the second equality above is correct.

As this holds for every x ∈ λ, each block of ∧ (C u λ) is the restriction of a block of ∧C, therefore ∧ (C u λ) =
(∧C) u λ.
Least upper bound: The proof is symmetrical with key equalities being:

Bλ =
⋃

P̃∈Cuλ

BP̃ =
⋃
P∈C

BP̃ =
⋃
P∈C

(BP ∩ λ) = (
⋃
P∈C

BP) ∩ λ = B ∩ λ

Lemma 227. Restriction preserves well-order and completeness of chains.

Proof. Let λ ≤ κ and C be a chain in Πκ. By Lemma 225(iv), C u λ is a chain in Πλ. Let Dλ ⊆ C u λ be any,
possibly empty, subset. We have Dλ = D u λ, with D = {P ∈ C | P u λ ∈ Dλ }. Recall that subsets of chains are
chains themselves, hence by Lemma 226, ∨Dλ = ∨ (D u λ) = (∨D) u λ, and ∧Dλ = ∧ (D u λ) = (∧D) u λ.
Well-order: If C is well-ordered, then ∧D ∈ D is its least element. By construction of D, ∧Dλ = (∧D) u λ ∈ Dλ

which is thus the least element of Dλ. Hence, C u λ is well-ordered.
Completeness: If C is complete, then ∧D ∈ C. Hence, ∧Dλ = (∧D) u λ ∈ C u λ. Similarly, ∨Dλ ∈ C u λ. Thus,
C u λ is complete.
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Lemma 228. Restriction preserves maximality of chains.

Proof. Because of the nature of the proof, we explicitly tell in which set of partitions the inequalities hold (even when
it is the whole lattice). We abusively write P <λ Q (and so on) instead of P <Πλ Q, for the sake of clarity.

Let λ ≤ κ and C be a maximal chain in Πκ. It is complete and covering by Lemma 220. Hence, Cuλ is a complete
chain due to Lemma 227 and we only need to show that it is also covering.

Let P̃, Q̃ ∈ Cuλ such that P̃ ≺Cuλ Q̃. By construction, there exist x, y ∈ λ such that x 6≡P̃ y and x ≡Q̃ y, whereby
P̃ ∈ (C u λ)

−
x,y and Q̃ ∈ (C u λ)

+
x,y. Note that because both x and y are in λ, we have (C u λ)−x,y = C−x,y u λ and

(C u λ)+
x,y = C+

x,y u λ.
By definition of restrictions, there exist (non-unique) P,Q ∈ C such that P̃ = P u λ and Q̃ = Qu λ, and we must

have x 6≡P y and x ≡Q y, whereby P ∈ C−x,y and Q ∈ C+
x,y. Since C is maximal, it is complete and covering, hence

Lemma 222(3)(c) yields ∨C−x,y ≺κ ∧C+
x,y. Because they differ on x, y ∈ λ, we have (∨C−x,y) u λ ≺λ (∧C+

x,y) u λ by
Lemma 225(vi), hence Lemma 226 yields ∨

(
C−x,y u λ

)
≺λ ∧

(
C+
x,y u λ

)
, i.e., ∨(C u λ)−x,y ≺λ ∧(C u λ)+

x,y.
By completeness of C u λ, it contains both ∨(C u λ)−x,y and ∧(C u λ)+

x,y, thus ∨(C u λ)−x,y ≺Cuλ ∧(C u λ)+
x,y.

Because P̃ ∈ (C u λ)−x,y, we have P̃ ≤λ ∨(C u λ)−x,y and similarly, ∧(C u λ)+
x,y ≤λ Q̃,

Because P̃ ≺Cuλ Q̃ by definition, we must have P̃ = ∨(C u λ)−x,y ≺Cuλ ∧(C u λ)+
x,y = Q̃, therefore P̃ ≺λ Q̃ and

C u λ is covering. Being both complete and covering, C u λ is maximal.

4 Well-ordered chains in Πκ

For finite κ = n, it is immediate that any maximal chain in Πn has cardinality n: Each step reduces the number of
blocks by 1, whereby going from ⊥ with n blocks to > with 1 block requires n−1 steps, hence n elements in the chain.
For n ≥ 3, maximal chains are not unique. In this section, we show that maximal well-ordered chains in Πκ always
have cardinality κ, whether κ is finite or infinite.

If a maximal chain in Πκ is well-ordered of order type α, then α is a successor ordinal.1For clarity, we will write
the order type of a maximal chain as α + 1 to emphasize that it is a successor ordinal. Because |α| = |α+ 1|,
this has no impact on the cardinality of the chain. Such chains can be written as C = {Pβ | β ≤ α } — or as
C = {Pβ | β < α+ 1 } to emphasize the order type — with P0 = ⊥ and Pα = >.

Lemma 229. Let κ be an infinite cardinal. If a chain in Πκ is well-ordered of order type α, then |α| ≤ κ.

Note that we are here speaking of any well-ordered chain, not necessarily a maximal one, so its order type may be
anything.

Proof. As Πκ is isomorphic to Equ(κ), the set of equivalence relations on κ ordered by ⊆, there is, for any chain of
order type α in Πκ, a chain of order type α in the poset (P(κ× κ) ,⊆). Let C = { Eβ | β < α } be such a chain and
observe that for every β with β + 1 < α there exists at least one γβ ∈ Eβ+1 \ Eβ . As C is totally ordered under ⊆,
this implies γβ /∈ Eβ′ when β′ < β, i.e. the γβ do not repeat. Hence, { γβ | β + 1 < α } ⊆ κ × κ has cardinality |α|,
implying |α| ≤ |κ× κ| = κ.

Lemma 230. Every well-ordered maximal chain of order type α+ 1 in Πκ satisfies cf(κ) ≤ |α|.

Proof. Let C = {Pβ | β < α+ 1 } be a maximal well-ordered chain in Πκ of order type α+1. Consider the partitions
in this chain that have at least one block of cardinality κ. Since > = Pα, there is at least one such partition. Let δ be
the least ordinal such that Pδ contains a block of cardinality κ. It exists, because every non-empty set of ordinals has
a least element. Let Bδ be a block of cardinality κ in Pδ.

By Lemma 219 and maximality of C we have ∨C−Pδ � Pδ, and ∨C
−
Pδ ∈ C. That is, we can write Pγ = ∨C−Pδ

either for γ = δ or γ + 1 = δ. Consider for the sake of contradiction that Pγ ≺ Pδ. Then Bδ would be either a block
of Pγ or the union of two such blocks, at least one of them with cardinality κ. Both cases contradict the hypothesis of
δ being the smallest ordinal for which Pδ contains a block of cardinality κ. Hence δ = γ, and Pδ = ∨C−Pδ = ∨β<δPβ .

By Corollary 223 there exists a sequence {Bβ}β<δ such that Bδ =
⋃
β<δ B

β . By definition of δ, we have
∣∣Bβ∣∣ < κ

for every β < δ, and so by the definition of co-finality, cf(κ) ≤ |δ| ≤ |α|

Corollary 231. If κ is a regular cardinal, then every well-ordered maximal chain in Πκ indexed by an ordinal α
satisfies |α| = κ.

Theorem 232. Let κ be an infinite cardinal. Every well-ordered maximal chain of order type α + 1 in Πκ satisfies
|α| = κ.

1Any maximal chain in Πκ has a maximal element, namely >. But since a well-ordered set of limit-ordinal type has no maximal element,
this implies that the order type of a well-ordered maximal chain must be a successor-ordinal.
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Proof. Because of the previous results, we only need to check that for a singular κ, |α| ≥ κ. Indeed, the case of regular
κ is handled by Corollary 231 and the upper bound is due to Lemma 229.
Cardinal arithmetic: It suffices to show that λ ≤ |α| for every regular λ < κ: By standard cardinal arithmetic, the
singular κ can be expressed as the sum of cf(κ) smaller successor (hence regular) cardinals λδ. If the above inequality
holds, then:

κ =
∑

δ≤cf(κ)

λδ ≤
∑

δ≤cf(κ)

|α| = cf(κ) · |α| = max(cf(κ), |α|)

And because κ > cf(κ) by singularity, we can finally conclude that κ ≤ |α|.
Cardinality: Let C be a maximal, well-ordered chain in Πκ. By Lemmas 227 and 228, Cuλ is a maximal well-ordered
chain in Πλ for every regular λ < κ. Hence, by Corollary 231, we have |C u λ| = λ. Moreover, by construction,
|C u λ| ≤ |C| = |α|. Thus, for any regular λ < κ we have λ ≤ |α| and we can conclude that κ ≤ |α|, whereby
κ = |α|.

Remark 233. Notice that any ordinal α + 1 with |α| = κ appears as the order type of some maximal well-ordered
chain in Πκ. Indeed, the chain of singular partitions (of Πα+1) with non-singleton block Bβ = { δ | δ ≤ β } works (in
other words, it suffices to find a well-order of order type α+ 1 on κ, which exists by a cardinality argument, and add
the elements to a single block in this order).

5 Long chains in Πκ

For any nonempty S ⊆ κ, we define the partition

diag(S) = {S} ∪ { {γ} | γ ∈ κ \ S } .

When |S| ≥ 2, diag(S) is the singular partition with non-singular block S.

Remark 234. It is easy to verify that diag(·) is an order isomorphism between subsets of κ of size ≥ 2 and the singular
partitions. In particular, chains in (P(κ) ,⊆) containing only sets of length ≥ 2 are mapped to chains with the same
cardinality in (Πκ,≤).

Theorem 235. Let κ be an infinite cardinal. There is a chain of cardinality > κ in Πκ. The chain may be chosen to
be maximal.

Proof. By a result of Sierpiński [Sie22] (see also [Har05, Thm. 4.7.35]), there is a chain D′ in the poset (P(κ) ,⊆) of
cardinality λ > κ. There is at most one singleton element {α} ∈ D′, and as λ is infinite, D = D′ \ {∅, {α}} is still a
chain of cardinality λ.

Then, by Remark 234, the set C = { diag(S) | S ∈ D } is a chain in Πκ of cardinality λ > κ. By the Maximal
Chain Theorem, any chain in a poset is contained in a maximal chain, and the result follows.

For the special case of κ = ℵ0, we may obtain existence of a maximal chain in Πℵ0 of cardinality 2ℵ0 without use
of (G)CH:

Lemma 236. There is a maximal chain of cardinality 2ℵ0 in Πℵ0 .

Proof. For each r ∈ R, define the left Dedekind cut Dr = { q ∈ Q | q < r } and note that r < r′ implies Dr ( Dr′

by density of Q in R. Hence, the set of left Dedekind cuts is a chain in P(Q) of cardinality |R| = 2ℵ0 , all elements of
which have cardinality ≥ 2, and consequently, by Lemma 234, the set of partitions { diag(Dr) | r ∈ R } is a chain in
Πℵ0 of cardinality 2ℵ0 . By the Maximal Chain Theorem, this chain can be extended to a maximal chain; note that
2ℵ0 is an upper bound on the cardinality of any chain in Πℵ0 .

For arbitrary infinite κ we do not know whether existence of a maximal chain in Πκ of cardinality 2κ can be proved
without assuming GCH. In addition, we do not know whether the rather heavy-handed application of the Maximal
Chain Theorem (equivalent to the Axiom of Choice) in the proof of Theorem 235 is necessary to establish existence
of a maximal chain.

6 Short chains
We now turn to the question of whether there are maximal chains of cardinality strictly less than κ in Πκ. It is
immediate that there are no maximal chains of finite cardinality in Πℵ0 . Indeed, each step in a maximal chain merges
exactly two blocks. Hence, starting from ⊥ which has infinitely many blocks, after a finite number of steps it is
impossible to reach > or any other partition that has only finitely many blocks. For larger cardinals, there is a general
construction that proves existence of short chains. In the special case where GCH is assumed, it proves existence of a
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. . .

0 . . . 1 . . .0 . . . 1 . . .0 . . . 1 . . .

00 . . . 01 . . .00 . . . 01 . . .

00 . . .00 . . . 01 . . .01 . . .

000 . . . 001 . . .000 . . . 001 . . .

000 . . .

000 . . .

000 . . .000 . . .

001 . . .

001 . . .

001 . . .001 . . .

...
...

01 . . .

010 . . . 011 . . .010 . . . 011 . . .

010 . . .

010 . . .010 . . .

011 . . .

011 . . .011 . . .

...
...

1 . . .

10 . . . 11 . . .10 . . . 11 . . .10 . . . 11 . . .

10 . . .

10 . . .

100 . . . 101 . . .100 . . . 101 . . .

100 . . .100 . . . 101 . . .101 . . .

...
...

11 . . .

11 . . .

11 . . .

110 . . . 111 . . .110 . . . 111 . . .110 . . . 111 . . .

...
...

K0

K1

K1
1

K2

K1
2

K2
2

K3
2

K3

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Kω
Figure 1: Keyframe partitions

maximal chain of cardinality κ− for every successor cardinal κ. Because this construction is notationally cumbersome,
we first explain the result for the particular case of κ = 2ℵ0 , the cardinality of the continuum, in order to aid the
reader’s understanding.

6.1 Short chains in Π2ℵ0

We build a maximal chain of size ℵ0 in Π2ℵ0 . The proof boils down to the fact that there are countably many
binary strings of finite length but uncountably many binary strings of countably infinite length, hence an infinite
binary tree of depth ω has uncountably many leaves but only countably many inner nodes.

The construction proceeds in two steps:

1. Starting from >, inductively construct a countable chain of “keyframe” partitions such that the nth keyframe
has 2n blocks. The greatest lower bound of this chain will be ⊥ with 2ℵ0 singleton blocks.

2. Complete the chain into a maximal chain by adding “inbetween” partitions between the keyframes. We will need
2n − 1 extra partitions between the (n− 1)st and the nth keyframe.2

2“Keyframe” and “Inbetween” are terms from animation: A “keyframe” is a drawing that defines the start or end of a movement. The
animation frames between keyframes–the “inbetweens”–are drawn to make the transitions between keyframes smooth.
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. . .

0 . . . 1 . . .0 . . . 1 . . .0 . . . 1 . . .

00 . . . 01 . . .00 . . . 01 . . .

00 . . .00 . . . 01 . . .01 . . .

000 . . . 001 . . .000 . . . 001 . . .

000 . . .

000 . . .

000 . . .000 . . .

001 . . .

001 . . .

001 . . .001 . . .

...
...

01 . . .

010 . . . 011 . . .010 . . . 011 . . .

010 . . .

010 . . .010 . . .

011 . . .

011 . . .011 . . .

...
...

1 . . .

10 . . . 11 . . .10 . . . 11 . . .10 . . . 11 . . .

10 . . .

10 . . .

100 . . . 101 . . .100 . . . 101 . . .

100 . . .100 . . . 101 . . .101 . . .

...
...

11 . . .

11 . . .

11 . . .

110 . . . 111 . . .110 . . . 111 . . .110 . . . 111 . . .

...
...

K0

K1

K1
1

K2

K1
2

K2
2

K3
2

K3

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Kω
Figure 2: A short maximal chain

As a finite number of inbetween partitions are added for each n, only a countable number of partitions are added
in total, and so the full chain has countable length.

Keyframes. Consider partitions of the set {0, 1}ω of countably infinite sequences of bits; note that the cardinality
of {0, 1}ω is 2ℵ0 . Let u ∈ {0, 1}ω and let [u]k be the set of elements of {0, 1}ω with the same first k bits: [u]k =
{u0u1 . . . uk−1v | v ∈ {0, 1}ω }. Define the kth keyframe to be Kk = { [u]k | u ∈ {0, 1}ω }. Similarly, define Kω = ⊥.

Thus, the keyframes are as in Figure 1. Each level of the picture corresponds to one partition, with its blocks
depicted. It is instructive to note that the set of blocks of all partitions form an infinite binary tree and that the
number of nodes in each keyframe is finite (whence the corresponding partition has only finitely many blocks). The
blocks of Kω constitute the bottom most level of the tree, and hence are the leaves of the infinite binary tree, of which
there are 2|ω|, and the total number of keyframe partitions corresponds to the number of levels in the infinite tree,
and is thus clearly countable. The total number of internal nodes in the tree is

∑
α<ω 2|α| = ℵ0.

Completing the chain. The set of keyframe partitions clearly form a chain, but just as clearly this chain is not
maximal. Inbetween partitions must be added between the keyframes to obtain a maximal chain.

As seen in Figure 1, between the kth and the (k + 1)st keyframe, 2k blocks have been split. In order to locally
saturate the chain, it suffices to add 2k − 1 new partitions, each one with one more of the 2k blocks cut in two. This
will ensure that each partition is a successor to the previous one.

After adding these new partitions, the picture is now as shown in Figure 2. This chain is easily seen to be maximal.
At each (non-keyframe) partition, the new blocks, resulting from splitting one of the blocks of the parent partition,
are shown with hatching.

Since there are 2k inbetween partitions between the kth and (k + 1)st keyframes, the total number of inbetween
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partitions is
∑
k<ω 2k, which is countable. Since there are also only countably many keyframes, the total number of

partitions in the chain is countable.

6.2 Short chains: general construction for large cardinals

Let λ be any infinite cardinal and κ = 2λ. We will build a maximal chain of cardinality λ in Πκ = Π2λ .
Underlying set. Let S be the set of binary sequences indexed by the initial ordinal of λ. That is S = {0, 1}ωλ .

S contains κ elements; we shall use Π(S) as a representative of Πκ.
Keyframes. Let f ∈ S and δ ≤ ωλ. We denote by [f ]δ the set of sequences that agree with f on the initial δ

elements:
[f ]δ = { g ∈ S | ∀β < δ, f(β) = g(β) }

Observe that [f ]δ is uniquely defined by a binary sequence indexed by δ. The bracketed notation [f ] is used to
emphasize that [f ] is truly the equivalence class of f in the corresponding equivalence, even though everything is
written in terms of partitions.

Let Kδ = { [f ]δ | f ∈ S }. Then, Kδ is a partition of S which we call a keyframe partition. From the definition, it
follows that K0 = > and that Kωλ = ⊥. Note that Kδ consists of 2|δ| blocks and is in bijective correspondence with
{0, 1}δ. Let K = {Kδ | δ ≤ ωλ }.

Lemma 237. If α < β then [f ]β ( [f ]α and Kβ < Kα. Furthermore, K is a chain in Πκ.

Proof. The first point is immediate by definition of the refinement ordering: if f and g agree on their initial β elements,
then they trivially agree on their initial α elements, so [f ]β ( [f ]α. Since this holds for every f ∈ S, we further get
Kβ < Kα. The second point is an immediate consequence of the first.

Lemma 238. K is closed.

Proof. Let D be a set of ordinals and D = {Kδ | δ ∈ D }. Being a set of ordinals, D admits a minimal element α.
Then Kα is an upper bound for D and being part of it, must be the least upper bound.

Let β be the smallest ordinal not in D. If β = β′+ 1 is a successor ordinal, then Kβ′ is both part of D and a lower
bound, hence it’s the greatest lower bound.

Suppose that β is a limit ordinal and that ∧D > Kβ . Then, there exists f, g such that f ≡∧D g but f 6≡Kβ g. By
definition of Kβ , there exists γ < β with f(γ) 6= g(γ). However, by definition of β, there must exists γ′ ∈ D with
γ ≤ γ′ < β. f(γ) 6= g(γ) thus implies f 6≡Kγ′ g which contradicts f ≡∧D g. Therefore, K is closed.

Locally saturating the chain. We fix δ < ωλ and construct a saturated chain bounded below by Kδ+1 and
above by Kδ.
Kδ has cardinality 2|δ|. Fix, by the Axiom of Choice, a well-ordering <δ of Kδ with order type ω2|δ| . For

0 ≤ α < ω2|δ| , let the block Sδ,α be the αth element of Kδ according to this ordering.
For each 0 ≤ α < ω2|δ| , define the set [f ]αδ as

[f ]αδ =

{
[f ]δ+1 if [f ]δ <δ Sδ,α
[f ]δ if Sδ,α ≤δ [f ]δ

and let Kαδ = { [f ]αδ | f ∈ S }. Observe that the sets [f ]αδ are pairwise disjoint and that their union is S. Thus, Kαδ is
a partition of S (an “inbetween” partition), obtained by splitting the initial α blocks of Kδ. By construction there are
2|δ| inbetween partitions between Kδ and Kδ+1.

Lemma 239. For all f ∈ S, [f ]0δ = [f ]δ. Thus K0
δ = Kδ.

Proof. By construction, Sδ,0 is minimal for <δ, thus it is impossible for [f ]δ to be strictly smaller.

Lemma 240. Let α < β. Then for each f , [f ]βδ ⊆ [f ]αδ .

Proof. By cases depending on <δ. First note that α < β implies Sδ,α <δ Sδ,β by construction.

1. If [f ]δ <δ Sδ,α <δ Sδ,β then [f ]βδ = [f ]δ+1 = [f ]αδ .

2. If Sδ,α ≤δ [f ]δ <δ Sδ,β then [f ]βδ = [f ]δ+1 ( [f ]δ = [f ]αδ .

3. If Sδ,α <δ Sδ,β ≤δ [f ]δ then [f ]βδ = [f ]δ = [f ]αδ .

Lemma 241. Let α < β. Then Kβδ < Kαδ .
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Proof. By Lemma 240, each block of Kβδ is contained in a block of Kαδ , thus Kβδ ≤ Kαδ .
Since α < β, there exists f such that Sδ,α ≤δ [f ]δ <δ Sδ,β . Hence there are blocks of Kβδ that are strictly contained

in blocks of Kαδ , and thus the inequality is indeed strict.

Let C′δ = {Kαδ | 0 ≤ α < ω2|δ| } and Cδ = C′δ ∪ {Kδ+1}.
Corollary 242. Cδ is a chain with minimum Kδ+1 and maximum Kδ = K0

δ .

Note that including Kδ+1 in C′δ (that is, defining only Cδ) appears to be more natural, but because it is both
an element of Cδ and of Cδ+1, it becomes notationally awkward when taking unions of chains and computing the
cardinality of such unions.

Lemma 243. Cδ is closed.

Proof. Let D be a set of ordinals and D = {Kαδ | α ∈ D }. Being a set of ordinals D admits a minimal element α′.
Then Kα′δ is an upper bound for D and being part of it, must be the least upper bound.

Let β be the smallest ordinal not in D. If β = β′+ 1 is a successor ordinal, then Kβ
′

δ is both part of D and a lower
bound, hence it’s the greatest lower bound.

Suppose that β is a limit ordinal and that Kδ+1 ≤ Kβδ < ∧D ≤ Kδ. Then, there exists f, g such that f 6≡Kβδ g
but f ≡∧D g hence f ≡Kδ g. The later implies [f ]δ = [g]δ, therefore we must have [f ]δ <δ Sδ,β in order to have
[f ]βδ = [f ]δ+1 6= [g]δ+1 = [g]βδ .

Now, because β is limit, there exists γ with [f ]δ <δ Sδ,γ < Sδ,β and by definition of β, we can choose γ ∈ D.
However, this implies [f ]γδ = [f ]δ+1 6= [g]δ+1 = [g]γδ and thus f 6≡Kγδ g, contradicting f ≡∧D g. Therefore, Cδ is
closed.

For any f ∈ S let f0 ∈ [f ]δ (resp. f1 ∈ [f ]δ) be the binary sequence such that f0(δ′) = 0 (resp. f1(δ′) = 1) for all
δ′ ≥ δ. Notice that [f0]δ = [f1]δ but [f0]δ+1 6= [f1]δ+1.

For any g ∈ [f ]δ, either g(δ) = 0 and [g]δ+1 = [f0]δ+1, or g(δ) = 1 and [g]δ+1 = [f1]δ+1. Thus, [f ]δ = [f0]δ+1 ∪
[f1]δ+1.

Lemma 244. For every α < ω2|δ| , Kα+1
δ ≺ Kαδ .

Proof. Fix δ and α. Let f ∈ S and consider the block [f ]αδ of Kαδ . There are three cases:

1. If [f ]δ <δ Sδ,α <δ Sδ,α+1 then [f ]αδ = [f ]α+1
δ = [f ]δ+1

2. If Sδ,α <δ Sδ,α+1 ≤δ [f ]δ then [f ]αδ = [f ]δ = [f ]α+1
δ .

3. If [f ]δ = Sδ,α <δ Sδ,α+1 then either [f ]α+1
δ = [f0]δ+1 or [f ]α+1

δ = [f1]δ+1.

(1) and (2) follow immediately from the definition. For case (3), we first obtain [f ]αδ = [f ]δ and [f ]α+1
δ = [f ]δ+1 by

definition. But since [f ]δ = [f0]δ+1 ∪ [f1]δ+1, we must have either f ∈ [f0]δ+1 or f ∈ [f1]δ+1. Hence [f ]α+1
δ = [f ]δ+1

is either [f0]δ+1 or [f1]δ+1, as desired. By the above, every block of Kαδ is a block of Kα+1
δ except for a single block

(the unique block for which [f ]δ = Sδ,α), which is obtained by taking the union of exactly two blocks of Kα+1
δ . Hence,

Kα+1
δ ≺ Kαδ .

Lemma 245. Cδ is covering.

Proof. Let P ≺Cδ Q be two partitions of Cδ. By definition, we must have Q = Kαδ for some α, therefore P = Kα+1
δ .

By the previous lemma, we know that Kα+1
δ ≺ Kαδ , hence Cδ is covering.

Proposition 246. Cδ is a saturated chain in Πκ, with minimum Kδ+1 and maximum Kδ.
Proof. Applying previous results, we find that Cδ is an endpoint-including (Corollary 242), closed (Lemma 243) and
covering (Lemma 245) chain. Therefore, by Lemma 220, it is saturated.

Completing the chain. In the following, let C = {⊥} ∪
(⋃

0≤δ<ωλ C
′
δ

)
.

Theorem 247. C is a maximal chain in Πκ.

Proof. By Proposition 246, Cδ = C′δ ∪ {Kδ+1} is a saturated chain with minimum Kδ+1 and maximum Kδ, whereby
each C′δ is a chain. Noting that δ < γ implies Kγ < Kδ by Lemma 237, every element of C′δ is comparable to every
element of C′γ . Hence, C is a chain.

Suppose that there exists a partition P /∈ C such that C ∪ {P} is still a chain. We obviously have P /∈ K ⊂ C
and because K is closed (Lemma 238) we can apply Lemma 219 and conclude that ∨K−P ≺K ∧K+

P . Because they are
both keyframes, we must have ∧K+

P = Kβ for some ordinal, hence ∨K−P = Kβ+1. This entails Kβ+1 < P < Kβ , but
we now by Proposition 246 that the chain is saturated between these two. Hence, C is maximal.
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Length of the chain. Recall that C′δ has cardinality 2|δ|.

Lemma 248. C has cardinality
∑
δ<ωλ

2|δ|.

Proof. |C| =
∣∣⋃

δ<ωλ
C′δ ∪ {⊥}

∣∣ =
∣∣⋃

δ<ωλ
C′δ
∣∣ =

∑
δ<ωλ

|Cδ| =
∑
δ<ωλ

2|δ|

Lemma 249. Let λ be a cardinal such that for any µ < λ, we have 2µ < 2λ. Then
∑
δ<ωλ

2|δ| < 2λ.

Proof. If δ < ωλ, then |δ| < λ, thus by hypothesis, 2|δ| < 2λ.
Assume now, for contradiction, that

∑
δ<ωλ

2|δ| ≥ 2λ. Recall that cf(2λ) = inf
{
|I| | 2λ =

∣∣⋃
i∈I Ai

∣∣ ∧ ∀i ∈ I, |Ai| < 2λ
}
,

which is the same as cf(2λ) = inf
{
|I| | 2λ =

∑
i∈I µi ∧ ∀i ∈ I, µi < 2λ

}
.

It then follows that cf(2λ) ≤ |ωλ| = λ. But by a standard consequence of König’s Theorem [Kön05] we always
have cf(2λ) > λ under the Axiom of Choice.

We can now prove our main result on short chains.

Theorem 250. Let λ be an infinite cardinal such that for every cardinal µ < λ we have 2µ < 2λ. Then there exists a
maximal chain of cardinality < 2λ (but ≥ λ) in Π2λ .

Proof. By Theorem 247 and Lemma 248, there is a maximal chain in Π2λ of cardinality
∑
δ<ωλ

2|δ|. By Lemma 249
we have

∑
δ<ωλ

2|δ| < 2λ.
Consequently, the chain is of cardinality < 2λ (but ≥ λ).

For the case of λ = ℵ0, we trivially have 2n < 2ℵ0 for all n < ℵ0, and thus there is a countable maximal chain in
Π2ℵ0 . The condition is also satisfied for all strong limit cardinals.

7 Antichains and maximal antichains

An antichain in (P,≤) is a subset A ⊆ P in which no two distinct elements of P are ≤-comparable. An antichain
is maximal if adding an element to it results in a set that is not an antichain. Observe that in a poset, the trivial
antichains {⊥} and {>} are always maximal antichains.

There is no known tight bound on the cardinality of maximal antichains in Πn for finite n, but some asymptotic
results are known [Can98, BH02]. The cardinality of a maximal antichain in Πn is Θ

(
na(log n)−a−1/4S(n,Kn)

)
where

a = (2− e log 2)/4 and S(n,Kn) = maxk
{
n
k

}
is the largest Stirling number of the second kind for fixed n.

Theorem 251. Let κ be infinite. There is a maximal antichain of cardinality κ and a maximal antichain of cardinality
2κ in Πκ.

Proof. Atoms of Πκ are singular partitions with the non-singleton block containing only two elements and are thus in
bijection with the set of two-element subsets of α, hence there are κ atoms. By atomicity of Πκ, atoms are mutually
incomparable (they form an anti-chain) and every other non-⊥ element lies over an atom (the anti-chain is maximal).

Similarly, co-atoms are two blocks partitions of the form {A, κ \A}. By picking the subset not containing 0, they
are in bijection with non-empty subsets of κ \ {0}, hence there are 2κ co-atoms. By co-atomicity of Πκ, co-atoms form
a maximal anti-chain.

Since Πκ itself has cardinality 2κ, there is no anti-chain of a bigger size. The proof that there is no maximal
anti-chain shorter than κ is slightly more invoved.

Theorem 252. No non-trivial maximal anti-chain in Πκ has cardinality less than κ.

Proof. Let λ < κ and A = {Aδ | δ < ωλ } be a non-trivial anti-chain of cardinality λ in Πκ. We will show that A is
not maximal by building a partition out of it but yet not comparable with any of its elements.

Small partitions. For each Aδ, we build the set Sδ of all the elements that are not in a singleton block in it:

Sδ = {x ∈ κ | There exists y 6= x with x ≡Aδ y }

Now, we call partition Aδ small if |Sδ| ≤ λ, that is there are less than λ elements in all the non-singleton blocks of
Aδ. Given an anti-chain A, either it contains some small partitions or not.

No small partitions. Suppose that A contains no small partition. Since it is not trivial, we know that > /∈ A.
Hence, for each Aδ ∈ A we can pick an element xδ which is not in the same block as 0: 0 6≡Aδ xδ. Note that the xδ are
not necessarily distinct. Now, build the singular partition P whose non-singleton block is P0 = {0} ∪ {xδ | δ < ωλ }.
We claim that P /∈ A but A ∪ {P} is still an anti-chain, hence A is not maximal.
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Because P0 has cardinality at most λ and all the rest is singletons, P is small. Thus it is not in A as we are in the
case where A contains no small partition. Moreover, it is not possible that Aδ ≤ P. Indeed, because P contains only
one non-singleton block, P0, the comparison can hold only if P0 contains Sδ, the union of all the non-singleton blocks
of Aδ. But Sδ has cardinality larger than λ (because Aδ is not small) while P0 has cardinality at most λ. Hence,
Sδ 6⊂ P0 and Aδ 6≤ P.

Next, we have by construction 0 ≡P xδ but 0 6≡Aδ xδ. Thus, P 6≤ Aδ for all δ < ωλ.
So, if A contains no small partition, we can build a partition P that can expand the anti-chain, hence A is not a

maximal anti-chain.
With small partitions. We now look at the case where A does contain small partitions. Let ∆ be the set of

indices of small partitions: ∆ = { δ | |Sδ| ≤ λ }. Note that by construction, since |A| = λ, we have |∆| ≤ λ. Finally,
let S be the union of all non-singleton blocks among all the small partitions in A: S =

⋃
δ∈∆ Sδ.

Arithmetic. It follows from cardinal arithmetic that |S| ≤ λ, indeed:

|S| =
∣∣∣∣∣ ⋃
δ∈∆

Sδ

∣∣∣∣∣ ≤∑
δ∈∆

|Sδ| ≤
∑
δ∈∆

λ = |∆| × λ ≤ λ× λ = λ

Construction. Since |S| ≤ λ < κ, we have |κ \ S| = κ. Thus, in κ \ S, we can pick λ different elements yδ, one
for each δ < ωλ. Now, we claim that for each δ < ωλ we can find a xδ ∈ S with xδ 6≡Aδ yδ. Indeed, if that were not
the case then the block of Aδ containing yδ would also contains the entirety of S and thus any of the small partitions
in A would be smaller than Aδ, contradicting the fact that A is an anti-chain.

Note that the yδ are distinct by hypothesis, and that xδ 6= yδ because the former is in S and the latter is not.
However, it is possible the xδ are not distinct.

We now build the equivalence (and partition) Q generated by the relation { (xδ, yδ) | δ < ωλ }. Because of the
non unicity of the xδ, Q may contain blocks with more than two elements, indeed transitivity may link some of the
pairs together. However, because of the unicity of the yδ, and the separation of the xδ and yδ, we know that each
non-singleton block of Q contains exactly one xδ and one or more yδ.

Non-maximality. Let us now show that Q can extend A. Firstly, because we have, by construction, xδ ≡Q yδ
but xδ 6≡Aδ yδ that implies that Q 6≤ Aδ; notably Q 6= Aδ, thus Q /∈ A.

Next, consider a small Aδ. By construction of S, there is at least one non-singleton block of Aδ that is contained
in S (as S is precisely the union of such blocks for all the small partitions). On the other hand, each non-singleton
block of Q contains exactly one xδ and all its other elements are yδ, chosen out of S. Hence, each block of Q contains
at most one element of S and thus cannot contain any non-singleton block of Aδ, hence Aδ 6≤ Q.

Finally, consider a not small Aδ. By construction, the union of all the non-singleton blocks of Q is {xδ | δ < ωλ }∪
{ yδ | δ < ωλ } which has cardinality ≤ λ while the union of all non-singleton blocks of Aδ has cardinality > λ (as it
is not a small partition). Thus, it is not possible that the non-singleton blocks of Aδ are somehow contained in the
non-singleton blocks of Q and Aδ 6≤ Q.

To conclude, Q is not in the anti-chain and is not comparable with its elements, hence A is not maximal.
Thus, any anti-chain of cardinality strictly less than κ is not maximal, and any maximal anti-chain in Πκ has

cardinality at least κ.

The Theorems here tell us that any maximal anti-chain in it has cardinality between κ and 2κ and since both of
the bounds occur as cardinality of a maximal anti-chain, they are as tight as one can get. However, it is also possible
to build maximal anti-chain of cardinality between these bounds.

Remark 253. Let λ < κ be two infinite cardinals. Given a maximal anti-chain A in Πλ, we can construct a maximal
anti-chain B in Πκ as follows:

For each partition A ∈ A, let A′ be a partition of κ constructed from A by adding all the singleton blocks
{x}, x ∈ κ\λ and let A′ be the collection of all these. Next, let Pα,β be the singular partition of Πκ with non-singleton
block {α, β} and define

B = A′ ∪ {Pα,β | α < β < ωκ and λ ≤ |β| }
B is an anti-chain. Indeed, the A′ are mutually incomparable because A is an anti-chain; the Pα,β are mutually

incomparable by construction; and a A′ is not comparable with a Pα,β because each of the non-singleton blocks of the
former is included in λ while the non-singleton block of the latter contains an element of κ \ λ (as we have only taken
the β with |β| ≥ λ).

B is maximal. Indeed, consider a partition Q′ of Πκ which is not in B. If the elements of κ\λ are all in singleton
blocks in Q′ then its restriction to λ, Q, is comparable with some A (by maximality of A), and so Q′ is comparable
with A′. On the other hand, if there is a non singleton block containing α, β with β ∈ κ \ λ we immediately have
Pα,β ≤ Q.

Because λ < κ, there are κ− λ = κ different β with λ ≤ |β|, thus there are κ different Pα,β in B. Because the A′
and Pα,β are distinct, B has cardinality |A′|+ κ = max(κ, |A|).
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Since we know, by Theorem 251, that we can build a maximal anti-chain of cardinality 2λ in Πλ, we can use this
construction to build maximal anti-chains of cardinality max(κ, 2λ) in Πκ, for any value of λ < κ. Thus, we can
possibly build maximal anti-chains of cardinalities other than κ or 2κ.

8 Complements
Recall that in a bounded lattice L, elements a, b ∈ L are complements if and only if a∨b = > and a∧b = ⊥. We denote
by compl(P) the set of all complements to P in Πκ. For finite κ = n, counting the number of elements in compl(P)
is a difficult combinatorial problem. The best known estimate, due to Grieser [Gri91], is that if P = {B1, . . . , Bm} is
a partition in Πn, then the number of complements Q of P satisfying |Q| = n−m+ 1 is

∏m
i=1 |Bi| · (n−m+ 1)m−2.

In the following, we prove a succession of lemmas leading up to the main result of the section, Theorem 260. which
gives a complete characterization of the counts of complements to partitions of infinite cardinals.

For later use, we first recall some fundamental results on cardinal arithmetic:

Lemma 254. Let (κi)i∈I be a family of cardinals. The following hold:

1. ([HSW99], Lemma 1.6.3(b.i)) If κi > 0 for all i ∈ I, I 6= ∅ and at least one of the cardinals |I| and κi (for some
i ∈ I) is infinite, then ∑

i∈I
κi = max{|I|, sup {κi | i ∈ I }} = |I| · sup {κi | i ∈ I }

2. ([HSW99], Lemma 1.6.15(a), Tarski), If λ ≥ ℵ0 is a cardinal and (κα)α<λ is an increasing sequence of infinite
cardinals, then ∏

α<λ

κα = (sup {κα | α < λ })λ

3. ([HSW99], Lemma 1.6.15(d), Tarski) If κ is an infinite cardinal, then

2κ =

(
sup
λ<κ

2λ
)cf(κ)

Lemma 255. Let κ be infinite and P /∈ {⊥,>} be a partition of κ. Then, |compl(P)| ≥ 2|P|.

Proof. If |P| is finite, then there must exist at least one block B of cardinality κ in P (otherwise, since ∪P = κ, we
would have cf(κ) finite). Any singular partition whose non-singleton block contains exactly one element from each
block of P is a complement to P. Since there are κ choices for the element in B, there are at least κ complements to
P. Thus |compl(P)| ≥ κ > 2|P|.

Assume now that |P| is infinite. Since P 6= ⊥, we can choose a block B0 from P containing distinct elements ι 6= υ.
Write P ′ = P \ {B0}, and note that |P ′| = |P|. By the Axiom of Choice, we may select from each block B ∈ P ′ an
element γ(B). Given any subset P1 ⊆ P ′, let P2 = P ′ \ P1. If we now define

Q1 = {ι} ∪ { γ(B) | B ∈ P1 }
Q2 = {υ} ∪ { γ(B) | B ∈ P2 }
Qs = { {γ} | γ ∈ κ \ (Q1 ∪Q2) }

then Q = {Q1, Q2}∪Qs is a complement to P, as can be verified as follows: (i) Q is a partition, since each element is
included in exactly one block. (ii) P ∧ Q = ⊥, since each block Q ∈ Q contains at most one element from each block
in P. (iii) Finally, P ∨ Q = >, i.e. x ≡P∨Q y for all x, y ∈ κ: Consider x, y ∈ κ, and write Bx, By for the blocks in P
containing x and y, respectively. If Bx, By ∈ P1 ∪ {B0}, then there exists3 a γx ∈ Q1 ∩Bx and a γy ∈ Q1 ∩By. This
yields

x ≡
Bx

γx ≡
Q1

γy ≡
By

y

If instead Bx ∈ P1 ∪ {B0} and By ∈ P2, there is a γx ∈ Q1 ∩Bx, whereby

x ≡
Bx

γx ≡
Q1

ι ≡
B0

υ ≡
Q2

γ(By) ≡
By

y

The remaining two cases, Bx, By ∈ P2 ∪ {B0} and Bx ∈ P2 ∪ {B0}, By ∈ P1, are symmetrical. Thus Q ∈ compl(P).
Clearly, two different choices of the subset P1 ⊆ P ′ yields different complements Q, whereby |compl(P)| ≥ 2|P|.

3Namely, γx = γ(Bx) if Bx ∈ P1 and γx = ι if Bx = B0.

Algebra Universalis, under revision 111



Infinite Partition Lattices Avery, Moyen, Ruzicka, Simonsen

Lemma 256. Let κ be infinite and P /∈ {⊥,>} be a partition of κ. If P contains no block of cardinality κ, then
|compl(P)| = 2κ

Proof. If P contains no block of cardinality κ, then |P| ≥ cf(κ) (because κ =
⋃
B∈P B). Then Lemma 255 implies

|compl(P)| ≥ 2|P| ≥ 2cf(κ). Thus, if κ is a regular cardinal, or if |P| = κ, we immediately obtain |compl(P)| = 2κ.
Assume now that κ is singular and cf(κ) ≤ |P| < κ. We can construct a complement Q to P as follows:

1. Let A0 be a set containing exactly one element γ(B) from each block B of P. Let P ′ = {B \A0 | B ∈ P }\{∅},
whereby ∪P ′ = κ \A0.

2. Any partition Q of κ that contains A0 as a block will have P∨Q = >: If β ∈ B1 and δ ∈ B2 for B1, B2 ∈ P, then
β ≡B1 γ(B1) ≡A0 γ(B2) ≡B2 δ. Hence, if a partition Q′ of κ \ A0 satisfies |A′ ∩B′| ≤ 1 for all A′ ∈ Q′, B′ ∈ P ′,
then Q = {A0} ∪ Q′ is a complement to P.

3. Because |A0| = |P| < κ, we have |κ \A0| = κ, and hence
∑
B∈P′ |B| = |∪P ′| = κ. By Lemma 254(1), and using

|P ′| < κ, we obtain

κ =
∑
B∈P′

|B| = max

{
|P ′| , sup

B∈P′
|B|
}

= sup
B∈P′

|B|

4. By definition of cofinality, there exists an increasing sequence (µα)α<cf(κ) of infinite cardinals strictly less than
κ that sums to κ. Because κ is singular, Lemma 254(1) implies κ = supα<cf(κ) µα.

Since also κ = sup { |B| | B ∈ P ′ }, we can choose by AC for every α < cf(κ) a Bα ∈ P ′ such that |Bα| ≥ µα.
The sequence (|Bα|)α<cf(κ) clearly has supremum κ.

5. For every successor ordinal α+ 1 < cf(κ), split the block Bα+1 into a small subset B−α+1 of cardinality |Bα| and
a large subset B+

α+1 of cardinality |Bα+1|. Then for every limit ordinal α, define B+
α = Bα. Now choose for

every ordinal α < cf(κ) a bijection σα : B+
α → B−α+1; let A

β
α = {β, σα(β)} and let Aα =

{
Aβα | β ∈ B+

α

}
, it is

a partition of B+
α ∪B−α+1, consisting of two-element blocks.

6. Finally, let

S = κ \

A0 ∪
⋃

α<cf(κ)

Bα

 .

Then it is easy to verify that
Q = { {β} | β ∈ S } ∪ {A0} ∪

⋃
α<cf(κ)

Aα

is a complement to P. Indeed, each element of Aα contains exactly two elements from two different blocks Bα
and Bα+1 of P ′, and the other blocks are either A0 or singletons. Thus, for any A′ ∈ Q other than A0 and any
B′ ∈ P ′, we have |A′ ∩B′| ≤ 1, and by Point (2) above, Q is a complement to P.

For σα 6= σ′α there exists β ∈ B+
α with σα(β) 6= σ′α(β) and hence {β, σα(β)} 6= {β, σ′α(β)}, whence each choice of

(σα)α<cf(κ) yields a distinct complement. There are
∣∣B−α+1

∣∣|B+
α | = |Bα||Bα| = 2|Bα| ways to choose each bijection

σα. Since κ = supα<cf(κ) |Bα|, for each λ < κ, there exists α with |Bα| > λ hence 2|Bα| ≥ 2λ. Consequently,
supα<cf(κ) 2|Bα| ≥ supλ<κ 2λ. Then, Lemma 254(2) and (3) yields

|compl(P)| ≥
∏

α<cf(κ)

2|Bα| =

(
sup

α<cf(κ)

2|Bα|

)cf(κ)

≥
(

sup
λ<κ

2λ
)cf(κ)

= 2κ

As 2κ = |Πκ| is an upper bound to the number of complements to P, we obtain |compl(P)| = 2κ.

Lemma 257. Let κ be infinite and P ∈ Πκ be any partition of κ. If P contains a block B of cardinality κ, then
|compl(P)| = κλ, where λ = |κ \B|.

Proof. Assume that P has a block B of cardinality κ, and write P as the disjoint union P = {B}∪P ′. Let B̄ = κ \B,
and observe that B̄ = ∪P ′. Denote λ = |∪P ′| =

∣∣B̄∣∣ = |κ \B| ≤ κ. If
∣∣B̄∣∣ = 0, then P = >, which has exactly one

complement, namely ⊥, whereby |compl(P)| = 1 = κ0 as desired. Hence, in the following we can assume that P 6= >,
such that 1 ≤ λ ≤ κ.

Lower bound. To show |compl(P)| ≥ κλ, choose any injection σ : B̄ → B, and write Bλ = σ
(
B̄
)
, Bs = B \ Bλ.

If we now define Aα = {α, σ(α)}, then the partition Q =
{
Aα | α ∈ B̄

}
∪ { {β} | β ∈ Bs } is a complement to P,
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as is easily verified by checking each of the properties: (i) Every element of κ is either in B̄, Bλ, or Bs, hence Q is
a partition; (ii) each block of Q is either a singleton (from Bs) or a doubleton (one of the Aα) with one element in
B and one out, hence it intersects each block of P in at most one point; (iii) any α and α′ are linked through their
images σ(α) and σ(α′) in B.

There are κλ ways of choosing σ, and each way leads to a distinct complement. Hence, |compl(P)| ≥ κλ.
Upper bound. Observe that we have

∣∣B̄∣∣ ≥ |P ′|. Let now Q be any complement to P. Then

1. P ∧Q = ⊥ implies that for every A ∈ Q and B ∈ P, |A ∩B| ≤ 1, and hence |A| ≤ |P| ≤ λ.

2. Let Q′ = {A′ ∈ Q | |A′| ≥ 2 } be the set of non-singleton blocks of Q. Since |A′ ∩B| ≤ 1, each A′ must
intersect B̄ in at least one point. As blocks of a partition, the A′ are pairwise disjoint, as are consequently these
intersections. Hence choosing (by AC) an element in each A′ ∩ B̄ defines an injection from Q′ to B̄, whereby
|Q′| ≤ B̄ ≤ λ.

3. An upper bound for the number of complements to P can then be found in the following way: Specifying Q′
uniquely determines the complement Q. Q has |Q′| ≤ λ non-singleton blocks, each of size at most |P| ≤ λ,
yielding |⋃Q′| ≤ |λ× λ| = λ. A complement Q is fully specified by (i) the union

⋃Q′ of the non-singleton
blocks; and (ii) the partition of these unions into blocks of Q′. Write ε = |⋃Q′|. For each cardinality ε that⋃Q′ can attain, there are at most λε ≤ κε ways to select the elements

⋃Q′ from B̄. Since Q′ is a partition of
ε, there are at most |Πε| = 2ε distinct ways to partition these elements into blocks of Q′. Letting now ε range
over all potentially allowed cardinalities, i.e. all less than or equal λ, we find

|compl(P)| ≤
∑
ε≤λ

2ε · λε ≤
∑
ε≤λ

2ε · κε =
∑
ε≤λ

κε = κλ

Observe that the above applies both to finite and infinite λ = |κ \B|.

Corollary 258. Let κ be infinite and P /∈ {⊥,>} be a partition of κ. If P contains two or more blocks of cardinality
κ, then |compl(P)| = 2κ.

Proof. If two blocks, B1 and B2, have cardinality κ, then |κ \B1| = κ, and Lemma 257 yields |compl(P)| ≥ κκ =
2κ.

Lemma 259. Let κ be infinite and P /∈ {⊥,>} be a partition of κ. Then, κ ≤ |compl(P)| ≤ 2κ.

Proof. As |Πκ| = 2κ, the upper bound is immediate, and it suffices to prove the lower bound. There are two cases
to consider: First, if P contains no block of cardinality κ, Lemma 256 yields |compl(P)| = 2κ. Otherwise, if P does
contain a block B of cardinality κ, Lemma 257 implies |compl(P)| = κ|κ\B|. Because P 6= >, we have |κ \B| ≥ 1,
whereby |compl(P)| ≥ κ. In both cases, |compl(P)| ≥ κ.

We can now state our main theorem:

Theorem 260. Let κ be infinite and let P /∈ {⊥,>} be a partition in Πκ. Then

1. κ ≤ |compl(P)| ≤ 2κ.

2. |compl(P)| ≥ 2|P|.

3. If P contains no block of cardinality κ, then |compl(P)| = 2κ.

4. If P contains a block B of cardinality κ, then |compl(P)| = κ|κ\B|.

5. If P contains two or more blocks of cardinality κ, then |compl(P)| = 2κ.

Proof. (1)–(4) are Lemmas 259, 255, 256 and 257, respectively. (5) is Corollary 258.

A consequence of Theorem 260 is that partitions with fewer complements than 2κ must always have exactly one
large block, and a sufficiently small number of elements remaining after removing it:

Corollary 261. If |compl(P)| < 2κ, then P contains exactly one block B of size κ, and |κ \B| < κ.

For any infinite cardinal κ, both κ and 2κ can be realized as |compl(P)| for some partition P. In fact, Theorem
260 provides a complete characterization of the cardinals that can be realized as complement counts: it is precisely
those cardinals of the form κλ, with 0 ≤ λ ≤ κ (and 1 ≤ λ ≤ κ when considering only non-trivial partitions), as the
following corollary shows:
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Corollary 262. For any infinite cardinality κ, and every cardinal 0 ≤ λ ≤ κ, there is a partition Pλ of κ for which
|compl(Pλ)| = κλ.

In particular, there exist partitions P and R in Πκ with |compl(P)| = κ, respectively |compl(R)| = 2κ.
No cardinal that is not of the form κλ can be realised as |compl(P)|.

Proof. Theorem 260 fully describes the possible number of complements of non-trivial partition. Remembering that
κκ = 2κ and that, for > and ⊥, the number of complements is 1 = κ0, it is apparent that for any partition, the
number of complements has the form κλ. Conversely, the cardinal κλ, 1 ≤ λ ≤ κ, can be realised as the number of
complements to the doubleton partition {B, B̄} with |B| = λ and

∣∣B̄∣∣ = κ, using Theorem 260(4).

8.1 Orthocomplements

It is well-known that Πκ is relatively complemented. To our knowledge, it has so far been unknown whether there
exists an n > 2 such that Πn is orthocomplemented. We prove that for any cardinality κ > 2 (finite or transfinite),
Πκ is not orthocomplemented.

Proposition 263 (Orthocomplements). If κ > 2, then Πκ is not orthocomplemented.

Proof. Orthocomplementation yields a bijection between atoms and co-atoms. Atoms are singular partitions whose
non-singleton block is a pair, hence there are as many atoms as there are pairs, namely κ×(κ−1)

2 . Co-atoms are partitions
with two blocks, a non-trivial subset of κ and its complement, hence there are as many co-atoms as half the number
of non-trivial subsets, namely 2κ−2

2 . For κ ≥ 3, these numbers are different hence Πκ cannot be orthocomplemented.
For κ = 3, one can easily check that Π3 is not orthocomplemented either (because it contains an odd number of
elements).

9 Results under GCH

Under the Generalized Continuum Hypothesis, the results from the previous sections all simplify greatly, and it is
possible to obtain much stronger results.

9.1 Maximal chains under GCH

Under GCH, we can fully determine the possible cardinals for maximal chains in Πκ, as we will see in Theorem 267
below.

Lemma 264. Let κ be an infinite cardinal, let C be a maximal chain in Πκ Given a partition P ∈ C, write P+ = ∧C+
P

(cf. Definition 218), and let
C∗ =

{
P ∈ C | P ≺ P+

}
Then κ ≤ 2|C

∗|.

Proof. First note that, being maximal, C is end-point including, closed and covering by Lemma 220. Let P−α,β = ∨C−α,β
(cf. Definition 221). By Lemma 222, we have P−α,β ≺ ∧C+

α,β and by construction, C+
α,β = C+

P−α,β
. Hence, P−α,β ∈ C∗.

We next construct a family of maps ϕα : C∗ → {0, 1} in the following way: Let P ∈ C∗. By definition, we have
P ≺ P+, thus there exist an unique block BP of P+ which is the union of two blocks of P (and all others are also
blocks of P). Choose, by axiom of choice, one of these two blocks as BP,0.

Now, for each α ∈ κ, we define ϕα : C∗ → {0, 1} by

ϕα(P) =

{
0 if α ∈ BP,0
1 otherwise

The previous construction shows that for any α 6= β, (i) P−α,β ∈ C∗; (ii) α and β are precisely in BP−α,β ; and (iii)

they are in different blocks of P−α,β , that is one of them is in BP−α,β ,0 and the other is not. Hence, ϕα(P−α,β) 6= ϕβ(P−α,β)

and consequently, ϕα 6= ϕβ . Thus, the map α 7→ ϕα is injective from κ to {0, 1}C∗ , whereby κ ≤ 2|C
∗|.

Proposition 265. Let κ be any infinite cardinal. Under GCH, any maximal chain C in Πκ has cardinality

|C| ≥
{
κ− if κ is a successor cardinal,
κ if κ is a limit cardinal.
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Proof. By Lemma 264, κ ≤ 2|C
∗| ≤ 2|C| for any maximal chain C. Under GCH, |C|+ = 2|C|, whereby κ ≤ |C|+.

Assume now that |C| < κ, i.e. |C| < κ ≤ |C|+. By definition of the successor relation, this implies κ = |C|+.
If κ is a limit cardinal, this is a contradiction, and so we must have |C| ≥ κ. If κ is a successor cardinal, it follows

that |C| ≥ κ−.

By combining the previous results, we can tightly bound the cardinal of any maximal chain in Πκ under GCH.
In addition, the following simple restriction of Theorems 235 and 250 to the case when GCH is assumed, provides
instances of long and short maximal chains that realize the bounds established above.

Corollary 266. Let κ be a infinite cardinal. Under GCH, there exists a maximal chain of length κ+ in Πκ; and there
exists a chain of length κ in Πκ+ .

Proof. If GCH is assumed, the first statement is an immediate consequence of Theorem 235; and the second statement
follows, because the precondition in Theorem 250, λ < κ only if 2λ < 2κ, is always satisfied under GCH.

Theorem 267. Let κ be an infinite cardinal. Under GCH, the cardinality of any maximal chain in Πκ is:

• κ−, κ, or κ+ (and all three are always achieved) if κ is a successor; and

• either κ or κ+ (and both are achieved) if κ is a limit cardinal.

Proof. The lower bounds are given by Proposition 265, and the upper bound is the cardinality of Πκ itself.
Furthermore, each possible value is always realized: For any infinite cardinal κ, there always exists a well-founded

maximal chain of cardinality κ. By Corollary 266, there also exists a chain of length κ+, and for successor cardinals
κ, a chain of length κ−.

The bounds can also be stated in a symmetrical fashion:

Corollary 268. For any infinite cardinal κ (successor or limit), the cardinality of any maximal chain lies between
sup{λ < κ} and inf{λ > κ}.

9.2 Maximal antichains under GCH

Corollary 269. Under GCH, when κ is an infinite cardinal, the length of any maximal antichain in Πκ is either κ
or κ+, and both are realized.

Proof. This is the content of Theorems 251, 252, together with the fact that |Πκ| = 2κ, when the assumption 2κ = κ+

is made.

9.3 Complements under GCH

Under GCH, the number of complements |compl(P)| for partitions P /∈ {>,⊥} of an infinite cardinal κ is either κ or
κ+ = 2κ. In addition, the simplified rules for arithmetic under GCH strengthen Theorem 260:

Theorem 270. Let κ be an infinite cardinal, and P /∈ {>,⊥} be a partition of κ. Assuming GCH, then

|compl(P)| =


κ if and only if exactly one block B ∈ P has |B| = κ,

and |κ \B| < cf(κ)

2κ otherwise

Proof. Consider the three cases:

1. First, if P contains either zero or at least two blocks of size κ. Then Theorem 260(2) or 260(5) yields |compl(P)| =
2κ.

2. Next, assume P contains exactly one block B of size κ, and |κ \B| ≥ cf(κ). By Theorem 260(4), |compl(P)| =
κ|κ\B| ≥ κcf(κ) > κ. GCH, together with |compl(P)| ≤ 2κ, then yields |compl(P)| = 2κ.

3. Finally, if P contains exactly one block B of size κ in P, and |κ \B| < cf(κ). Under GCH, κλ = κ if and only if
1 ≤ λ < cf(κ). Together with Theorem 260(4) and P 6= >, this yields |compl(P)| = κ|κ\B| = κ.
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In Theorem 270, the assumption of GCH is necessary in the sense that it is easy to construct non-GCH examples
that violate the result. For example, consider a model where 2ℵ1 = 2ℵ2 = ℵ3, which is consistent with ZFC by
Easton’s Theorem, and let κ = ℵ2. Consider a partition P = {B,B′}, where |B| = ℵ2, and |B′| = ℵ1 < cf(ℵ2).
Then |κ \B| = |B′| = ℵ1, so 260(4) yields |compl(P)| = ℵℵ12 ≥ 2ℵ1 . But in this model, 2ℵ1 = 2ℵ2 = 2κ > κ, despite
|κ \B| < cf(κ).

However, the result does hold for some classes of cardinals, regardless of whether or not GCH is assumed. In
particular, whenever µλ < κ for all µ < κ and all λ < cf(κ). This is the case, for example, when κ is a strong limit
cardinal.

9.4 Gathering all results under GCH
Collecting the results of this section gives us the following concise characterization of chains, antichains, and comple-
ments in infinite partition lattices under GCH:

Theorem 271. Under GCH, when κ is an infinite cardinal:

1. Any maximal well-founded chain in Πκ always has cardinality κ.

2. Any general maximal chain in Πκ has cardinality

(a) κ−, κ, or κ+ (and all three are always achieved) if κ is a successor cardinal; and

(b) either κ or κ+ (and both are achieved) if κ is a limit cardinal.

3. Any non-trivial maximal antichain in Πκ has cardinality either κ or κ+, and both are achieved.

4. Any non-trivial partition has either κ or κ+ complements. P /∈ {⊥,>} has κ complements if and only if (i) P
contains exactly one block, B, of cardinality κ, and (ii) |κ \B| < cf(κ); otherwise, P has κ+ complements.
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Abstract:
Classic results in computability theory are almost invariably extensional: they concern the be-
haviour of partial recursive functions rather than the programs computing them. We provide
generalised versions of two classic results Rice’s Theorem and the Rice-Shapiro Theorem and
demonstrate how they may be applied to study intensional properties such as time and space
complexity. In particular we obtain simple proofs of several striking negative results about
overapproximations of intensional properties, for example that any decidable property of pro-
grams that (strictly) contains the set of polytime program must contain programs of arbitrarily
high time complexity.
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1 Introduction

A cornerstone of computability theory is Rice’s Theorem [Ric53]: any non-trivial extensional set of programs is unde-
cidable (extensionality roughly means that the set depends only on the partial functions computed by the program).
This very generic formulation allows to prove undecidability of a variety of sets e.g. “programs that, on input 0, return
42”, “programs that compute a bijection” or “programs that compute a non-total function”.

Rice’s Theorem showcases a fundamental dichotomy between programs and the partial functions they compute:
it gives an undecidability criterion for sets of programs, but these sets are defined by the function computed by the
programs. Underlying this dichotomy and the Theorem is the notion of extensional equivalence “two programs are
equivalent iff they compute the same function”. Rice’s Theorem basically tells us that this equivalence is undecidable.

Even after 60 years, scant research has been made in intensional analogues of Rice’s Theorem, i.e. undecidability
results concerning how programs compute rather than what they compute. One exception is Asperti’s work on
complexity cliques [Asp08]. Roughly, Asperti refines the extensional equivalence relation into the equivalence relation
“two programs are equivalent if they compute the same function with comparable (up to big-Θ) complexity” and then
states the corresponding result that this equivalence relation is also undecidable.

In this work, we generalise Rice’s Theorem in a different direction. Rather than trying to refine the extensional
equivalence relation and find other, more precise, ones that are still undecidable, we will first lift the strict extensionality
of sets and then generalise to any kind of equivalence between programs. The first generalisation is to remove the
strict extensionality of the sets considered. We will only ask that the studied sets accept all the programs computing
one given function, but we put no condition on programs computing other functions (they may or not be in the set).
This allows to consider more intensional sets of programs. The second generalisation is to completely change the
equivalence relations considerd. We must still impose very general conditions on such relations (via so-called switching
families). This allows both to refine the equivalence (i.e., Asperti’s Result fits perfectly in the generalised setting)
and to consider completely different equivalences.

Our work has implications for Implicit Computational Complexity (ICC). Classical ICC provides sound but in-
complete criteria for a given property (such as computing a Ptime function). The criteria are sound in the sense that
being accepted certifies the complexity bound, but incomplete in the sense that some “good” programs are nonetheless
rejected (but extensional completeness is usually required, e.g. every Ptime function is computed by some program
accepted, but not all programs running in polynomial time are accepted). That is, a classical ICC criterion admit false
negatives but guarantees the absence of false positives. In this sense, an ICC criterion can be seen as a certificate of
good behaviour by the program. It is an under -approximation of the target set.

Consider the non-classical view: what if we try to characterise over -approximations rather than under-approxima-
tions? From an ICC point of view, that means a criterion that accepts false positives but no false negatives. Every
program in the target set should be recognised but we will also accept some “bad eggs” in the process. The hope
being that there will be few of them and that they won’t be too bad. Typically, it would make sense to accept all the
polytime programs plus “a few” exponential time ones. As long as there’s not too many exponential ones and they’re
“only” exponential and not worse, this is still interesting. Typically, most accepted programs would run fast (e.g., in
a couple of minutes) and some would be slower but not too slow.

Moreover, having over-approximation can be a good way to prove lower bounds on complexity. Classical complexity
has been very good to provide upper bounds on complexity (e.g., SAT is in NP), but is bad at providing lower bounds
(thus making separation results between complexity classes hard to prove). Classical ICC, via under -approximations,
can only provide upper bounds: if the program is accepted, then it is guaranteed to have complexity at most the one
of the criterion, but if the program is rejected, nothing is known. Having an over -approximation could help provide
lower bounds: if the program is rejected, then it is guaranteed to have a “bad” behaviour.

However, our intensional versions of Rice’s Theorem will show that over-approximations are patently not a viable
path: There will, necessarily, always be many bad eggs and there will always be some extremely bad ones.

2 Notations and Rice’s Theorem

We assume an unspecified, Turing-complete programming language, in the proofs we’ll use an informal syntax for
programs. We note JpK the function computed by a program p and conversely Pf the set of all programs computing
function f . We define the extensional equivalence, or Rice’s equivalence, as pRq⇔ JpK = JqK.

We say that a set of programs P is

• non-trivial if it is neither empty, nor the set of all programs.

• extensional if it is the union of classes of R;

• partially extensional for a set of functions F if it contains all the programs computing a function in F : PF ⊂ P

(over approximation of PF ). It does not need to be extensional for other functions;
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• extensionally complete for a set a functions F if it can computes all these functions: F ⊂ JPK;

• extensionally sound for a set a functions F if it can compute only these functions: JPK ⊂ F (under approximation
of PF );

• an ICC characterisation of a set of functions F if it is both extensionally sound and complete for F , i.e. it
computes exactly these functions: JPK = F ;

• extensionally universal if it is extensionally complete for the set of computable partial functions (each computable
partial function is computed by at least one program in P).

Note that any extensionally universal set of programs must be infinite as there are infinitely many computable
functions.

Theorem 272 (Rice[Ric53]). Any (non-trivial) extensional set of programs is undecidable.

Sketch of proof. Let p be in the set and suppose that the infinite loop isn’t. Consider the program q’(x) = q(0);
p(x). It computes the same thing as p (and hence is in the set) iff q(0) terminates (and loops otherwise), an undecidable
property.

Note for later reference, that Rice’s Theorem could equivalently be formulated as: “Every decidable extensional
set of programs is trivial”.

3 The Rice and Rice-Shapiro Theorems, intensionally

We now provide intensional versions of two classic results; the proofs use simple tools from classical recursion theory,
but are different from the proofs of the classical extensional versions.

3.1 Rice, intensional version

Definition 273 (Recursively separable). Two sets A and B are said to be recursively separable (a concept due to
Smullyan [Smu58]) if there is a decidable set C such that A ⊆ C and B

⋂
C = ∅. The sets A and B are said to be

recursively inseparable if they are not recursively separable.

That is, C may overapproximate A, but will never contain elements of B. A classical example of recursively
inseparable sets (see [Pap94], Section 3.3) is:

Lemma 274. Let A = { p | JpK (0) = 0 } and B = { p | JpK (0) /∈ {0,⊥}}. They are recursively inseparable.

Our first generalisation of Rice’s Theorem is to replace the “extensional” condition by partial extensionality.

Theorem 275. Any non-empty decidable partially extensional set of programs is extensionally universal.

That is, any decidable over-approximation of an extensional set of programs contains at least one program for
any computable partial function. Among other, it must contain at least one program that always loops. Thus, for
example, a decidable set of programs capturing all the programs that compute the constant function x 7→ 0 must also
capture (at least) one program that always loops. There is no hope of reaching intensional completeness and keeping
extensional soundness.

Note that, contrary to Rice’s Theorem, we only require the set of program to be non-empty rather than non-trivial.
Indeed, the trivial set of all programs is certainly decidable, partially extensional and extensionally universal.

Sketch of proof. Suppose that the set is partially extensional for JpK but contains no program computing JqK. Consider
program r’(x) = if r(0)=0 then p(x) else q(x). It is in the set if r(0) = 0 and out if r(0) terminates on
another value, thus deciding the set would recursively separate A and B above.

Corollary 276 (Rice’s Theorem). Any (non-trivial) extensional set of programs is undecidable.

Sketch of proof. An extensional and extensionally universal set must be the set of all programs.

This Theorem has as immediate corollaries several folklore results that are usually explained by simple ad-hoc
arguments (e.g. “adding arbitrarily many dummy x:=x instructions”)–the theorem provides a uniform means of
proving these. It is also more general than Rice’s Theorem.

Corollary 277 (Many programs). For any computable function f , there are infinitely many programs computing it.
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Proof. If Pf is finite, it is decidable. By construction, it is partially extensional for f , hence by the Theorem it must
be extensionally universal and thus infinite, an absurdity.

Note that this is a bit less trivial than what it appears: The corollary states that it is not possible to design a
programming language with only finitely many possible implementations of a given function without losing Turing
completeness.

Corollary 278 (Arbitrary size). For any N , every computable function is computable by a program of size larger than
N .

Proof. Let P = { p | |p| ≤ N }. It is finite, hence by previous Corollary cannot contain all the programs computing a
given function.

3.2 Rice-Shapiro, intensional version

We can apply the same idea to the Rice-Shapiro Theorem Theorem [MS55, Sha56]:

Theorem 279 (Rice-Shapiro). Let F be a recursively enumerable set of computable functions. f ∈ F ⇔ there exists
g ∈ F with finite domain D such that ∀d ∈ D, f(d) = g(d).

The “power” of this Theorem comes from the following construction: Suppose that f is in F . As f ∈ F , there
exists g with finite domain D in F that agrees on f on this finite domain. Now, consider any function f ′ that also
agrees on g on this finite domain. Using the ⇐ direction of the Theorem, f ′ ∈ F . Thus, any function that agrees with
f on a finite domain D must be in F and the only thing one can do to compare functions (especially to determine
whether a given program computes a given function or not) is to check a finite number of inputs.

The intensional version is:

Theorem 280. Let P be a recursively enumerable partially extensional set of programs. Then, for any computable
function f , there exists a program p ∈ P such that JpK differs from f only on finitely many inputs.

Note that P here is recursively enumerable and not necessarily decidable as in Rice’s Theorem. For example, if P is
a recursively enumerable set of programs partially extensional for a total function (e.g., the constant function x 7→ 0),
then by choosing f to be the totally undefined function, we can conclude that P must contain a program that loops on
all but finitely many inputs, by choosing f : x 7→ 1 we can conclude that P must also contain a program that return 1
on all but finitely many inputs.

4 Beyond Rice’s Theorem
The second, and broader, generalisation we make is to choose other equivalence relations than the Rice relation R.

4.1 Switching families

Definition 281. Let S be a set and ≈ an equivalence relation on S. A switching family compatible with ≈ is a family
I = (πs)s∈S of computable total functions πs : S × S → S such that the sets AI = { s ∈ S | ∀x, y.πs(x, y) ≈ x } and
BI = { s ∈ S | ∀x, y.πs(x, y) ≈ y } are recursively inseparable.

The definition implies that neither AI nor BI is decidable. Also, there may be elements in S neither in AI nor in
BI such that πs(x, y) is not always equivalent to x and not always equivalent to y. Note that the classical projections
π1(x, y) = x and π2(x, y) = y are switching functions but in general switching functions do not need to ignore one of
their arguments.

The constructions of r′ in the proof of the Theorem 275 constitutes a switching family with r′(x) = πr(p, q)(x) =
if r(0) then p(x) else q(x). We call this the standard switching family.

4.2 Rice’s Theorem, second generalisation

Let P = {P1, P2, . . .} be a partition of a set S and P be a subset of S, it is

• compatible with P if it is the union of classes of P;

• partially compatible for a block Pk if it contains all the elements in that block: Pk ⊂ P. Note that it does not
need to be compatible for other blocks;

• complete for a set of blocks Pk1 , Pk2 , . . . if it contains at least one element of each of these blocks: P
⋂
Pki 6= ∅;
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• universal if it is complete for P itself: it contains at least one element in each block of the partition.

Theorem 282. Let P be a partition of a set S and I = (πs)s∈S be a switching family compatible with it.
Any non-empty decidable partially compatible subset of S is universal.

Sketch of proof. Let x be in a class included in the set and y be in a class that does not intersect it. Consider
s′ = πs(x, y). Deciding if s′ is in the set would recursively separate AI and BI , which is impossible by definition of
the switching family.

4.3 Examples : computational complexity
We now come to our most striking example: any decidable set of of programs containing, for instance, the polynomial-
time programs, must contain programs of arbitrarily high complexity.

Example 283 (Complexity). Let Φ be a complexity measure in the sense of Blum. Let ≡Φ be the equivalence relation
p ≡Φ q iff Φp ∈ Θ(Φq).

The standard switching family is compatible with the above relation: when r(0) terminates it does so with a
constant complexity, whence the global complexity is the one of p (resp. q) up to a constant additive factor.

Hence, any non-empty decidable set of programs partially compatible with ≡Φ is universal and must contain
programs of arbitrarily high complexity.

This example can be specialised by making the partially compatible set more precise. Note that we consider sets
of programs defined by properties of the programs themselves, and not necessarily by properties of the computed
function (i.e. this is not the set of programs computing Ptime functions as it does not include inefficient programs
that compute a “simple” function in a long time).

Example 284 (Polynomial time). Let PPtime be the set of programs whose runtime is polynomial. It is partially
compatible with ≡Φ when Φ is the usual time complexity. Thus, any decidable set that includes all the programs
computing in polynomial time must also include programs of arbitrarily high time complexity. Including not only
exponential programs but also non primitive recursive ones and even non multiple recursive ones.

Any attempt at finding a decidable over-approximation of PPtime is doomed to also contain many extremely
“bad” programs.

Example 285 (Linear space). Let PLinSpace be the set of programs computing in linear space. It is partially
compatible with ≡Φ when Φ is the usual space complexity. Thus, any decidable set that contains PLinSpace must
also contains programs of arbitrarily high space complexity.

Thus, even for sets not closed under composition, over-approximations cannot both be decidable and contain only
programs of restricted space complexity.

Example 286 (Asperti-Rice, [Asp08]). Let A be the equivalence relation pAq iff
(
JpK = JqK and Φp ∈ Θ(Φq)

)
. The

standard switching family is compatible with it (seeing relations as subset of couples, we have A = (R
⋂ ≡Φ), the

standard switching family being compatible with both).
Hence, any non-empty decidable set of programs partially compatible with A is universal. This generalises Asperti’s

result that the only decidable compatibles sets (i.e. “Complexity cliques” in his formalism) are the trivial ones.
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1 Introduction
A cornerstone of computability theory is Rice’s Theorem [Ric53]: any non-trivial extensional set of programs is
undecidable (extensionality means that the set depends only on the partial functions computed by the program). This
very generic formulation allows to prove undecidability of a variety of sets e.g. “programs that, on input 0, return 42”,
“programs that compute a bijection” or “programs that compute a non-total function”.

Rice’s Theorem showcases a fundamental dichotomy between programs and the partial functions they compute:
it gives an undecidability criterion for sets of programs, but these sets are defined by the function computed by the
programs. Underlying this dichotomy and the Theorem is the notion of extensional equivalence “two programs are
equivalent iff they compute the same function”. Rice’s Theorem basically tells us that this equivalence is undecidable.

Even after 60 years, scant research has been made in intensional analogues of Rice’s Theorem, i.e. undecidability
results concerning how programs compute rather than what they compute. One exception is Asperti’s work on
complexity cliques [Asp08]. Roughly, Asperti refines the extensional equivalence relation into the equivalence relation
“two programs are equivalent if they compute the same function with comparable (up to big-Θ) complexity” and then
states the corresponding result that this equivalence relation is also undecidable.

In this work, we generalise Rice’s Theorem in a different direction. Rather than trying to refine the extensional
equivalence relation and find other, more precise, ones that are still undecidable, we will first lift the strict extensionality
of sets and then generalise to any kind of equivalence between programs. The first generalisation is to remove the
strict extensionality of the sets considered. We will only ask that the studied sets accept all the programs computing
one given function, but we put no condition on programs computing other functions (they may or not be in the
set). This allows to consider more intensional sets of programs. The second generalisation is to completely change
the equivalence relations considered. We must still impose very general conditions on such relations (via so-called
switching families). This allows both to refine the equivalence (i.e., Asperti’s Result fits perfectly in the generalised
setting) and to consider completely different equivalences.

Our work has implications for Implicit Computational Complexity (ICC). Classical ICC provides sound but in-
complete criteria for a given property (such as computing a Ptime function). The criteria are sound in the sense that
being accepted certifies the complexity bound, but incomplete in the sense that some “good” programs are nonetheless
rejected (but extensional completeness is usually required, e.g. every Ptime function is computed by some program
accepted, but not all programs running in polynomial time are accepted). That is, a classical ICC criterion admit false
negatives but guarantees the absence of false positives. In this sense, an ICC criterion can be seen as a certificate of
good behaviour by the program. It is an under -approximation of the target set.

Consider the non-classical view: what if we try to characterise over -approximations rather than under-approxima-
tions? From an ICC point of view, that means a criterion that accepts false positives but no false negatives. Every
program in the target set should be recognised but we will also accept some “bad eggs” in the process. The hope
being that there will be few of them and that they won’t be too bad. Typically, it would make sense to accept all
the polytime programs plus “a few” exponential time ones. As long as there’s not too many exponential ones and
they’re “only” exponential and not worse, this is still interesting. Typically, most accepted programs would run fast
(e.g., in a couple of minutes) and some would be slower but not too slow (e.g., run in a couple of hours or days).
In non time-critical situations, such guarantee can be useful (in the same way that quicksort outperforms merge sort
in average even though it has quadratic worse case; or that the simplex algorithm is remarkably efficient in practise
despite its exponential worse case).

Moreover, having over-approximations can be a good way to prove lower bounds on complexity. Classical complexity
has been very good to provide upper bounds on complexity (e.g., SAT is in NP), but is bad at providing lower bounds
(thus making separation results between complexity classes hard to prove). Classical ICC, via under -approximations,
can only provide upper bounds: if the program is accepted, then it is guaranteed to have complexity at most the one
of the criterion, but if the program is rejected, nothing is known. Having an over -approximation could help provide
lower bounds: if the program is rejected, then it is guaranteed to have a “bad” behaviour.

Figure 1 describes the situation. We have an extensional set (the set of all programs computing a function in
Ptime, irregular red shape). We know, by Rice’s Theorem, that such an extensional set is undecidable. ICC aimed
at finding an under-approximation of it (small blue circle) and to make it as large as possible (unfortunately, we know
by experience that ICC under-approximations tend to be very small).

ICC also requires the under-approximation to be extensionally complete: it must contain one program for each
function in Ptime. Thus we know, for example, that there is at least one program computing the sorting function in
the under-approximation. However, we also know (by experience) that there are many programs computing the sorting
function out of it (but still in the set of programs computing Ptime functions, obviously), these are false negatives.
Note that this is not necessarily bad as many programs computing the sorting function are utterly inefficient (e.g.
first compute Ackermann function on each value in the list to be sorted, then sort it) and it is rather good that we
reject them. . .

Under-approximations, like classical complexity theory, are very good at providing upper-bounds. Any program
in the under-approximation is proved to be in the target set and thus computes a Ptime function. This gives an
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Figure 1: Under- and Over-approximations.

upper bound on the complexity of the function. If we could find a single program resolving, say, SAT, in the under-
approximation (blue question mark) then we’d know for sure that this program computes a Ptime function, hence
SAT would be Ptime.

Now, we want to investigate over-approximations, such as the large green circle. Finding programs that are in the
over-approximation but not in the under-approximation (red question marks) does not improve our knowledge as we
have no way to know whether they are in the target set or not (it may be a false positive). Obviously, making the
over-approximation small and the under-approximation large will reduce the number of such cases and give a better
understanding of the target set. Moreover, over-approximations are good to prove lower bounds, something at which
classical complexity fails. Indeed, if we can find a single program computing SAT that is not in the over-approximation
(green question mark), then we know for sure that this program is not in the target set and thus it does not compute
a Ptime function. This would allow to prove that SAT is not in Ptime.

However, our intensional versions of Rice’s Theorem will show that over-approximations are patently not a viable
path: There will, necessarily, always be many bad eggs (false positives) and there will always be some extremely bad
ones.

2 Preminaries and notations

2.1 Notations

We assume an unspecified, Turing-complete, programming language and note P the set of all programs. In the proofs
we’ll use an informal syntax for programs. We note JpK the function computed by a program p (i.e., semantics brackets)
and conversely Pf the set of all programs computing function f . We write JpK (x) = ⊥ to denote that p does not
terminate on input x.

We assume given a computable injective encoding of programs into natural numbers and we’ll abusively write
p do also design its encoding. Alternatively, this may be seen as programs accepting (source code of) programs as
input. We also assume given an universal program, that is, given the source code of a program (or its encoding into
a number), it is possible to simulate it on any input. Moreover, even if it is not always explicitly mentioned in the
proofs, an s-m-n Theorem (or an equivalent one) is often used. All these are common ingredients of computability
and hence part of any Turing-complete language.

We say that a set of programs P is

• non-trivial if it is neither empty, nor the set of all programs.

• extensional if it does not separate programs computing the same function: if p ∈ P and q /∈ P then JpK 6= JqK;
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• partially extensional for a set of functions F if it contains all the programs computing a function in F : PF ⊂ P

(over approximation of PF ). It does not need to be extensional and thus functions out of F may be computed
by both programs in and out of P;

• extensionally complete for a set a functions F if it can computes all these functions: F ⊂ JPK. It does not need to
contain all the programs computing a function in F as long as it contains at least one program for each function
in F ;

• extensionally sound for a set a functions F if it can compute only these functions: JPK ⊂ F (and thus P ⊂ PF is
an under approximation of PF );

• an ICC characterisation of a set of functions F if it is both extensionally sound and complete for F , i.e. it
computes exactly these functions: JPK = F ;

• extensionally universal if it is extensionally complete for the set of computable partial functions (each computable
partial function is computed by at least one program in P).

Note that any extensionally universal set of programs must be infinite as there are infinitely many computable
functions.

3 Rice’s Theorem: background and previous work

3.1 Rice’s Theorem and the extensional equivalence

Theorem 287 (Rice [Ric53]). Any (non-trivial) extensional set of programs is undecidable.

Proof. Let P be a non-trivial extensional set of programs and assume that it does not contains programs computing
the never defined function (otherwise, work with its complement). Let p ∈ P be a program in it.

Let q be any program and build program q′ as follows: on input x, q′ first simulates q on input 0 and then p on
input x. Informally speaking, we have q′(x) = q(0); p(x).

If q terminates on input 0, then q′ always computes the same thing as p and, by extensionality, must be in P. On
the other hand, if q does not terminate on input 0, then q′ never terminates and thus, by hypothesis, is not in P.

Thus, q′ ∈ P if and only if q terminates on input 0, which is not decidable.

Note that the precise construction of q′ heavily depends on the chosen language and its programming “bricks”.
However, be it function calls, universal machines or s-m-n Theorem, we know that given p and q (their Gödel’s
numbers, source codes, pre-compiled libraries, λ-term, . . . ) it is possible to build q′ acting as required. Note also that
even if q(0) is actually a constant, it can obviously not be pre-computed and thus q′ must contain the call to q(0) in
its code in order to get the proof working.

The power of Rice’s Theorem is that it allows to easily prove undecidability of a variety of properties of programs,
for instace:

• properties about termination on a given input, e.g. “programs which terminate on input 17”;

• properties about precise results on a given input, e.g. “programs which return 42 on input 54”;

• properties about larger input-output subsets, e.g. “programs that return an even integer on any prime input”;

• more general properties on the input-output relation, e.g. “programs computing a monotonic function”, “programs
computing a bijection”;

However, Rice’s Theorem is limited to extensional properties. It shows undecidability of any (non-trivial) set of
program behaviours that depend only on the input-output relation but it is unable to tell anything about intensional
sets of programs, that depend on the actual program behaviour. That is, it provides undecidability results on “what
is computed?” question but is unable to provide undecidability results on “how is it computed?”.

But intensional behaviour of programs is important in practice: the time or space resource use of a program is an
intensional property, as are security issues such as “will the program overwrite /bin/init?”. When armed only with
Rice’s Theorem we still need to prove undecidability of these questions “by hand”.

Now, the extensionality central to Rice’s Theorem defines an equivalence relation between programs.

Definition 288 (The Rice Equivalence Relation). We define the extensional equivalence, or Rice equivalence, as
pRq⇔ JpK = JqK, that is “two programs are equivalent iff they compute the same function”.
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With this in mind, an extensional set of programs is exactly the union of equivalence classes of the equivalence
relation R. Moreover, computable functions now become just convenient names for the classes of this equivalence and
programs can be seen as representatives of it. That is, f is not only a function but also the class of equivalence of all
programs computing it and the notation JpK = f means that the class of equivalence of p is exactly f . This notation
is reminiscent to usual bracketed notations for classes of equivalences (where [x] is the class of equivalence of x).

Rice’s Theorem states that not only is R itself undecidable but that any (non-trivial) union of classes of it is also
undecidable. Equivalence relations (or, similarly, partitions) have a very nice order structure, the refinement ordering1,
and Rice’s Theorem says that any (non-trivial) equivalence less precise than R is undecidable. Part of the intensional
quest is to ask what happen for equivalences which are more precise than R.

Theorem 289 (Rice’s Theorem, equivalence relation version). Any (non-trivial) equivalence relation ≡ such that
R ≤≡ is undecidable.

We shall momentarily generalise Rice’s Theorem by utilizing the view of Rice’s Theorem as a result on equivalence
classes as follows. First, we shall require the target set to simply contain some classes of R, and not necessarily to be
exactly the union of these (partial extensionality); next, we shall consider what happens if we completely change the
equivalence relation and use some other equivalence than R.

3.2 The Asperti-Rice Theorem
Despite its venerable age, little work have been done to try and improve Rice’s Theorem. A notable exception lies in
the work of Asperti [Asp08]. We present here the result purely in term of equivalence relation.

Definition 290 (Asperti’s equivalence). Let Φ be a complexity measure in the sense of Blum [Blu67]. We define
Asperti’s equivalence as pAq⇔ JpK = JqK∧Φ(p) ∈ Θ(Φ(q)), that is “two programs are equivalent iff they compute the
same function with the same complexity.”

This equivalence is exactly Asperti’s “similarity” (Def. 3 and Thm 4.). Next, Asperti introduce the notion of
complexity cliques (Def. 5) which are exactly the unions of classes of A (Thm. 8). Because we have already started to
switch the vocabulary toward equivalences and classes, we don’t need to define these cliques.

Theorem 291 (Asperti-Rice [Asp08]).
Any (non-trivial) union of classes of A is undecidable.
or, said otherwise,
Any (non-trivial) equivalence less precise than A is undecidable.

Strikingly, the proof is essentially the same as for Rice’s Theorem. Especially, the reduction from the Halting
problem is exactly the same and we just need to add a discussion on the complexity (which is here somewhat simpler
and less formal than Asperti’s original proof). We emphasise this similitude by greying out parts of the proof that are
the same as for Rice’s Theorem.

Proof. First, note that programs computing the never defined function must also have a never defined complexity.
Hence, they form exactly one class of A.

Let P be a non-trivial union of classes of A and assume that it does not contains programs computing the never
defined function (otherwise, work with its complement). Let p ∈ P be a program in it.

Let q be any program and build program q′ as follows: on input x, q′ first simulates q on input 0 and then p on
input x. Informally speaking, we have q′(x) = q(0); p(x).

If q terminates on input 0, then q′ always computes the same thing as p; moreover, the complexity of q′ is the
(constant) complexity of q(0) (constant because it is computed on a fixed input) plus the complexity of p2. Because
the constant additive factor is absorbed in the Θ equivalence, we have Φ(q′) ∈ Θ(Φ(p)) and because they compute the
same function we thus have pAq′, hence q′ ∈ P.

On the other hand, if q does not terminate on input 0, then q′ never terminates and thus, by hypothesis, is not in
P.

Thus, q′ ∈ P if and only if q terminates on input 0, which is not decidable.

Among other, Asperti’s result is enough to prove the undecidability of complexity classes. Indeed, for example, the
set of all programs computing in quadratic time (Θ(n2)) is clearly a non-trivial union of classes of A, hence undecidable.
Similarly, the sets of polytime programs, of linear space programs, . . . are undecidable.

As said, this proof boils down to the exact same argument as the proof of Rice’s Theorem. In this sense, the
title of Asperti’s article “The intensional Content of Rice’s Theorem” is uncannily precise: all this result was already

1The refinement ordering is defined by ≡0≤≡1 iff x ≡0 y implies x ≡1 y, see Subsection 3.4 for more details.
2This is where this version of the proof lacks formality while Asperti enforces s-m-n and linear-composition properties to ensure that

the complexity of the sequencing is indeed small enough.
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contained in Rice’s Theorem and it took us 50 years to realise it. This statement is certainly interesting from an
history of science point of view in pointing the early focus on computability while complexity was of lesser interest.
It also makes it a true tour de force to have been able to look through a fifty years old classical result and see that it
actually was more powerful than globally believed.

The results in this paper will require a different proof. Thus, we are not only studying the content of an existing
result but really giving new, more intensional, versions of it.

3.3 The extensional cone

The situation after Rice’s Theorem can be illustrated as in Figure 2. On the left, we have the set of all programs and
in the middle the set of computable functions. The semantics function, J•K, maps programs onto functions and several
programs are mapped to the same function. It exactly defines the extensional equivalence, R, which is colour-coded
in the picture: the green programs are all the programs that compute the green function and they form exactly one
class of R. And by definition, the classes of R (i.e. the computable functions) are the basic blocks with which we can
build extensional sets: each extensional set is always exactly the union of some of these.

Now, Rice’s Theorem states that any (non-trivial) extensional set is undecidable. Thus, each class of R itself is
undecidable. But the Theorem also states that no matter how we group them, the resulting union is undecidable.
That is, we may make R less precise by grouping all the programs that return the same value on input 0 (dashed
lines), the resulting equivalence is undecidable by Rice’s Theorem. Or we could group them if they return the same
value on all inputs between 3 and 9 (bold lines), and still get an undecidable but completely different equivalence, and
so on. . .

Actually, Rice’s Theorem states that anything that lies within the hatched “extensional cone” on the right of the
picture is undecidable as it is extensional.

On the other side, we know that what’s on the extreme left is decidable as it is the (syntactical) equality between
programs (i.e. the equivalence where no two different elements are actually equivalent). Thus, the first part of the
intensional quest lies in this picture: if we are anywhere in the cone on the right of R, we are undecidable. But the
left-end of the picture is decidable. So when we move to the left, something must become decidable at some point.
When and how does it become decidable?

The situation with Asperti-Rice Theorem is now depicted in Figure 3. The boundary of undecidability has been
pushed back to the left from R to A. Actually, A is more a family of equivalences rater than a single one because
each Blum’s complexity measure creates a new A. For the sake of clarity a single one is represented on the Figure.
Asperti’s equivalence is not extensional. Programs computing the same function are split by complexity. Hence, it
really lies on the left of R and gives some answers to the intensional quest. The question of when all this becomes
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Figure 3: The extensional cone, revisited

decidable is now restricted to what’s on the left of A.
Everything on the right of A is undecidable by Asperti-Rice Theorem. This includes R and the previous extensional

cone and thus this is indeed a generalisation of Rice’s Theorem. It is worth noticing that the new cone on the right
of A can, somehow, “circumvent” R. That is, it is possible to go from A to the trivial equivalence by a chain (in the
order theoretic sense) of equivalences that are all out of the extensional cone! For example, classes of A can first be
grouped purely by complexity, disregarding semantics.

This is the reason why, on the bottom, the hatched area of Asperti-Rice Theorem goes around the hatched arrow
of Rice’s Theorem. But the same thing happens on the left! It is, similarly, possible to go from syntactical equality to
R by circumventing A for a long time (e.g., group program by “same semantics, same size” first). It is also possible to
go from on end to the other by a chain of equivalences that completely circumvent both A and R, it is even possible
to do so with a chain where every single equivalence is decidable (e.g. after numbering the programs in a decidable
way, consider the equivalences with a single non-singleton class J0;nK).

This brings the second part of the intensional quest. Not only do we want to push the boundary of undecidability
as far to the left as possible, but we also want to study equivalences that do not lie on this semantics cone. The
one-dimensional representation below our cone is poorly adapted to illustrate this.

3.4 The equivalence lattice

As mentioned previously, the set of equivalence relations on a set has a natural ordering, the refinement defined by
≡0≤≡1 iff x ≡0 y implies x ≡1 y. Said otherwise, this means that each class of ≡0 is a subset of a class of ≡1. Together
with this ordering, the set of equivalences forms a complete lattice [Ore42] whose minimal element, ⊥, is the equality
and whose maximal element, >, is the trivial equivalence with a single class (each element is equivalent to each other).

While it is not the main focus of this article, it is worth noticing that this lattice has a very rich structure [AMRS17]
and interacts with decidability properties in complicated ways [MS].

To come back to Rice’s and Asperti-Rice Theorems, expressed in the language of lattice, they now become:

Theorem 292 (Rice, Asperti).
Every (non-trivial) equivalence in the principal filter at R is undecidable.
Every (non-trivial) equivalence in the principal filter at A is undecidable.
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The fact that these results are so cleanly expressed with order
theoretic vocabulary is in itself a strong clue that the study of the
equivalences lattice can shed some light on the extensional/inten-
sional dichotomy.

Similarly, once we are given a Blum complexity measure Φ, this
defines an equivalence pBΦq iff Φ(p) ∈ Θ(Φ(q)) (it is indeed an equi-
valence because Θ defines an equivalence between functions). Now,
we have A = R ∧BΦ is exactly the meet of these two equivalences.
Again, the simplicity of this relation in the order theoretic language
tells us to dig into it. This fact was already noticed by Asperti as the
proof that A (“similarity”) is indeed an equivalence (Thm. 4) simply
points out that it is the intersection of two equivalences. Note that
this implies that A ≤ BΦ hence the undecidability of BΦ (and its
principal filter) is a direct consequence of Asperti-Rice Theorem.

We shall not delve deeper into the lattice structure, but rather
examine different equivalence relations. Especially, we shall consider
equivalence relations not in the principal filter at either R or A ,and
thus provide new results and describe new areas of undecidability in
the lattice.

4 Intensionality: first generalisation
The first generalisation we want to make is to consider target sets not as unions of classes of R (extensional sets) but
simply as containing some classes (partially extensional set), that is we want to speak about over-approximations of
extensional sets.

Obviously, we are going to loose undecidability in the process. Indeed, a set such as “the set of programs that
contain a loop” is partially extensional for the never defined function (as programs without loops always terminate),
non-trivial, and decidable. However, we’ll see that we can still get something interesting out of it.

If we closely examine the proof of Rice’s Theorem, the argument consists in finding two functions, one in P (or rather
all programs computing it are in P) and one not in it, and then for each program q we can build a program q′ which
computes one of the two functions depending on a non-decidable property; we can then conclude by extensionality.
That is, the proof actually requires only partial extensionality of P (for JpK) and of its complement (for the never
defined function). Partial extensionality for other functions is not actually required in the proof and Rice’s Theorem
could be rephrased as “there is no non-trivial decidable set of programs that is partially extensional for a given function
JpK and whose complement is partially extensional for the never defined function”. Hence, generalisation to partially
extensional sets seem feasible.

While it is easy to still require partial extensionality for JpK (this is what we want to talk about), require that P is
partially extensional for the infinite loop is a too strong restriction. It can be lifted and made more general by require
partial extensionality for one other (unspecified) function. This in turn forces us to find an undecidable problem (on
q) which is not simply the halting problem (because we don’t know who the “opponent” of p will be and whether it
terminates or not). . .

4.1 Separable sets

The notion of recursively separable sets was introduced by Smullyan [Smu58]. We introduce a more general version of
separability. All sets are considered to be part of an unspecified “universe” (e.g., sets of numbers, . . . )

Definition 293 (Separable sets). Let S be a family of sets.
Two sets A and B are said to be S-separable if there exists two sets C,D ∈ S such that A ⊆ C and B ⊆

D and C
⋂
D = ∅.

The sets A and B are said to be S-inseparable if they are not S-separable.

That is, C and D are respectively over-approximations of A and B that have a nice property (being members of
the family) but do not intersect.

If S = REC, that is S is the family of all recursive (i.e. decidable) sets, then A and B are REC-(in)separable iff
they recursively (in)separable.

For families closed under complement (which include the recursive sets or the Ptime sets), we can always choose
D = C and thus we can completely get ride of D. However, the symmetrical notion is needed for families not closed
under complement which, typically, include not only recursively enumerable or NPtime sets, but also the open (or
closed) sets of a topological space.
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Also observe that the notion of separability is not specific to computability, complexity or computer science at
large. For example, Figure 5 shows examples of circle-(in)separable sets, a purely geometrical property.

The following Lemma and Corollary are classical examples of recursively inseparable sets. See, for example, [Pap94],
Section 3.3.

Lemma 294. Let A = { p | JpK (p) = 0 } and B = { p | JpK (p) /∈ {0,⊥}}. Then, A and B are recursively insepar-
able.

B is the set of programs that do terminate but with a result other than 0. Note that both A and B are RE sets,
hence they are RE-separable. For recursive inseparability, because the recursive sets are closed under complement, we
only look for a suitable C.

Proof. Assume that there is a decidable C that contains A and does not intersects B. Let q be a program that decides
C and answers 1 if its input is in C and 0 otherwise.

Now, we have two cases:

• If q ∈ C then since q decides C, we must have JqK (q) = 1 but in this case, by definition of B, we have q ∈ B
and by construction of the recursively separating C, B

⋂
C = ∅ hence q /∈ C, absurd.

• If q /∈ C then since q decides C, we must have JqK (q) = 0 but in this case, by definition of A, we have q ∈ A
and by construction of the recursively separating C, A ⊂ C hence q ∈ C, absurd.

Thus, no such decidable C exists and A and B are recursively inseparable.

Corollary 295. Let A′ = { p | JpK (0) = 0 } and B′ = { p | JpK (0) /∈ {0,⊥}}. They are recursively inseparable.

Proof. Let p be a program and construct p′ as the program which, on any input, simulate p on input p, that is
p′(x) = p(p) for all x. Note that, obviously, the call p(p) is not pre-computed and has to be made each time p′ is
used, hence the construction of p′ is indeed feasible.

Thus, we have Jp′K (0) = JpK (p). By construction, p′ ∈ A′ ⇔ p ∈ A and p′ ∈ B′ ⇔ p ∈ B.
Now, if A′ and B′ were recursively separable by C ′, then A and B would be recursively separable by C =

{ p | p′ ∈ C ′ } which would be decidable because the construction of p′ is.

4.2 Partially extensional sets
We can now give a first intensional generalisation of Rice’s Theorem.

Theorem 296. Any (non-empty), decidable, partially extensional set of programs is extensionally universal.

That is, any decidable over-approximation of an extensional set of programs contains at least one program for any
computable partial function. Among other, it must contain at least one program that always loops. Thus, for example,
a decidable set of programs capturing all the programs that compute the constant function x 7→ 0 must also capture
(at least) one program that always loops, one that computes the identity, one for sorting, for Ackermann function, for
solving SAT, . . . There is no hope of reaching intensional completeness and keeping extensional soundness.

Note that, contrary to Rice’s Theorem, we only require the set of program to be non-empty rather than non-trivial.
Indeed, the trivial set of all programs is certainly decidable, partially extensional and extensionally universal. . .

The proof will go by reductio ab absurdum, that is by supposing that P is not extensionally universal which is
equivalent to saying that P is also partially extensional for some (unknown) function. As mentioned in the discussion
at the beginning of the Section, we cannot assume that this function is the never defined one (like in the proof of Rice’s
Theorem) and hence need to find another undecidable problem, which will be linked to the recursively inseparable
sets we’ve introduced.
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Proof. Let f be a function and let P be a decidable set of programs that is partially extensional for it: it contains all
the programs computing f : Pf ⊂ P, that is JsK = f ⇒ s ∈ P. Let p be a program computing f : JpK = f , thus p ∈ P.

Assume, for contradiction, that P is not extensionally universal, that is there is a program q such that no program
computing the same function is in P: JsK = JqK⇒ s /∈ P.

Now, for every program r, construct program r′ which, on input x, works as follows:

• simulate program r on input 0; if it terminates and

– if the result is 0, simulate program p on input x;

– if the result is not 0, simulate program q on input x;

Note that given r, r′ is effectively computable (in a loose syntax, r′ is essentially if r(0)=0 then p(x) else
q(x), details will obviously depend on the actual choice of P). Now, depending on JrK (0), we have three cases.

• If JrK (0) = 0, then Jr′K = JpK, hence because P is partially extensional for f = JpK, r′ ∈ P.

• If JrK (0) 6= 0 but it does terminates, then Jr′K = JqK, and hence r′ /∈ P by hypothesis.

• If JrK (0) does not terminate, then we don’t know whether r′ ∈ P or not.

Now, consider the set C = { r | r′ ∈ P }. As P is decidable (by hypothesis) and r′ is effectively computable from
r, then C is decidable. But by the above observations { r | JrK (0) = 0 } ⊆ C, and { r | JrK (0) /∈ {0,⊥}}⋂C = ∅.
However, these sets cannot be recursively separated. Hence, C cannot be decidable and the assumption that P is not
extensionally universal is wrong.

Programs
Programs computing a
Ptime function

Over-approximation

sort

Ackermann
?

Hercules vs Hydra?

SAT ?
?

?

Figure 6: Extensionally universal over-
approximation.

The deadlock created by this situation is depicted in Figure 6. We
know for sure that our over-approximation will catch programs com-
puting the Ackermann function or solving the Hydra game. What
is worse, is that we also know for sure that it will catch programs
solving SAT and we cannot know whether they are false positive (red
question mark) or if SAT is indeed Ptime (blue question mark).

Moreover, we don’t know anything about what’s not in the ap-
proximation. Finding a SAT solver out of it (green question mark)
would provide a lower bound, but even for functions that we know
are not in Ptime, it is well possible that all their programs are actu-
ally in the over-approximation (that is, there may be no red question
marks for Ackermann or the Hydra).

This Theorem is more general than Rice’s Theorem:

Corollary 297 (Rice’s Theorem). Any (non-trivial) extensional set of programs is undecidable.

Proof. Let P be an extensional decidable set of programs. If P = ∅, then it is trivial and everything is alright. Otherwise,
by definition, any extensional set is partially extensional. Hence, by the previous Theorem, P is extensionally universal.

Let p ∈ P and q be any program. Because P is extensionally universal, there exists q′ with JqK = Jq′K and q′ ∈ P.
Because P is extensional, any program that computes the same function as q′ is also in it. Especially q ∈ P.

Hence, P must be the trivial set containing all the programs. The only decidable extensional sets of programs are
the trivial ones.

The Theorem also has several more or less immediate corollaries which are well-known “folk knowledge” results
in computer science usually explained by an argument of “adding arbitrarily many dummy x:=x instructions” and to
which the Theorem gives a bit more punch.

Corollary 298 (Many programs). For any computable function f , there are infinitely many programs computing it.

Proof. If Pf is finite, it is decidable. By construction, it is partially extensional for f , hence by the Theorem it must
be extensionally universal, but because there are infinitely many computable functions, any extensionally universal
set must be infinite, contradicting the supposition that Pf is finite.

Note that this is a bit less trivial than what it appears. This says that it is not possible to design a program-
ming language with only finitely many possible implementations of a given function, without loosing some important
ingredient for computability (universal machine, programs as data object, composition of programs, . . . )

In turn, this leads to the question of which ingredients of computability must we loose in order to have only finitely
many programs for a given function. Typically, even if Primitive Recursive programs are far from Turing-completeness,
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there still exists infinitely many PR program for each PR function (because, for example, the construction π0(p, 0) is
PR and creates infinitely many programs computing the same function).

We assume given a reasonable notion of size of both programs and their inputs (number of symbols of the source
code, number of states of the TM, . . . ) noted |p| or |x|.

Corollary 299 (Arbitrary size). For any N , every computable function is computable by a program of size larger than
N .

Proof. Let P = { p | |p| ≤ N }. It is finite, hence by previous Corollary cannot contain all the programs computing a
given function.

4.3 Asperti-Rice

By replacing R by A in the previous Theorem, we can easily obtain an “intensional Asperti-Rice” Theorem stating
that any decidable non-empty set containing at least one class of A intersect all the classes of A. Changing the base
equivalence from R to another will be the subject of the second generalisation, hence we do not need to develop this
further for now.

5 Intensionality: The Rice-Shapiro Theorem
Rice’s Theorem is about extensional and decidable sets and basically states that they don’t exist (except the trivial
ones). However, it is obvious that extensional semi -decidable sets do exists, e.g. the set of programs that terminate
on input 0 is extensional and RE (simply run p on input 0 and if it terminates, answer “Yes”).

Rice-Shapiro Theorem [MS55, Sha56] investigates the RE extensional sets and gives a complete characterisation of
them: they must be compact and upward closed. We will, similarly, look at RE partially extensional sets.

5.1 Rice-Shapiro Theorem

Classical presentations of Rice-Shapiro Theorem are done with RE sets of functions which are, in turn, defined using
index sets. Sets of functions are exactly extensional sets of programs. Because we want to look at partially extensional
sets, we will already express everything directly in term of programs and not functions.

We partially order functions and programs by agreeing on the smaller domain of definition:

Definition 300 (Domain ordering). Let f1, f2 be two partial functions defined on D1, D2 we say that f1 � f2 iff
D1 ⊆ D2 and ∀x ∈ D1, f1(x) = f2(x). That is, f1 is less defined than f2 and both agree on the shared domain.
Alternatively, we have f1 � f2 iff ∀x, f1(x) = ⊥ or f1(x) = f2(x).

Let f be a function. We note ↑ f the set of functions larger than it: ↑ f = { g | f � g }.
Similarly for programs, we say that p - q iff ∀x, p(x) = ⊥ or p(x) = q(x) and we note ↑ p = { q | p - q }.

Note that this is really an ordering on functions while it is only a preorder on programs (because the definition is
extensional), hence the different symbols.

Theorem 301 (Rice-Shapiro). Let P be an extensional set of programs. It is recursively enumerable if and only if it
is compact and upward-closed:

p ∈ P⇔ ∃q ∈ P, q is defined on finitely many input and q - p

Compactness (“if” direction) here means that any element of P has a “finite subset” in P (or rather a smaller element
with finite domain which, when function are seen as set of couples, is indeed a finite subset). Upward closure (“only
if” direction) comes from the following construction:

If p - p′ and p ∈ P, then by the Theorem there exists q ∈ P with finite domain and q - p. However, by transitivity
we have q - p′ and thus using the “only if” direction of the Theorem, we can conclude that p′ ∈ P. This implies that
↑ p ⊂ P, i.e. P is upward closed.

Rice-Shapiro Theorem allows to show:

• the set of programs which, on input 0, return 0 is RE (it is exactly ↑ p with p(x) = if (x=0) then return 0
else loop);

• the set of programs which terminate on input 14 is RE (by choosing q defined only on input 14 and returning
the same result as p);

• the set of programs which on inputs less than 100 return a result more than 1000 is RE;
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• the set of programs which terminate on all inputs is not RE (because it is not compact: it does not contain
programs defined on a finite domain);

• the set of programs which never terminate is not RE (it is not upward closed);

• the set of programs computing a monotonic (resp. injective) partial function is not RE (it is not upward closed
as a monotonic partial function can be extended in a non-monotonic way);

• . . .

Roughly speaking, Rice’s Theorem says that inside decidability we cannot say anything on the input-output
relation of programs. Rice-Shapiro Theorem states that moving to RE allows us to say something about a finite set
of input-output constraints but as soon as we want to look at infinitely many inputs, the set is not RE.

In this sense, Rice’s Theorem tells that we cannot ask “what is the result on input 0” because we can’t even know
if there will eventually be a result. It is about the need of the infinite time needed to run a program before finding
out it will never ends. Rice-Shapiro Theorem tells that even if we could ask questions on specific inputs, there is
another infinity hidden in functions which is the infinite space needed to run a program on infinitely many inputs
simultaneously.

Proof of Rice-Shapiro Theorem. Let P be an extensional RE set of programs and p ∈ P.
Upward closure (⇐): Suppose that there exist q % p and q /∈ P. Let K be any RE, not decidable set (of integers).

By definition, there exist a program pK such that pK(x) 6= ⊥ iff x ∈ K. For any integer k, we build the program qk
as follows:

On input x, run in parallel p(x) and pK(k);q(x) and return the first result (if any). Running in parallel can mean
interleaving, parallel composition, or whatever construction the programming language has, thus in a loose syntax, we
have qk(x) = p(x)||(pK(k);q(x)).

Because p - q, we know that whenever p(x) returns a result, q(x) will also return the same result. Thus, when
k ∈ K and p(x) terminates, the second branch of the composition will necessarily return the same result and qk is
well defined (especially, its result does not depend on race condition between the parallel branches).

Now, if k ∈ K, the test in the second branch will always be true and qk(x) will always have the same result as
q(x). That is, JqkK = JqK and by extensionality, qk /∈ P.

However, if k /∈ K, the second branch will never gives a result and qk(x) will always have the same result as p(x).
That is, JqkK = JpK and by extensionality, qk ∈ P.

Thus, we have K = { k | qk ∈ P } but by hypothesis the former is not RE while the latter is, an absurdity. Thus
we must conclude that no such q existed in the first place. So, P must be upward closed.

Now, if there is a finitely defined program q ∈ P and q - p, we can conclude that p ∈ P, thus proving the “only if”
part of the Theorem.

Compactness (⇒): Suppose that there is no finitely defined q - p in P. For any program q and integer n build
the program qn as follows:

qn(t) = if q(n) terminates in t steps or less then loop else p(t). Again, the “clocked simulation” of q(n) for t
steps is highly dependent on the actual choice of programming language (and cost model) but is nonetheless always
possible. Also, the “clocked simulation” always terminates as we just stop it after t steps, hence we will always execute
one of the branch of the test.

Now, if q(n) never terminates, then we are always in the “else” branch of the test and qn(t) always return the same
thing as p(t) hence JqnK = JpK and by extensionality, qn ∈ P.

However, if q(n) does terminates, it does so in T steps. Thus, if t < T we are in the “else” branch of the test and
qn(t) = p(t) but if t ≥ T , we are in the “then” branch and qn(t) = ⊥. That is, qn - p and because there are only
finitely many t < T , qn has finite domain. Hence, by hypothesis, qn /∈ P.

Thus we have {n | qn ∈ P } = {n | q(n) does not terminates } but the former is RE and the later is not, an
absurdity. Thus there must exist in P a finitely defined program smaller than p.

5.2 Intensional version

Again, the proof actually only require extensionality of P for p and of P for some q % p. Thus, Rice-Shapiro Theorem
can immediately be extended to partially extensional sets by splitting the compactness and upward closure parts:

Corollary 302. Let P be a RE set of programs, partially extensional for p then:

• there exist a finitely defined p′ - p and p′ ∈ P;

• for any function f � JpK, there exists a program q ∈ P computing f .
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The compactness is kept because it is existential and thus finding one program is enough. The upward closure
is universal (“all larger programs”) and thus need to be adapted to partial extensionality, we cannot guarantee that
all the more defined programs are in the set, but at least one that compute the same thing. In this sense, it is an
extensional upward closure rather than a full upward closure (similar to extensional universality in the generalisation
of Rice’s Theorem).

For the same reason, we cannot easily give an “if and only if” formulation that would characterise the partially
extensional RE sets. Indeed, the existence of a finite p - q in P only ensure that there exists q′ ∈ P with the same
semantics as q in it but nothing is known on q itself.

We can show a more powerful result in the line of “over-approximations are of little interest”.

Definition 303 (Close enough). Let f, g be two partial functions. We say that they are close enough, noted f m g,
iff they differ only on a finite set of inputs:

f m g ⇔ {x | f(x) 6= g(x) } is finite.

Theorem 304. Let P be RE set of programs which is partially extensional for some function.
Then, for any computable function f , there exists a program p ∈ P computing a close enough function:

∀f, ∃p ∈ P/ JpK m f

In the decidable case, P was forced to contain a program for any single function (extensional universality). Here,
it won’t be extensionally universal anymore but still get close enough to any function.

Proof. Let p be a program and P be a recursively enumerable set of programs partially extensional for JpK: JqK =
JpK⇒ q ∈ P. Let f be a function and Pf = { q | JqK = f } be the set of all programs computing it.

Let r ∈ Pf and assume, for contradiction, that P contains no program that differs from r on at most finitely many
inputs.

Let q be a program and n be an integer, and construct qn which, on input t, simulates program q on input n for
t steps and if it halted, returns r(t) otherwise ends the simulation and returns p(t). In loose syntax, we have qn(t) =
if q(n) terminates in t steps or less then r(t) else p(t).

We have two cases:

• If q(n) never halts, then qn always computes the same thing as p. Thus, because P is partially extensional for
JpK, qn ∈ P.

• If q(n) halts in T steps, then qn agrees with p on finitely many inputs 0, . . . , T and agrees with r on infinitely
many inputs T + 1, . . . Thus, qn differs from r on finitely many inputs and by assumption qn /∈ P.

Hence, {n | q(n) does not halt } = {n | qn ∈ P } but the former is not RE (it is co-RE complete) while the later
is, an absurdity.

Therefore, for any program r, P must contain a program close enough to r.

Note that by construction, we can ensure that the program close enough to r returns, when they disagree the same
result as p (for which P is partially extensional). In this way, we are very close to the compactness part of the original
Rice-Shapiro Theorem which stated that an extensional RE P must contain something close enough to the infinite
loop which, when it returns, has the same result as another program for which P is extensional.

And the adaptation of one proof to the other is done the same way as it was done for Rice’s Theorem. We cannot
suppose anymore that P is partially extensional for the infinite loop to build a contradiction, so we suppose it is
partially extensional for some function and adapt the reduction from non-termination problem.

Obviously, any extensional set being partially extensional, we can use the exact same proof to show that any
extensional RE set contains a program computing something close enough to a given computable function f . This is
the traditional “back-and-forth” construction of Rice-Shapiro Theorem:

Start with any program p ∈ P. By compactness, there exists a finite q - p which is also in P. But by upward
closure, the program that agrees with q when it is defined and computes f otherwise must also be in the set. It is, by
construction, close enough to f .

For example, if P is a recursively enumerable set of programs partially extensional for a total function (e.g. the
constant function x 7→ 0), then by choosing f as the infinite loop, we can conclude that P must contain a program
that loops on all but finitely many inputs; by choosing another constant function (e.g. x 7→ 1), we can conclude that
P contains a program whose result is almost always 1, . . .

Thus, any enumeration of all the programs that compute a total function will also enumerate programs that almost
never terminate. . .

Again, over-approximations must contain a lot of unwanted stuff.
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6 Intensionality: second generalisation

6.1 Equivalence
In order to replace R by any equivalence, we need to adapt our vocabulary.

Let P = {P1, P2, . . .} be a partition of a set S and P be a subset of S, it is

• compatible with P if it is the union of classes of P;

• partially compatible for a block Pk if it contains all the elements in that block: Pk ⊂ P. Note that it does not
need to be compatible for other blocks;

• complete for a set of blocks Pk1 , Pk2 , . . . if it contains at least one element of each of these blocks: P
⋂
Pki 6= ∅;

• sound for a set of blocks Pk1 , Pk2 , . . . if it is contained in the union of these blocks: P ⊂ ⋃ Pki ;

• an ICC characterisation of a set of blocks if it is both sound and complete for it;

• universal if it is complete for P itself: it contains at least one element in each block of the partition.

6.2 Switching functions
Definition 305. Let S and T be two sets and ≈ be an equivalence on T . Let S ⊂P(S) and T ⊂P(T ) be families
of subsets of S and T .

A switching function is a total function π : S → T . It is S-T -continuous if the reverse image of any set in T is in
S: ∀T ′ ∈ T , π−1(T ′) ∈ S.

Let a, b ∈ T . A switching function is a-b-S-intricated with ≈ if the sets Aπ = {x ∈ S | π(x) ≈ a } and Bπ =
{x ∈ S | π(x) ≈ b } are S-inseparable.

A switching family indexed by T × T is a family of switching functions, I = (πa,b)a,b∈T .
A switching family is S-intricated with ≈ if for each pair of elements a, b ∈ T , the switching function πa,b is

a-b-S-intricated:

∀a, b ∈ T, Aa,b = {x ∈ S | πa,b(x) ≈ a } and Ba,b = {x ∈ S | πa,b(x) ≈ b } are S-inseparable.

If S = T and S = T , then we can simply speak of S-continuity.
Note that if a ≈ b then Aπ and Bπ (or Aa,b and Ba,b) are the same and hence cannot be S-separated.
Note that there may be elements in S which are neither in Aπ nor in Bπ, that is such that π(x) is not equivalent

to a and not equivalent to b.
Note that the “constant projections” πa,b(x) = a and πa,b(x) = b can be switching functions but in general switching

functions in a family do not need to ignore one of their index.

Example 306 (Standard Switching family). Let P be the set of programs and set S = T = P, we define the standard
switching family on it as:

πp,q(r)(x) = r′(x) = if r(0)=0 then p(x) else q(x)

• Each function in the family is REC-continuous (or REC-REC-continuous to use the correct notation). Indeed,
let D be a decidable set, to decide if x ∈ π−1(D), it suffices to compute π(x) and decide π(x) ∈ D. Because each
function in the family is computable, this is doable.

• Note that each πp,q is actually computable with a low complexity (notably, it is computable in polynomial
time). Hence, it is also, for example, Ptime-continuous. On the other hand, it is not clear whether, say, any
Ptime-continuous function must be Ptime.

• The switching family is REC-intricated with R. Indeed, if we fix p, q with JpK 6= JqK then we have

Ap,q =
{
r |

q
πp,q(r)

y
= JpK

}
We’ve seen in the proof of Theorem 296 that Ap,q = { r | r(0) = 0 } and Bp,q = { r | r(0) /∈ {0,⊥}} and these
sets are recursively inseparable by Corollary 295.

• Of course, REC-intrication also implies, for example, Ptime-intrication as the Ptime sets are all recursive.

• Similarly, the standard switching family is REC-intricated with BΦ and A as used in the various proofs of
previous results.

Basically, this example both motivates the definition and shows that non-trivial continuous and intricated switching
families do exist.
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6.3 Main result

Theorem 307. Let S, T be two sets, S ⊂ P(S), T ⊂ P(T ) be two families of subsets such that S is closed under
complements and P be an equivalence on T .

Let I = (πa,b)a,b∈T be a switching family of S-T -continuous functions which is S-intricated with P.
Any non-empty T ′ ∈ T which is partially compatible with P is also universal for it.

That is, the existence of an intricated switching family of continuous functions is enough to ensure that any partially
compatible set in the family is also universal.

In the first generalisation, we had for S the family of all decidable sets and took P = R. The existence of an
intricated switching family was not required in the statement of the Theorem but used in the proof (with the standard
switching family). Which resulted in the final statement that any non-empty, decidable (i.e. in T ) partially extensional
(i.e. partially compatible with R) set must be extensionally universal.

Proof. Let a, b ∈ T , we note [a] and [b] there respective classes in the equivalence P. Let T ′ ∈ T and suppose that
[a] ⊂ T ′ (T ′ is partially compatible) but [b]

⋂
T ′ = ∅ (T ′ is not universal).

Let x ∈ S be any element and set y = πa,b(x). We have three cases:

• If x ∈ Aa,b then by definition y = πa,b(x)Pa. Hence, y ∈ [a] and by partial compatibility, y ∈ T ′.

• If x ∈ Ba,b then by definition y = πa,b(x)Pb. Hence, y ∈ [b] and by hypothesis, y /∈ T ′.

• Otherwise, we don’t know whether y ∈ T ′ or not.

Now, let C = {x | y = πa,b(x) ∈ T ′ }. We have immediately C = π−1
a,b(T

′). Because T ′ ∈ T and πa,b is S-T -
continuous, we have C ∈ S. Because S is closed under complements, we have C ∈ S.

So x ∈ Aa,b implies y ∈ T ′ hence Aa,b ⊂ C. On the other hand, x ∈ Ba,b implies y /∈ T ′ hence Ba,b ⊂ C. And
obviously, C

⋂
C = ∅. In other words, Aa,b and Ba,b are S-separated by C and C, contradicting the S-intrication of

the switching family.
Thus, there cannot exist a class [b] of P that does not intersects T ′, and T ′ must be universal.

Note that the existence of an intricated switching family is enough. Details about what this family actually is are
not needed in any way.

This Theorem implies, among other, that no (non-trivial) union of classes of the equivalence is in T .

Corollary 308. Under the same hypothesis:

• any over-approximation in T of a non-trivial union of classes of P must intersect each class;

• if T is also closed under complement, then any under-approximation in T of a non-trivial union of classes of P
must leave out one element of each class;

Proof. By definition, an approximation of a union of classes is partially compatible. Hence it must be universal.
If T ′ is an under-approximation of a non-trivial union of classes, U , then its complement T ′ is an over-approximation

of U which is non-trivial if U is non-trivial. Thus, if T is closed under complement, then T ′ ∈ T is partially compatible
for U and must intersect each class. Therefore, T ′ must leave out an element of each class it is trying to under-
approximate.

6.4 Examples

The examples here illustrate the power of this result in various situations. This is obviously not an exhaustive list of
applications and it is especially easy to extend these to similar cases.

As stated, the second generalisation is more general than the first:

Example 309. Let S = T = P be the set of programs and S = T = REC be the family of decidable sets. It is closed
under complements.

As shown in Example 306, the standard switching family is REC-intricated with R and contains only REC-
continuous functions.

Hence, any decidable non-empty set containing an union of classes of R must intersect all the classes of R (The-
orem 296).

Similarly, the standard switching family is REC-intricated with A (or with BΦ). Hence, any decidable non-empty
set containing an union of classes of A must intersect all the classes of A.
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Example 310 (Complexity). As stated above, the standard switching family is REC-intricated with A. Hence, any
decidable over-approximation of an union of classes of A must intersect all of them, that is, include programs of
arbitrarily high (or low) complexity.

For example, we can consider the set of all polytime programs. Note that this is not an extensional set as it only
contains the “efficient” programs and does not contains the inefficient programs computing “good” functions (e.g., it
does not contains the programs that sort in non-polynomial time). Thus, Rice’s Theorem cannot say anything about
it. Using Asperti-Rice Theorem, we can prove that this set is undecidable.

But now, we can do even more. We can show that any decidable over-approximation of the set of polytime programs
must contains elements of any class of A. In other words, it must contains programs computing any function with
any (time) complexity, and especially of any arbitrarily high complexity: it must contain not only exponential sorting
programs but also non primitive recursive searching programs and even non multiple recursive programs computing
the identity!

Similarly, the set of linear space programs (or quadratic time, or . . . ) is a union of classes of A. Contrarily
to polytime programs, it is not closed under composition. However, we still have the same result: any decidable
over-approximation of the linear space programs must contain programs of arbitrarily high space complexity.

Example 311 (ICC). Conversely, we may want to look at a decidable under-approximation of the set of polytime
programs, that is, more or less, an ICC criterion. However, this is the complement of a decidable over-approximation
of the set of non-polytime programs, an union of classes of A. We can apply our Result to this over-approximation
and show that it must contain programs of arbitrarily low complexity. Thus, any decidable under-approximation of
the polytime programs must leave out programs of constant complexity, or quadratic time sorting programs!

Even before requiring extensional completeness, we know for sure that any polytime-sound decidable set is doomed
to leave out many programs with low complexity (at least one per function per complexity). This also greatly block
any attempt at getting close to intensional completeness. Any ICC criterion will necessarily have a somewhat low
expressivity as it must leave out many “good” programs.

Trying to go from the polytime programs to the programs computing functions in Ptime (that is, also accepting
inefficient programs for good functions) won’t help. The set of programs computing a Ptime function is still a union
of classes of A. Thus, any under-approximation of it must still leave out at least one program for each function and
each complexity. . .

Therefore, if we want to approximate the set of polytime programs by decidable under- and over-approximations
as close as possible one from the other, we will necessarily have in the “grey zone” between them programs of any
complexity, low or high. That is, such a “double bound” will always be very far from the actual set we’re trying to
study.

Programs
Polytime programs
Over-approximation
Under-approximation

“good” sort
“bad” sort

exponential?
not PR?

constant

Figure 7: Complexity-universal over-
approximation.

The new deadlock created by this situation is depicted on Fig-
ure 7. This time, we do not consider all programs computing a Ptime
function, but only the programs that are themselves polytime (irreg-
ular red shape). Thus, the over-approximation (green circle) is an
attempt to differentiate, e.g., the “good” (efficient) sorting programs
from the “bad” ones (blue and green dots).

However, the over-approximation must contain programs of ar-
bitrarily high-complexity. It must contain, among others, an expo-
nential program or a non primitive recursive program (red dots).
Thus it is very far from safe to try and consider that programs in the
over-approximation have a “not too bad” complexity.

What is worse, we don’t even know for sure that there actually
are exponential programs out of the over-approximation (red ques-
tion marks). It is well possible that the over-approximation actually
contains non only all the polytime programs but also all the exponential time ones. . .

Even worse, if the goal is to discriminate good and bad sorting programs, we know for sure that the over-
approximation must intersect all the classes of A hence contain, e.g., a sorting program whose complexity is not
primitive recursive (pink dot)!

And if we also get a decidable under-approximation (blue circle) then we know for sure that it must leave out
some constant time programs (black dot). And here also, we know for sure that at least one quadratic time sorting
algorithm must be out of the under-approximation (green dot). . .

Thus, any attempt at approximating the set of polytime programs by a pair of decidable under- and over-
approximations leaves out a grey area (hatched) that must necessarily contains basically examples of everything
one may think about. . .
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6.5 Input-output, viruses
We now build an example where having two sets S, T is useful.

Example 312 (Spambots). Let S be the set of (one tape, 2 letters) Turing Machines and T = P be the set of all
programs in a given language. Let S be the family of decidable sets of Turing Machines (it is closed under complements)
and T be the family of decidable sets of programs.

We define the equivalence P on T by pPq iff for any input x, p(x) and q(x) send the same number of email. Note
that this is not a complexity measure in the sense of Blum as the predicate “p(x) sends k emails” is not decidable (p
may loop after sending k − 1 emails).

Next, we consider given an evaluator eval ∈ P which takes as inputs (the representation of) a Turing Machine, M ,
and an integer n and returns the result of M on input n: JevalK (M,n) = JMK (n). Moreover, we consider that eval
never ever sends a single email. Such a eval do exist. Precise details on it obviously depends on the programming
language and the representation of Turing Machines, but actually building such a program is not difficult and is a
standard computability exercise.

Now, consider the switching family:

πp,q(M)(x) = r(x) = if eval(M,0)=0 then p(x) else q(x)

This is a simple variation on the standard switching family. It is S-T -continuous because it is computable.
Because we’ve asked that eval never sends an email, we can easily see that πp,q(M)Pp iff JMK (0) = 0 and

πp,q(M)Pq iff JMK (0) /∈ {0,⊥}. And we know that these sets are REC-inseparable, hence the switching family is
S-intricated.

Note that, to show intrication, it is crucial that the evaluator do not send any email. Thus, we need the argument
(here, the Turing Machine) to live in a world where email cannot be send and trying to do the same thing with
S = T = P would be much more difficult.

Anyway, we have a S-intricated switching family of S-T -continuous functions, thus we can apply our Theorem.
Any decidable over-approximation of the set of programs that send 0 email must contains programs that send an

arbitrarily large number of emails. That is, if we try to accept all programs that won’t send mail, we must also accept
“Spambots” that will constantly send mails.

Similarly, trying to accept all programs that won’t access Internet will result in also accepting botnets that often
contact external servers and receive orders from them. . .
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Abstract:
The set of equivalence relations on any set is equipped with a natural order that makes the
set a complete (and atomistic, bounded and relatively complemented) lattice. The lattice
structure only depends on the cardinality of the set, and thus the study of the lattice structure
on any countably infinite set is (up to order-isomorphism) the same as studying the lattice of
equivalence relations on the natural numbers.
We investigate computability in the lattice of equivalence relations on the natural numbers.
This includes computability of the natural operations on the lattice, and investigating whether
the subsets of appropriately defined subrecursive equivalence relations–for example the set of
all polynomial-time decidable equivalence relations–form sublattices of the lattice.
While our work concern purely mathematical results, it is motivated by the possibility of
using the lattice of equivalence relations to reason about computability and computational
complexity.
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1 Introduction

The purpose of this paper is to study sets of computable equivalence relations in the lattice Equ(S) of equivalence
relations on any countably infinite set S. For example, the set of recursively enumerable equivalence relations on S
form a proper sublattice, but the set of decidable equivalence relations is not even closed under finite joins, hence a
fortiori not a sublattice.

The primary motivation is twofold: Firstly, from the point of view of pure mathematics, it is interesting to study
those substructures of a very well-known order-theoretic structure such as Equ(S) that are induced by taking the
collections of objects satisfying an interesting property, for example computability. Secondly, from the point of view of
computer science, there is a strong connection between program properties and equivalence relations on certain classes
of decidable sets, as explained below.

1.1 Motivation: complexity classes, implicit complexity and subrecursive equivalence
relations

As there are uncountably many properties of programs (because each set of programs is a property), most properties
must be undecidable. A celebrated negative result shows that there are even further barriers to decidability: Rice’s
Theorem [Ric53] states that every non-trivial, extensional property on programs is undecidable. An extensional
property is one that depends solely on the (input-output) function computed by the program .

While Rice’s theorem is six decades old, it still spurs new research trying to find the boundary of decidable progam
properties, for example Asperti’s work on complexity cliques [Asp08]. Such properties can be studied fruitfully by
viewing results such as Rice’s and Asperties as assertions about equivalence relations; indeed, any program property
is an equivalence relation that has at most two classes: the class of programs having the property and the class of
programs not having it (the equivalence relation has one class iff it is trivial, that is either no program has the property,
or all programs do). Conversely, any equivalence relation on the set of all programs that has exactly two classes is
a program property. In this view, Rice’s Theorem studies the extensional equivalence, R, where two programs are
equivalent if and only if they compute the same function. Rice’s theorem thus states that no equivalence class or
union of equivalence classes in R is decidable.

Rather than studying individual equivalences such as R, it is interesting to look at the set of all equivalences
between programs and at subsets of equivalences sharing certain properties. The set of all equivalence relations
between programs has a very natural complete lattice structure. With this order, taking the union of some classes
yields a larger equivalence relation and Rice’s Theorem says that any class of any equivalence relation1 in the principal
filter at R is undecidable.

Equivalence relations that are not extensional is a completely different kettle of fish. Some are easy to decide, such
as “two programs are equivalent if they have the same length”; some others are decidable, but may require tremendous
resources to decide, such as “two programs are equivalent if they have the same running time on all positive integer
inputs below one million”; and some are harder than the halting problem, e.g. “two programs are equivalent if they
both run in polynomial time” is Σ0

2.
Our primary interest lies in investigating how properties of the lattice Equ(S) of equivalence relations on a set S

interact with decidability or subrecursive computability of the equivalence relations in Equ(S). Typically, we wish
to know whether, say, the set of equivalence relations decidable in exponential time is a sublattice or not. Such a
characterisation could lead to the study of a subset of the equivalence relations that would approximate the whole set
in a way similar than the rational numbers approximate the reals.

The lattice-theoretic properties of Equ(S) are well-understood; basic facts can be gleaned from the papers [Ore42,
RS92] and the textbooks [Bir40, §8-9] [Grä03, Sec. IV.4]. As the lattice structure of Equ(S) is isomorphic to Equ(T )
for any sets S and T of identical cardinality, we may without loss of generality consider the set of equivalences over
the natural numbers, Equ(N). That is, we work modulo an unspecified encoding of programs. Observe that as long
as the equivalence relations we consider do not use the fact that the elements are numbers rather than programs, the
precise choice of the encoding (even an undecidable encoding) plays no role in our results. For example, if we prove
a result about “the equivalence relations decidable in polynomial time”, the result will hold regardless of whether we
speak of equivalence relations of numbers or programs as long as there exists a polytime computable encoding between
programs and numbers. On the other hand, if we prove a result about “the equivalence relations where all the even
numbers are in the same class”, then we do have an issue with the precise choice of the encoding. Note that all results
in the paper hold for both numbers and programs via polytime encodings; if this is not obvious from the proof of a
particular result, we describe the correspondence in the running text immediately following the proof.

In the following, we will consider three broad classes of equivalences: the automatic ones, decidable by an auto-
maton; the subrecursive ones, decidable by a Turing Machine operating within some restricted time or space bound;
and the superrecursive ones, corresponding to sets in the arithmetical hierarchy.

1Except the trivial one where all elements are equivalent.
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2 Preliminaries on orders, lattices, equivalence relations, computability,
and complexity

2.1 Equivalence relations
We consider the set Equ(N) of all equivalences over natural numbers. If E is an equivalence, we write as usual mEn
to say that m and n are equivalent.

Equ(N) is ordered by E ≤ E ′ iff mEn⇒ mE ′n. Note that if an equivalence is seen as a subset of N×N, this order
is exactly the subset ordering ⊆ on N × N. By standard correspondence between equivalences and partitions, this is
isomorphic with the refinement ordering on partitions.

We can easily see that E ≤ E ′ iff each class of E ′ is the union of one or more classes of E . If E < F and there is no
G such that E < G < F then we say that E is a predecessor of F , and F is a successor of E , written E ≺ F . This is
the same as saying that F covers E . In this case, F is obtained from E by merging exactly two of its classes.

We’ll use cursive letters E , F , . . . to design equivalences and bold capital roman letters C, D, . . . to design sets
of equivalences.

2.2 Lattices and lattice operations
(Equ(N),≤) is a lattice with the following operations:

• The meet (greatest lower bound) of E and F is G = E ∧ F such that mGn iff mEn and mFn. In this case, the
classes of G are exactly the (non-empty) intersections of one class of E and one class of F .

• The join (lowest upper bound) of E and F is G = E ∨F such that mGn iff there exists a finite sequence a1, . . . , ak
such that mEa1Fa2E . . .Fn.

Note that when expressing the join, the sequence of equivalences may end either with E or F depending on the
parity of k (and, similarly, may start with either). However, it is always possible to choose ak = n and add nFn at
the end (and similarly at the start). So, for the sake of simplicity, we’ll assume wlog. that such sequences always start
with E and end with F .

If equivalence relations are seen as subsets of N× N, then E ∧ F = E ⋂F while E ∨ F is the smallest equivalence
that contains E ⋃F . For the lattice of relations with the same order, E ∨ F = E ⋃F . However, not all the relations
are equivalences and transitivity is closed under intersection but not under union. That is, if xEy and yFz, then we
have x(E ∨ F)z but (x, y) ∈ E and (y, z) ∈ F do not imply (x, z) ∈ E ⋃F . E ∨ F is exactly the transitive closure of
E ⋃F .

Note that the join is much harder to express (and compute) than the meet. This will be reflected in the results.
Indeed closure for meet will usually boils down to closure under intersection which is a natural thing to require, but
closure for join is far from closure under union.

Standard results for Equ(N) were laid out in the seminal paper by Ore [Ore42]. It is known that Equ(N) is, among
others,

• bounded with minimal element ⊥ being the equivalence where each class is a singleton (no two different elements
are equivalent) and the maximal element > being the equivalence with a single class containing every elements
(any two elements are equivalents);

• complete, that is closed under arbitrary join and meet (and not only under finite ones);

• atomistic, each element is the join of atoms, where atoms are successors of ⊥, that is equivalences with on class
containing two elements and the other are singletons;

• relatively complemented (hence complemented), for each E , there exists F such that E ∨F = > and E ∧F = ⊥;
non > or ⊥ equivalences have infinitely many complements, most have uncountably many; we note compl(E)
the set of complements to E ;

Observe that if E = {Ek} ⊆ Equ(N), then E =
∧

E is the equivalence relation where each class is obtained as⋂
k Ck where each Ck is a class of Ek. That is, mEn iff mEkn for all k. Likewise, E =

∨
E is the equivalence defined

by mEn iff m(
⋃
k Ek)∗n, that is, mEn iff there exist finite sequences a1, . . . , ap−1 ∈ N and E1, . . . , Ep ∈ E such that

mE1a1, a1E2a2, . . . , ap−1Epn.
An equivalence relation E where exactly one class is not a singleton is called singular. When E is singular, there

exists an element e such that for any element x we have either (i) xEe or (ii) for all y 6= x,¬(xEy).

Lemma 313 (Complements to singular equivalence relations). Let E be a singular equivalence relation with non-
singleton class E. F is one of its complement iff each class of F contains exactly one element of E.
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Proof. Suppose that m,n ∈ E and mFn, that is, there exist a class of F containing at least two elements m and n
of E. In this case, since m,n ∈ E, we have mEn and, by hypothesis, mFn. Thus, m(E ∧ F)n. However, since F is
a complement of E , the meet is ⊥ and no two different elements are equivalent. Hence, no class of F may contain
several elements of E.

On the other hand, suppose that there is a class F of F that contains no element of E. Let f be an element of
that class and e ∈ E be an element of E. If we try to build a finite sequence fEa1Fa2 . . . akFe, it is easy to see that
a1 must be f as f /∈ E, the only non-singleton class of E . Thus, fFa2 implies that a2 ∈ F , hence a2 /∈ E. It is thus
possible to iterate the reasoning and see that such a finite sequence is not possible, that is ¬(f(E ∨F)e). However, the
join must be > and every two elements are equivalent. Thus, each class of F must contain at least one element of E.

Conversely if each class of F contains exactly one element of E, consider two elements m 6= n. If mFn, then one
of them must be a singleton in E and ¬(mEn). Thus, it is not possible to have both mEn and mFn, hence E ∧F = ⊥.
On the other hand, there exists m′, n′ ∈ E such that mFm′ (because each class contains one element of E), m′En′
and n′Fn. Thus, m(E ∨ F)n and E ∨ F = >. F is a complement to E .

2.3 Computability and complexity

We refer to standard textbooks convering computability and complexity theory (e.g., [Jon97]), and only give a short
overview of these as they relates to equivalences.

Unless otherwise stated, all Turing Machines are multi-tape machines with two designated read-only input tapes,
one write-only output tape, and any number of work tapes. Machines are assumed to be deterministic unless otherwise
stated. The reason for having two input tapes is that decidability questions for equivalence relations naturally require
two inputs (i.e., to decide whether the inputs are in the same equivalence class or not).

An equivalence relation E ∈ Equ(N) is decidable if there exists a Turing MachineM with two input tapes such that
for every (m,n) ∈ N, M halts with output 1 if mEn and halts with output 0 otherwise, when M is started with the
binary representations m and n on the first and second input tapes, respectively. It is immediate that E is decidable
iff a Turing machine with a single input tape over alphabet {0, 1, ‖} decides the language

{m‖n : m,n ∈ N with mEn}

Similarly, E is recursively enumerable (abbreviated r.e.) if there is a two tapes TM that halts on the corresponding
input (or equivalently if there is a single-tape Turing machine that halts on input m‖n iff mEn).

Note that if E is recursively enumerable, and we have a specific element n, then we can enumerate all the elements
equivalent to it by standard dovetailing techniques.

We note Equ(N)r.e. (resp. Equ(N)dec) the sets of all recursively enumerable equivalences (resp. decidable equival-
ences).

If the Turing Machine deciding E does so within some time or space bound (e.g. polynomial time), we’ll say that
E is subrecursive. If E can be decided by an automaton, we’ll say that it is automatic. If deciding E corresponds to
a problem in the arithmetical hierarchy, we’ll say that it is superrecursive. See details about these definitions in the
corresponding Sections.

2.4 Results

The paper concerns four broad categories: automatic, subrecursive, recursive, and superrecursive equivalence relations
and how they interact with the basic properties of the entire lattice of equivalence relations, namely meet, join and
complements. Each of these categories is further subdivided into smaller categories, for instance “subrecursive” is
divided into categories correponding to well-known subrecursive classes, such as the set of polynomial-time decidable
equivalence relations, or the set of primitive recursive equivalence relations.

We summarise our results informally in the below table. Each row in the table denotes a class of equivalence
relations, and each column denotes a closure property that this class may have. Each entry indicates whether the class
enjoys the property or not. For example, “finite ∧” means that if A = {E1, . . . , En} is a finite set of (representations
of) equivalence relations in the class, then E1 ∧ · · · ∧ En is also an element of the class. The columns under the heading
“Arithmetical” denote whether the particular class is closed under taking meet/join of Σ0

k sets of equivalence relations
from the class. The column “Arbitrary” denotes whether the class is closed under taking meet/join of equivalence
relations from the class (note that as the answer is “No” in each entry in the column, it immediately follows that none
of the classes are complete lattices).

The entry “N/A” means that the property in question is meaningless or ill-defined (e.g., having complements is
meaningless for a class that does not include both > and ⊥). The entry ? means that it is an open question whether
the class enjoys the property.
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Finite Arithmetical Arbitrary
∧ ∨ ∧ ∨ ∧/∨ complements

Automatic Yes Yes No Yes No/Yes N/A
Subrecursive Yes No† ? No† No ≥ Pspace

Σ0
k Yes Yes No Yes No No

Π0
k Yes No Yes No No ?

∆0
k Yes No No No No Yes

†: for LogSpace or larger classes.

Note that a “Yes” entry in row i and colunmn j does not imply any results concerning actual computation of meet
or join–it merely implies that the subset of equivalence relations in row i is closed under the operation of column j–but
the actual computation involved in the operation may require resources beyond those implied in row i. If we consider
a subset S of all equivalences and an operation on the equivalences (e.g. the meet), there are four possibilities:

1. S is not closed under this operation, that is there exist elements in S such that, when applying the operation to
them we can obtain an element not in S. This is the canonical meaning of “No” in the above table.

2. S is closed under the operation (i.e., there is a “Yes” in the above table), and either

(a) the operation is computable within the resource requirements defining the class, e.g. polytime computable
for the set of polytime decidable equivalence relations.

(b) the operation is computable, but not within the resource requirements defining the class.

(c) the operation is not computable.

While our primary concern is merely answering “yes” or “no” to item 2 in the list above, we have endeavoured to
answer which of the mutually exclusive subcases 2a–2c holds, wherever possible.

3 Automatic equivalence relations
There are several “natural” ways to define equivalence relations decidable by finite automata. The one we consider
here uses a single, two-way input tape with two inputs separated by a special symbol; another natural variation would
have the two inputs on two separate tapes, or a single tape but two heads. Unlike Turing machines, the class of sets
decidable by finite automata properly increases with the number of input tapes and tape heads; it is therefore quite
conceivable that simple variations of the class we consider would have different properties.

We consider two-way finite automata that have only a single tape where both inputs are encoded. We believe the
most natural form to be a�b where a, b ∈ {0, 1}+ and � is a separator symbol (“blank”).

Definition 314. An equivalence relation E on N is said to be single-tape automatic if there is a (single-tape) two-way
non-deterministic finite automaton that accepts the language {m�n : mEn}. Par abus de langage we say that the
automaton accepts E .

The set of single-tape automatic equivalence relations is denoted by Equ(N)Aut.

By standard results, for any two-way NFA, there exists a one-way DFA that accepts the same language. Hence,
for any E ∈ Equ(N)Aut the language {m�n : mEn} is regular.

Proposition 315. Let E be a single-tape automatic equivalence relation. Then E has a finite number of equivalence
classes.

The proof uses an argument taken from the Myhill-Nerode Theorem [Ner58].

Proof. Let A be a DFA accepting {m�n : mEn}.
Let m be an integer, we note qm the state of A reached after reading m�.
Let m and n be two integers. If qm = qn, then because E is reflexive, m�m is accepted but because A is deterministic

and qm = qn then n�m must lead in the same state and is also accepted. Hence mEn.
Thus, qm = qn ⇒ mEn and there cannot be more classes than the number of states of A.

Note that Proposition 315 implies that some very simple equivalence relations are not elements of Equ(N)Aut; for
example, ⊥ /∈ Equ(N)Aut (that is, {n�n} is not a regular language, a well-known fact).

Since the number of classes in any equivalence of Equ(N)Aut is finite but unbounded, given such an equivalence, it
is always possible to find a class with several elements and create a new equivalence by taking one element out of this
class and making a new singleton class. This new equivalence is smaller than the initial one and is still single-tape
automatic.
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Hence, Equ(N)Aut is neither bounded, nor complete.
Moreover, let E and F be two equivalences, each with finitely many classes E1, . . . , Em and F1, . . . , Fn. Since the

classes of E ∧ F are exactly the non-empty Ei
⋂
Fj , there are at most n ×m such classes, that is, a finite number.

Thus, a complement to an equivalence with finitely many classes must have infinitely many classes (because their meet
is ⊥, which has infinitely many classes).

Hence, no complement of a single-tape automatic equivalence is single-tape automatic.

Theorem 316. Equ(N)Aut is a lattice.

Proof. Let E1, E2 ∈ Equ(N)Aut and let A1 and A2 be two minimal DFA accepting {m�n : mE1n} and {m�n : mE2n},
respectively.

Meet. As E1 ∧ E2 = E1 ∩ E∈ we have, for arbitrary m,n ∈ N, that m(E1 ∧ E2)n iff m�n ∈ L(A) ∩ L(B). And as
the set of regular languages is closed under intersection, there is an automaton C that accepts L(A) ∩ L(B), whence
E1 ∧ E2 ∈ Equ(N)Aut.

Join. First, note that for each m, there is an automaton accepting exactly the n with mE1n. Indeed, it is A1 with
input state moved to qm (with the notation of the previous proof).

By Proposition 315, both E1 and E2 have a finite number of equivalence classes. Thus, Let j1 and j2 be the
number of equivalence classes in E1 and E2, respectively, and let m1, . . . ,mj1 and n1, . . . , nj2 be representatives of the
equivalence classes.

For each of these representatives, we can precompute whether mk(E1 ∨ E2)ni or not.
Finally, we construct the NFA that follows:

• Start by j1 ε-transitions leading to copies of A1 with initial state (that is, the end of the ε-transition) in qmk .

• At the accepting states of these copies, put �-transitions towards sufficiently many copies of A2 with initial state
qni for those ni(E1 ∨ E2)mk.

• If we reach an accepting state of the copies of A2, accept, otherwise reject.

Thus, the copies of A1 find the unique mk such that mkE1m, then from here the � transitions start to look into n

and the copies of A2 find whether there exists ni with mk(E1 ∨ E2)ni (we’ve only put copies for these ni) and niE2n
(that’s what the copy is testing).

Finally, we just need to make a DFA equivalent to the NFA we just built.

Note that the construction in the proof is actually constructive. Indeed, because the automata are minimal, there
exists a word leading to each state and it is easy to find it by standard search in a graph with loops. Thus we can
actually find a representative of each class of the equivalence. Next, the precomputation of the links between the mk

and ni is simply a matter of 2× j1× j2 initial tests plus some closure algorithm on the result, that is finding connected
components in the graph of j1 + j2 vertices with edge if either mE1n or mE2n.

Thus, not only is Equ(N)Aut a lattice, but both the meets and the joins are effectively computable. Computing
these, however, cannot be performed by a DFA (this is case 2b of the discussion after the results Table).

While Equ(N)Aut is closed under finite meet and join, it is not closed under infinite meet. This follows a fortiori
from the following result.

Proposition 317. There is an r.e. set A = {Ak | k ∈ N } of deterministic, single-tape finite automata, each of
which accepts some Ek ∈ Equ(N)Aut, but such that E =

∧
k∈N Ek /∈ Equ(N)Aut.

Proof. Let B = 0|(1{0, 1}∗) be the set of binary representations of natural numbers; it is a regular language. Let
Lk = {x ∈ B | |x| ≤ k } be the set of binary representations of length k or less; it is a regular language. Let
Fk = { a�b | a, b ∈ Lk } and F ′k = { a�b | a, b /∈ Lk }; they are both regular languages. Lastly, let Ek = Fk

⋃
F ′k,

and let Ek be the following relation mEkn⇔ m�n ∈ Ek. By construction, Ek is an automatic relation. Moreover, given
k, it is possible to build an automaton Ak deciding Ek, hence the set {Ak | k ∈ N } is recursively enumerable.
Ek is an equivalence relation. Indeed, it is the equivalence relation having two classes, one with all numbers whose

binary representation has length k or less (is in Lk) and one with all numbers whose binary representation has length
strictly more than k (is not in Lk).

Let m,n ∈ N with |m| = i and |n| = j. If i < j then we have ¬(mEin). Hence, if m and n have different lengths,
there exists k such that m and n are not equivalent in Ek.

Now, let E =
∧ Ek. We have mEn iff for all k, mEkn, that is iff m and n have the same length. Hence, E has

infinitely many classes and cannot be automatic.

However, Equ(N)Aut is closed under arbitrary infinite join.

Proposition 318. Let A ⊆ Equ(N)Aut be non-empty. Then,
∨
A ∈ Equ(N)Aut.
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Proof. Every equivalence class of
∨
A can be obtained as a union of equivalence classes of any element E ∈ A. By

Proposition 315, every such E has a finite number of classes, hence so does
∨
A, and any class in

∨
A can be obtained

as a finite union of classes of E , hence can be recognized by a deterministic, one-tape finite automaton by standard
constructions; as

∨
A has a finite number of classes, the result follows.

As mentioned at the beginning of the Section, the expressive power of automata varies with the number of tapes
or heads. Hence, small variations of the model can drastically change the property of the corresponding subset of
equivalences. For example, two-tape automata can test whether both tape contain the same word and thus decide ⊥.

Even the choice of representation of inputs may affect the expressive power. For example, instead of sequencing the
inputs (m�n), it is possible to interleave them (m1n1m2n2 . . .mini . . .�nk if n is longer than m). This representation
allows an automaton to decide ⊥ (note that the Myhill-Nerode argument does not work in this case).

Moreover, when working with multi-tape automata, the question of synchronicity arises: should the tapes be “at
the same position” on each tape, or can the heads move independently?

Thus, we have only studied one particular class of automata with one particular way of representing equivalences.
Equ(N)Aut hence enjoys properties that other classes of “automatic” relation may or may not have. While the class of
single-tape, single-head DFAs studied above is the simplest kind of finite automaton–hence most apt to study first–it
remains to perform a systematic study of equivalence relations decidable by other, more particular, kinds of automata.
We leave this for future work.

4 Subrecursive equivalence relations

We now treat classes of equivalence relations decidable within bounds on their resources. The definition of such classes
are simply the standard definitions of computational complexity theory using Turing machines with two input tapes.
The following section establishes terminology.

4.1 Subrecursive classes

A complexity bound is a pair (S, res) where S is a set of functions f : N −→ N and res is some computational resource,
for example space or time. If (S, res) is a complexity bound, a subset A ⊆ {0, 1}∗ is said to be decidable within (S, res)
if there is a (multitape) Turing machine M deciding A such that there is a function f ∈ S where M uses resources
res bounded above by f . We denote by S-res the set of subsets of {0, 1}∗ decidable within the bounds specified by
(S, res). If E is an equivalence relation on N, we denote by Equ(N)S-res the set of equivalence relations E decidable by
(two-input-tape, multiple work-tape) Turing machines deciding E within the bounds specified by (S, res).

The same concept is defined for non-deterministic machinesmutatis mutandis, i.e. a set is decidable within resources
in (S, nres) there is a non-deterministic Turing machine that accepts E such thatM operates with the bounds specified
by (S, nres). The sets S-nres and Equ(N)S-nres are defined as expected.

Example 319. For example, if S = poly is the set of polynomials over the naturals, S-res = poly-time is the set
polynomial-time decidable sets, i.e. S-res = poly-time = Ptime. Similarly, Equ(N)S-res is the set of equivalence
relations decided by a polynomial-time TM. That is there exists a two-tape TM that on inputs m and n halts in time
bounded by a polynomial in the size of the inputs and accepts if and only if m and n are equivalent.

When o is an operation on functions from natural numbers to natural numbers, we say that S is closed under o if
∀f1, . . . , fn ∈ S.o(f1, . . . , fn) ∈ S. For example, the set of polynomials with positive integer coefficients is closed under
addition and multiplication.

The sets of equivalence relations on N consisting of primitive recursive, ExpTime-, Pspace-, Ptime-, and Log-
Space-decidable equivalence relations are denoted by Equ(N)p.r., Equ(N)ExpTime, Equ(N)Pspace, Equ(N)Ptime, and
Equ(N)LogSpace, respectively. The notation is extended to other sets in straightforward ways later in the text.

4.2 Finite meet and join

Lemma 320. Let E be decidable in time T (E) (resp. space S(E)) and F be decidable in time T (F) (resp. space S(F)).
Then E ∧ F is decidable in time T (E) + T (F) (resp. space max(S(E), S(F)).

Proof. m(E ∧ F)n iff mEn and mFn.
Hence to check whether m(E ∧F)n, it is sufficient to first check whether mEn and then check whether mFn. Space

can be reused, hence only the maximum counts, but time adds.

Corollary 321. Let S be a time bound closed under addition, or a space bound. The set of S-decidable equivalence
relations is closed under finite meet.
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Especially, Equ(N)r.e., Equ(N)dec, Equ(N)p.r., Equ(N)ExpTime, Equ(N)Pspace, Equ(N)Ptime, and Equ(N)LogSpace
are all closed under finite meet (they form lower subsemilattices).

Proposition 322. There exist two equivalence relations, both of which are decidable in logarithmic space, but whose
join is undecidable.

Proof. Let M be a deterministic Turing machine. We may assume wlog. that the machine is not stuck on any of its
configurations unless the state in the configuration is either “accept” or “reject”.

let c, c′ be any two of the configurations of M , and let c, c′ be the binary representations of these under some
standard one-to-one encoding. We assume wlog. that each representation starts with 1. Note in particular that no
configuration is represented by the string “0” and that the representation of any configuration is also a representation
of some positive integer.

We now define a partial binary relation→⊆ {0, 1}+×{0, 1}+ as follows: Write c→ c′ if c and c′ are configurations
of M and c′ is the result of executing one step of M from configuration c. Moreover, we define c→ 0 whenever c is a
final configuration of M (i.e., c is in an accept or reject state).

The relation→ can be decided in logarithmic space in the size of c and c′ by standard techniques: IfM is a Turing
machine and configurations d are on the form d = (state, tape content, tape head position), there is a Turing machine
RM that on input (c, c′) decides whether c→ c′ using a fixed number of counters to (a) keep track of where in each
of c and c′ the tape heads of RM are currently reading2 and (b) to check whether the tape contents of c and c′ are
identical except for, possibly, at the tape head positions in c and c′. RM carries a copy of M in its internal logic as
a lookup table and simply performs a lookup to see whether there is a transition in M that would allow the change
observed at the tape head positions in c and c′ (and checks whether the tape positions differ by at most one).

We denote by c ≈ c′ the reflexive transitive symmetric closure of →. Clearly, ≈ is undecidable as c ≈ 0 iff the
execution starting in configuration c terminates.

Now, given a non-negative integer n whose binary representation is n and a configuration c, we build the couple
(n, c) as the base-3 number (n, c) = n2c. We define the clocked one-step relation →′ on {0, 1}+ by (n, c) →′ (m, c′)
iff either m = n + 1 and c → c′ or if c is final and (m, c′) = 020 (= 6, in base-3). Note that as → is decidable in
logarithmic space in the size of c and c′, and as it can be checked in logarithmic space whether m = n + 1 and in
constant space whether (m, c′) = 020, then →′ is decidable in logarithmic space in (n, c) and (m, c′). We define ≈′ as
the reflexive transitive symmetric closure of →′. Now, ≈′ is an undecidable equivalence relation as (n, c) ≈′ 020 iff
the execution starting at c terminates.

We now define two further equivalence relations →even and →odd as follows: (n, c)→even (m, c′) (resp. (n, c)→odd

(m, c′)) if either (i) (n, c)→′ (m, c′) and n is even (resp. odd) or (ii) c is final, n is even (resp. odd) and (m, c′) = 020.
It is obvious that →even and →odd are still decidable in logarithmic space.

Note that by construction, if (n, c) →even (m, c′) then n must be even, hence m = n + 1 must be odd (except for
the special case of final configuration). Hence, there is no (p, c′′) such that (m, c′)→even (p, c′′).

Now, consider ≈even, the reflexive transitive symmetric closure of →even. We claim that ≈even is decidable in
logarithmic space. Indeed, the only cases where we can have x ≈even y are:

• x = y.

• x→even y, this is decidable in logarithmic space.

• y →even x, this is decidable in logarithmic space.

• There exists z such that x→even z and y →even z, this is decidable in logarithmic space by simulating one step
of the execution on the configurations in x and y and checking whether the results are the same. As the Turing
macine M is deterministic, at most one step per configuration must be simulated.

In the last case, we cannot directly simulate one step of the machine from each of the configurations x and y and
compare the results in logarithmic space (because we cannot store the results). However, we can check that x and y
only differ by the state of the machine and the symbol read by the tape head; then, the step can be performed by
changing only local information, i.e., compute the new state, tape symbol, and move. All of these can clearly be done
in logarithmic space.

As it is not possible to have x→even z →even y, it is never necessary to simulate several steps in a row in order to
check whether x ≈even y. Thus, at most one step from each of x and y must be simulated. Hence, ≈even is decidable in
logarithmic space. Similarly, ≈odd is decidable in logarithmic space. However, ≈even ∨ ≈odd=≈′ is not decidable.

Corollary 323. None of Equ(N)dec, Equ(N)p.r., Equ(N)ExpTime, Equ(N)Pspace, Equ(N)Ptime, or Equ(N)LogSpace are
closed under finite join. Hence none of these sets is a sublattice of Equ(N).

2Note that c does contain the whole tape, of size N and the head position in it. Because the head must point into the tape, the head
position is at most N and thus can be stored in binary using only logN space. Therefore, counting up to N to actually find the position
in the tape requires space logN (which is indeed logarithmic in the size of c).
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4.3 Complements
Even if Equ(N)Ptime and such are not sublattices, as they are not closed under join, we may consider complements:
each element of Equ(N) (except > and ⊥) has infinitely many complements, and in some cases may have uncountably
many [AMRS17]. On the other hand, Equ(N)Ptime and any other set of equivalence relations where every relation must
be decided by a Turing machine, must necessarily be countable, as there are only countably many Turing machines.
Hence, we can in general not hope to encompass all complements of an equivalence relation in a single set among those
we consider.

However, we can show that any equivalence relation in, say, Equ(N)ExpTime has some of its complements in
Equ(N)ExpTime.

A note on nomenclature: The ordered sets we consider are not necessarily sublattices (e.g., Equ(N)ExpTime is
demonstrably not a sublattice), whence we cannot use the term “complemented”. This motivates the following definition

Definition 324. Let A ⊂ Equ(N) be a set of equivalence relations, not necessarily a sublattice. We say that A
always admits complements if for any element s ∈ A, A contains at least one complement to s (in Equ(N)), that is
∀s ∈ A,A⋂ compl(s) 6= ∅.

Theorem 325. Let (S, res) be a complexity bound where res is either (deterministic or non-deterministic) space or
time. Assume that (i) S is closed under taking integer polynomials (i.e., if P (x) ∈ N[X] and f ∈ S, then P (f) ∈ S),
and (ii) S contains a function f such that n < f(n) for all n, (iii) S-res is closed under complement, and (iv) if res
is time, then S contains n 7→ 2n. Then, Equ(N)S-res always admit complements.

Proof. Let E ∈ Equ(N)S-res be non-trivial. Let F be the singular equivalence relation whose unique non-singleton
class, F , contains exactly the least element of each class of E .

Complement. F is a singular partition and, by Lemma 313, E is one of its complements.
Least element. Consider two natural numbers m 6= n. If there exists k < m such that kEm, then by construction

m /∈ F which implies ¬(mFn). Similarly, if there exists k′ < n such that k′En then ¬(mFn). Conversely, if there
exists no such k (resp. k′) then m (resp. n) is the least element of its class of E and is in F . Thus mFn iff no such k
and k′ exist.

Bound. We may transform any Turing machineM deciding an equivalence relation within some bound f ∈ S into
a one-input tape Turing machine that decides the set {m�n : mEn} within bound f +O(m+ n) (both if res is time or
space): The machine merely copies m and n to two new auxiliary worktapes and executes M as a subroutine where the
two new worktapes are regarded as input tapes. It takes linear time to perform the copying, and linear space to store the
extra inputs. Hence, as S contains a function f such that n < f(n) for all n and is S closed under taking polynomials,
we obtain {m�n : mEn} ∈ S-res. As S-res is closed under complement, we have {m�n : ¬(mEn)} ∈ S-res, and we
may thus let ME be a Turing machine witnessing that fact.

Consider the TM MF which, on inputs m and n proceeds as follow:

1. If m = n, accept. This takes zero space and linear time.

2. If ME accepts all inputs k and m for k < m go on, otherwise reject. This requires m calls to ME and as S is
closed under polynomials, the total resource use needed to perform all calls is majorized by a function in S. The
bookkeeping of the iteration requires storing the values of k which have size at most |m|, hence linear space, but
requires linear time in m to process in each iteration. As there are at most m iterations and as S is closed under
polynomials, it follows that if res is space, the resource usage is majorized by a function in S. If res is time, the
fact that S contains n 7→ 2n (and m = 2|m|), and is closed under polynomials, implies that the resource usage is
majorized by a function in S.

3. Similarly, check whether ME accepts all inputs k′ and n for k′ < n.

4. If the input was not rejected yet, accept it.

This machine decides F and operates within bound S.

Observe that the methods employed in the proof of Theorem 325 do not work for S-res = LogSpace because the
counter k must index elements up to m, requiring space O(logm) = O(|m|), i.e., memory linear in the input size; nor
for S-res = Ptime because there are m+ n calls to ME (or max(m,n) with a more clever implementation), thus the
time needed is O(max(m,n)) which is exponential in |m| = O(logm).

It is tempting to conjecture that Equ(N)Ptime does not always admit complements. However if that were the case,
we would have Equ(N)Ptime 6= Equ(N)Pspace, and by using a polynomial-time pairing function N2 −→ N, existence
of P ∈ Equ(N)Pspace \ Equ(N)Ptime entails existence of a set in PSPACE \ P, and hence PSPACE 6= P; hence, the
conjecture will be exceedingly hard to prove.

Corollary 326. Equ(N)Pspace, Equ(N)ExpTime, Equ(N)p.r., and Equ(N)dec all always admit complements.
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5 Superrecursive equivalence relations
We now investigate closure properties undermeet and join of sets A of equivalence relations where A is an arithmetical
sets of relations all of which are also arithmetical sets.

5.1 The arithmetical hierarchy
We briefly recall basic definitions and results for the (Kleene-Mostowski) Arithmetical Hierarchy.

Definition 327. A n-ary relation R is decidable if there exists a n-tape TM that always halts and which, on inputs
a1, . . . , an accepts if and only if R(a1, . . . , an).

We note Σ0
0 = Π0

0 the set of decidable relations.
For k ∈ N, we define:

• R ∈ Σ0
k+1 iff there exists R′ ∈ Π0

k such that R(a1, . . . , an)⇔ ∃r.R′(a1, . . . , an, r). r is called a witness.

• R ∈ Π0
k+1 iff there exists R′ ∈ Σ0

k such that R(a1, . . . , an)⇔ ∀r.R′(a1, . . . , an, r).

• ∆0
k = Σ0

k

⋂
Π0
k.

Note that Σ0
1 is the set of r.e. relations, Π0

1 is the co-r.e. relations and thus ∆0
0 = ∆0

1 is the decidable relations.
Moreover, Π0

k = co-Σ0
k. Hence, ∆0

k is closed under complement for each k.
Alternating quantifiers A standard expansion of the definitions shows that the Σ0

k relations have the shape
∃r1∀r2 . . . QkrkR(a1, . . . , an, r1, . . . , rk) where R is decidable (and Qk is either ∃ or ∀ depending on the parity of k).
Similarly, Π0

k is expressed by an alternating chain of quantifiers starting with ∀.
Tuples By standard encoding of tuples, there may be several numbers (witnesses) in each quantifier, that is R is

Σ0
k+1 iff there exists a Π0

k relation R′ such that R(a1, . . . , an) ⇔ ∃r1, . . . , rm.R
′(a1, . . . , an, r1, . . . , rm) (and similarly

for R ∈ Π0
k+1). As an immediate consequence, if R′ is Σ0

k and R(a1, . . . , an)⇔ ∃r.R′(a1, . . . , an, r), then R is also Σ0
k

(and similarly for Π0
k).

Dependant tuples Because encoding and decoding are decidable (or rather because we can choose a decidable
encoding), the number of elements in such tuples can actually depends on a variable quantified at the same time. That
is, for example, if (Rk)k∈N is a family of decidable relations of arity k, then the relation “∃n,A.A is the encoding of
(a1, . . . , an) and Rn(a1, . . . , an)” is Σ0

1. We will abusively write such quantifications as ∃n, a1, . . . , an.Rn(a1, . . . , an)
for the sake of clarity.

Conjunction, disjunction To avoid confusion with the join and meet, we denote the logical conjunction and
disjunction by && and ||. All these classes are closed under (finite) conjunction and disjunction. That is, for example,
if both R1(a1, . . . , an) and R2(b1, . . . , bm) are Π0

k then so is

R(a1, . . . , an, b1, . . . , bm)⇔ R1(a1, . . . , an) &&R2(b1, . . . , bm)

As an immediate consequence, we have that the classes of Σ0
k (resp. Π0

k, ∆0
k) equivalences are closed under finite

meet.
Separation A straightforward consequence of Post’s Theorem (see [Rog67, §14.5]) is that, for each k ≥ 1, Σ0

k\Π0
k 6=

∅, Π0
k\Σ0

k 6= ∅ (the existential and universal sets are separated), and for k ∈ N that Σ0
k ( Σ0

k+1, respectively Π0
k ( Π0

k+1

(the hierarchy is separated).

5.2 Joins
Lemma 328. For every k ≥ 1, the set of equivalence relations in Σ0

k is closed under finite join.

Proof. Let x and y be two integers. By definition, x(E ∨ F)y iff there exists a1, . . . , an such that xEa1F . . . EanFy.
That is

∃n, a1, . . . , an.xEa1 && a1Fa2 && . . .&& anFy
Since both E and F are Σ0

k, then so is the conjunction. Since adding existential quantifiers in front of a Σ0
k relation

does not change its level in the hierarchy, then E ∨ F is Σ0
k.

Note that k, as well as any of the ai, are not bounded and may be as large as wanted. Thus, the construction does
not work for any time or space bound.

Even with decidable equivalence relations (but no bound), the construction does not work as it is not possible
to guess a number of unbounded size and still guarantee termination. A non-deterministic r.e. machine may guess
an unbounded number by alternating choices between “0 or 1?” and “stop or continue?” but this procedure may
potentially loop infinitely. A machine that always terminate may only guess a number of bounded size.
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This is exactly the same reason why one can semi-decide the halting problem by first guessing the number of steps,
then guessing the intermediate configurations and lastly check the individual transitions, but this procedure is not
doable with an always terminating machine.

Lemma 329. The join of any two Π0
k equivalence relations is in Σ0

k+1.

Proof. Immediate by unfolding the definition of ∨ as above.

Similar, we have the following generalization of Proposition 322.

Proposition 330. For any k ≥ 1, the set of equivalence relations in ∆0
k is not closed under finite join.

The proof is essentially the same as for Proposition 322 but much simpler as the entirety of the discussion concerning
logarithmic space can be omitted. However, a different upper bound is needed, as the halting problem no longer suffices.

Definition 331. Let A be a ∆0
k -complete language. An oracle machine over A is a multi-tape Turing Machine with

a special oracle tape and query state q? and answer states qy and qn such that whenever the machine is in q? it goes
to qy if the content of the oracle tape is in A and to qn otherwise.

Fact 4. There is no oracle machine over A that can solve the halting problem for oracle machines over A.
This is a well-known fact whose proof is an adaptation of Turing’s proof for standard TMs.
First, note that universal oracle machines do exist because the universal machine may access its own oracle whenever

it needs to simulate an oracle query.

Proof. Suppose that H is an oracle machine over A able to solve the halting problem for oracle machines over A. That
is, H always halts and it accepts M#n iff M is the encoding of an oracle machine that terminates on input n.

Now, using an universal machine, build the anti-diagonal machine D such that D terminates on input X iff H
rejects X#X.

It is immediate that D terminates on input D iff H rejects D#D, that is iff D does not terminates on inupt D, an
absurdity.

The rest of the proof here is a shorter version of the proof of Proposition 322 and the reader may want to refer to
details there that are used similarly (replacing “decidable in logarithmic space” by “decidable by an oracle machine”).

Proof of Proposition 330. Given an oracle machine M and the binary representations of two configurations, the →
relation, corresponding to simulating one step of M , is decidable by an oracle machine (using its own oracle if it needs
to simulate a step from q?). However, the reflexive, transitive, symmetric closure of →, ≈, is not decidable by an
oracle machine as c ≈ 0 is the halting problem for oracle machines.

We define the clocked one-step relation →′ as previously. Again, →′ is decidable by an oracle machine but its
reflexive, transitive, symmetric closure ≈′ is not.

Depending on the parity of the clock, we define the two relations →even and →odd. They are both decidable by
oracle machines, and their reflexive, transitive, symmetric closures ≈even and ≈odd also are because it is not possible
to have several steps with the same parity in a row.

However ≈even ∨ ≈odd=≈′ is not decidable by an oracle machine.

Proposition 332. For every n ≥ 1, the set of equivalence relations in Π0
n is not closed under finite join.

Proof. Assume, for contradiction, that the join of every pair of Π0
k equivalence relations were Π0

k. Consider any two
∆0
k equivalence relations. A fortiori, both of these relations are both Σ0

k and Π0
k, and thus by Lemma 328, the join of

the two relations is Σ0
k, and by the assumption above also Π0

k, hence ∆0
k.

But by Proposition 330, ∆0
k is not closed by join.

5.3 Complements
Theorem 333. For every k ≥ 1, there are equivalence relations in Σ0

k none of whose complements are in Σ0
k.

Proof. Let, by Post’s theorem, P be a unary relation in Σ0
k whose complement is not in Σ0

k. Thus, there exists a Π0
k−1

binary relation P ′ such that P (x)⇔ ∃r.P ′(x, r).
Define E = {x | P (x)} and let E be the singular equivalence with non-singleton class E. It is in Σ0

k because
xEy ⇔ x = y || (P (x) && P (y))⇔ ∃r1, r2.x = y || (P ′(x, r1) && P ′(y, r2)).

Let F be a complement to E . We have x ∈ E iff ∃e.e 6= x&& e ∈ E && eFx. Indeed such an e exists because each
class of F must intersect E and because e is the only element in its class (of F) which is also in E, then x /∈ E. This
relation is equivalent to ∃e, r.e 6= x&& P ′(e, r) && eFx.

Suppose that F is Σ0
k, then there exists a Π0

k−1 relation F ′ such that xFy ⇔ ∃r.F ′(x, y, r). But now we have
x ∈ E ⇔ ∃e, r1, r2.e 6= x&& P ′(e, r1) && F ′(e, x, r2) is also Σ0

k which contradicts the hypothesis.
Hence F is not Σ0

k.
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Note that here we need to “go down a level” in the hierarchy to have the proof working.
We next prove a generalization of Theorem 325.

Theorem 334. Let k ≥ 0. Every equivalence relation E in ∆0
k has at least one complement in ∆0

k.

Proof. If E ∈ {⊥,>}, we have that both E and its complement are in ∆0
0, and as ∆0

0 ⊆ ∆0
k, the theorem holds. Further,

as ∆0
0 = ∆0

1, we wlog. assume in the remainder of the proof that k ≥ 1.
Accordingly, let E be an equivalence relation that is neither ⊥ nor >. Let F be the singular equivalence relation

whose unique non-singleton class, F , contains exactly the least element of each class of E .
Complement. F is a singular partition and, by Lemma 313, E is one of its complements.
Least element. Consider two elements m 6= n. If there exist i < m such that iEm, then by construction m /∈ F

which implies ¬(mFn). Similarly, if there exists i′ < n such that i′En then ¬(mFn). Conversely, if there exists no
such i (resp. i′) then m (resp. n) is the least element of its class of E and is in F . Thus mFn iff no such i and i′ exist.

Bound. Since E is in ∆0
k, then so is its complement E : mEn⇔ ¬mEn. Note that E is not an equivalence.

Now, we have:

mFn⇔ m = n ||
(
0Em&& . . .&& (m− 1)Em&& 0En&& . . .&& (n− 1)En

)
Since all the relations involved are ∆0

k (and the combination of them on the right hand side is primitive recursive),
then so is F .

6 Arbitrary meet and join
First, note that relations in the arithmetical hierarchy can be specialised3 by fixing some of their free variables. That
is, if R1(a1, . . . , an) is, say, Π0

k then so is R2(a2, . . . , an) ⇔ R1(42, a2, . . . , an) (specialised with a1 = 42). Indeed, if
k = 0, then this is immediate (R1 and R2 are both decidable) and otherwise there exists, by definition, a Σ0

k−1 relation
R′1 such that R1(a1, . . . , an) ⇔ ∀r,R′1(a1, . . . , an, r). But then we have R2(a2, . . . , an) ⇔ ∀r,R′2(a2, . . . , an, r) with
R′2(a2, . . . , an, r)⇔ R′1(42, a2, . . . , an, r) which is Σ0

k−1 by induction hypothesis.

6.1 Arbitrary join
The atoms of Equ(N) are equivalence relations such that ⊥ ≺ E , and it is easily seen that an equivalence relation is an
atom iff it is singular and the unique non-singleton class consists of two elements, that is there are distinct a, b such
that aEb and for all x 6= a, b and all y 6= x, we have ¬(xEy).

Lemma 335. Every atom in Equ(N) is decidable in zero space and linear time by a two-tape Turing machine (hence,
in particular, each atom can be decided by a deterministic, one-way, two-tape automaton).

Proof. Let E be an atom and let a, b be distinct elements such that aEb and for all x 6= a, b and all y 6= x, we have
¬(xEy). Consider a Turing machine having both a and b encoded in its states: on input (m,n), the machine first
checks if m = a or m = b (no space needed, constant time |a|+ |b|), then it checks if n = a or n = b (no space needed,
constant time |a| + |b|). If both tests are true, the machine accepts, otherwise it checks whether m = n (no space,
linear time min(|m| , |n|)) and accepts or rejects accordingly.

Each of the tests done by this machine only require to read the corresponding word once and can easily be performed
by a (two-tape) DFA. Performing all the tests at the same time (rather than sequentially as described here) is then a
standard product of DFA, thus all this can be done by reading m and n only once (one-way).

Note that Lemma 335 does not entail that any atom automatic as the very restricted notion of automatic equivalence
relation we have defined requires automata to have a single tape.

Proposition 336. Let I ⊆ N. There exists a set of atoms whose join is the singular equivalence with non-singleton
class I.

Proof. Let x ∈ I be an element of I. For each other i ∈ I, let Ai be the atom with xAii. Let E =
∨Ai, it is the

singular equivalence whose non-singleton class is I.

Corollary 337. None of Σ0
k, Π0

k, ∆0
k are closed under arbitrary join.

Proof. Let I be, e.g. a non-Σ0
k set containing 0. By the construction above, there exists a set of atoms whose join is

the singular equivalence relation, E , with non-singleton class I.
Each atom is decidable by an automaton, hence Σ0

k. However, we have x ∈ I ⇔ 0Ex hence E is not Σ0
k (that is,

the membership in I is the specialisation of E with the first argument equal to 0).
The reasoning is the same for the other cases.

3In the sense of program specialisation, which is the modern equivalent of the snm-theorem.
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6.2 Arbitrary meet

Recall that the upper set ↑ {n} contains n and all the elements greater than n.
We say that an equivalence is small if it has finitely many classes. Note that small singular equivalence relations

have finitely many singleton classes, whose largest element is N and the non-singleton class is thus the union of a
finite set and the upper set ↑ {N + 1}.

Note that small singular equivalence relations are decidable by single-tape automata by encoding the finitely many
singletons in the states and checking whether one of the inputs is among these numbers. Actually, since the inputs
need only to be compared against finitely many fixed numbers, this only required a fixed amount of time as the input
don’t need to be completely read if they differ from these numbers.

Proposition 338. For every I ⊆ N, there is a set of small singular equivalence relations whose meet is the singular
equivalence with non-singleton class I.

Proof. Let I ⊆ N. Let (fi)i∈N be a strictly increasing sequence and let Fi = I
⋂

[0; fi[. Note that I =
⋃
i Fi.

Let Fi be the small singular equivalence with non-singleton class F+
i = (Fi

⋃ ↑ {fi}), note that we may have several
copies of the same equivalence in the family if, typically, fi+1 = fi + 1 and fi ∈ I, but this is not a problem. Finally,
let E =

∧Fi. By definition, we have mEn iff mFin for all i.
Let m 6= n with mEn. As (fi)i∈N is strictly increasing, there exists a j such that fj ≥ max(m,n) thus mFjn

implies m,n ∈ Fj hence m,n ∈ I.
Conversely, if m,n ∈ I then let i be the smallest number such that m ∈ Fi. Let k ∈ N be arbitrary. Now,

• If i ≤ k then Fi ⊆ Fk hence m ∈ Fk ⊆ F+
k .

• If k < i then we have both m ∈ I and m /∈ Fk, and thus m ≥ fk. Hence m ∈↑ {fk} ⊆ F+
k .

Thus, for all k we have m ∈ F+
k . Similarly, n ∈ F+

k . Hence, for all k, mFkn which implies mEn.
Thus, E is the singular equivalence with non-singleton class I.

Note that the ordering (and upper sets) plays a big role in the proof, hence adapting it to equivalences on programs
require some care.

Corollary 339. None of Σ0
k, Π0

k, ∆0
k are closed under arbitrary meet.

Proof. Let I be, e.g. a non-Σ0
k set containing 0. By the construction above, there exists a set of small singular

equivalences whose meet is the singular equivalence relation, E , with non-singleton class I.
Each small singular equivalence is decidable by an automaton, hence Σ0

k. However, we have x ∈ I ⇔ 0Ex hence E
is not Σ0

k (that is, the membership in I is the specialisation of E with the first argument equal to 0).
The reasoning is the same for the other cases.

Corollary 340. Let S be a time or space bound. The set of S-decidable equivalence relations is not closed under
arbitrary meet.

In particular, Equ(N)r.e., Equ(N)dec, Equ(N)p.r., Equ(N)ExpTime, Equ(N)Pspace, Equ(N)Ptime, and Equ(N)LogSpace
are not closed under arbitrary meet (they form lower subsemilattices but not complete lower subsemilattices).

6.3 Arithmetical meet and join

The previous results assume that the set of equivalence relations may be chosen arbitrarily. Especially, it is based on
a set I of arbitrary difficulty. This essentially means that the results boil down to the fact that there are uncountably
many such I, while there are only countably many arithmetical relations.

We now look at what happens if the set of relations itself is to have some bound. Specifically, we are concerned
with the meet and join of a Σ0

k set of equivalences. Σ0
k (and especially, recursively enumerable) is a sensible bound:

It means that one can enumerate each of the equivalences (with a proper oracle, or none for recursively enumerable)
until all the needed ones have been found. On the other hand, a Π0

k set of equivalences would mean that one can
enumerate (with oracle) the complement to this set, which is less practical.

First, note that a given relation may be expressed as several different formulas. The usual logic point of view is to
concentrate on formulas and thus say, for example, that the formula ¬(x || y) is equivalent to the formula ¬x&& ¬y.
However, if we look at the relations, that is the subsets of N × N, then these two formulas describe the exact same
relation. This is exactly the usual difference between syntax and semantics common in computer science, namely
that there exists different programs (or TMs) that describe the exact same function. Formulas (or programs) are a
convenient (especially, finite) way to represent relations (or functions) but using them costs us unicity.
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Here we consider given a computable encoding of formulas (in the arithmetical hierarchy) and we note ϕn the
formula corresponding to number n. The encoding is computable in the sense that given n there exists a Turing
Machine that outputs the text of ϕn in a human-readable format (such as the one used in this text), and conversely.
Obviously, because we handle relations that are themselves not computable, we cannot expect a TM to do more than
a translation between representations. We also note Φn the relation described by number n (formula ϕn). Obviously,
the (non-injective) map n 7→ Φn is not computable. All this is similar to numbering programs and have pi be the
ith program computing a function JpiK. Even if i 7→ pi is injective and computable (depending on the encoding of
program texts, obviously), i 7→ JpiK is neither injective nor computable.

Definition 341. Let Γ,Λ be two sets in the arithmetical hierarchy. A set A ⊆ N of equivalence relations is said to
be a Γ set of Λ equivalence relations if there exists a Γ set I ⊂ N such that (i) {Φi | i ∈ I } = A and (ii) each Φi is
a Λ relation.

We shall use an index set I as a representative of A. That is, I is considered as Γ set of Λ formulas ϕi that describe
exactly the relations Φi. Because i 7→ Φi is not injective, I is not unique and it is possible that Φi = Φj , that is the
same relation (in A) has several representative formulas (in I).

Proposition 342. For all k ≥ 1, the join of a Σ0
k set of Σ0

k equivalences is a Σ0
k equivalence.

Proof. Let I be a Σ0
k set of integers such that each Φi is a Σ0

k equivalence. Let E =
∨

Φi. By definition, we have xEy
if and only if

∃n, a1, . . . , an, x1, . . . , xn. a1 ∈ I && . . .&& an ∈ I && xΦa1x1 && x1Φa2x2 && . . .&& xnΦany

Because I is Σ0
k, so is its membership relation, and each Φai is Σ0

k by hypothesis. Hence, the relation after the
quantifier is Σ0

k and this level is not changed by adding extra existential quantifiers in front.
So, E a Σ0

k relation.

Note that because i ≤ j implies Σ0
i ⊂ Σ0

j , we immediately have that the join of a Σ0
i set of Σ0

j equivalences is Σ0
j .

In particular, the join of a recursively enumerable set of Σ0
j equivalences is a Σ0

j equivalence rekation.

Corollary 343. For all k ≥ 0, j ≥ 1, the join of a Σ0
k set of Π0

j equivalence relation is not necessarily a Π0
j equivalence

relation.

Proof. By Proposition 332, Π0
j is not closed under finite join. Since any finite set is also Σ0

k, Π0
j cannot be closed

under Σ0
k join.

Proposition 344. For all positive integers n, there exists a decidable set of Σ0
n equivalence relations whose meet is

not Σ0
n.

Proof. Let I be the set of integers such that ϕi is a unary Σ0
n formula. Given a suitable canonical representation of

formulas, it is decidable by simply counting the quantifiers in front of the formula.
Let Ak = { i ∈ I | Φi(k) }, the set of numbers of Σ0

n formulas describing a predicate that accepts k. It is Σ0
n by

construction. Let Ak be the singular equivalence with non-singleton set Ak. The set of all the Ak is a decidable set
of Σ0

n equivalence relations.
Now, look at Aj ∧ Ak. It is easy to see that this is the singular equivalence with non-singleton set Aj

⋂
Ak =

{ i ∈ I | Φi(j) && Φi(k) }, the set of numbers of Σ0
k formulas describing a predicate that accepts both j and k.

Similarly, we can see that
∧Ak is the singular equivalence with non-singleton set

⋂
Ak = { i ∈ I | ∀k ∈ N,Φi(k) },

that is the set of numbers of Σ0
k formulas describing a predicate accepting all numbers, i.e. a tautology.

However, this set is Π0
k+1-complete, thus

∧Ak cannot be Σ0
k.

Proposition 345. For all k, the meet of a Σ0
k set of Π0

k equivalence relations is Π0
k.

Proof. Let I be a Σ0
k set of integers such that each Φi is a Π0

k equivalence. Let E =
∧

Φi. By definition, we have xEy
if and only if

∀i, i ∈ I ⇒ xΦiy

which is equivalent to
∀i, i /∈ I || xΦiy

Because i ∈ I is Σ0
k, then its complement i /∈ I is Π0

k. Next, each of the Φi is also Π0
k, hence the right part is. Adding

a ∀ in front of a Π0
k formula does not change its level in the hierarchy.

Hence, E is Π0
k.

Here also, by inclusion of the hierarchy, i ≤ j implies that any Σ0
i set of Π0

j equivalence relations has a Π0
j meet.

Especially, the set of Π0
k equivalence relations is closed under recursively enumerable meet.
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Closure properties of arithmetical sets of limited equivalence relations

We briefly consider Σ0
k sets of equivalence relations from the other classes considered elsewhere in this paper.

Proposition 346. Let k ≥ 1. The meet of a Σ0
k set of automatic equivalence relations is not necessarily automatic.

Proof. Let, for each i ≥ 1, Ei be the automatic equivalence relation containing the two classes {i} and N \ {i}. Then,
∧iEi = ⊥, which is not automatic.

Similarly, Σ0
k sets of subrecursive equivalence relations that include Equ(N)LogSpace are not necessarily closed

under join: by Proposition 322 there is a finite set (hence, a fortiori, an r.e. set) of equivalence relations decidable in
logarithmic space whose join is undecidable.

Proving that Σ0
k sets of subrecursive equivalence relations that include Equ(N)LogSpace are not necessarily closed

under meet requires substantially more work. The result is contained in the following proposition.

Proposition 347. There is an r.e. set of elements of Equ(N)LogSpace whose meet is not decidable.

Proof. Consider a standard representation of Turing machines as elements of {0, 1}∗ such that it can be checked in
logarithmic space whether x ∈ {0, 1}∗ is a valid representation of a Turing machine (see e.g., [Pap94, Ch. 3]). Consider,
for every j ∈ N, the singular equivalence relation Ej whose unique non-singleton set Aj consists of those numbers n
such that the binary expansion of n is the encoding of a Turing machine that does not halt in at most j steps. Observe
that A1 ⊇ A2 ⊇ · · · .

Define E∞ as the singular equivalence relation whose unique non-singleton set, A∞, consists of those numbers
whose binary expansion is the encoding of a Turing machine that does not halt. Then, E∞ = ∧jEj .

Now, for each j ∈ N, we have Ej ∈ Equ(N)LogSpace: Fix i; for every pair (m,n) ∈ N, a Turing machine may check in
logarithmic space whether the binary representation of m and n represents a Turing machine and then use a universal
Turing machine to simulate running of both m and n for j steps. By proper construction of the universal machine, the
space overhead required can be made constant in the space used by the machines that m and n represents, which is
bounded above by j cells as both machines are run for at most j steps; the universal machine needs only a fixed number
of counters beyond this overhead (see, e.g. [Pap94, Ch. 3]; in essence, the universal machine works by simulating one
step of the simulated machine at a time and keeping a representation of its configuration in memory). Hence, each
Ej ∈ Equ(N)LogSpace. Further observe that there is a Turing machine that, on input (the binary representation of) j
produces a Turing machine for deciding E in logarithmic space: it simply specializes a universal Turing machine to j
and outputs this along with some fixed (i.e., independent of j) operations for comparing binary representations and
checking whether the inputs represent Turing machines. Hence, the set {equonej : j ∈ N} is r.e.

But E∞ is not decidable (indeed, is not even r.e.: if it were, we could enumerate the set of all non-halting Turing
machines by fixing a single such machine and using it’s corresponding natural number m to recursively enumerate all
pairs (m,n) ∈ E∞, hence recursively enumerate the set of all non-halting machines, a contradition).

Corollary 348. Let k ≥ 1 and let A be a set of decidable equivalence relations such that Equ(N)LogSpace ⊆ A. Then
there is a Σ0

k set of equivalence relations from A such that ∧A is not decidable.

The same proof method used for the proof of Proposition 347 can be used to prove

Proposition 349. Let i ≥ 1. Then there is a Σ0
i set of ∆0

i equivalence relations whose meet is not ∆0
i

Proof. As the proof of Proposition 347, replacing the Aj by those numbers whose corresponding Turing machines are
oracle machines with an oracle to a Σ0

j−1-complete set and that do not halt in at most j steps. The proof now proceeds
mutatis mutandis, E∞ not being a ∆0

j set (indeed, not even a Σ0
j set).
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Abstract:
Implicit Computational Complexity (ICC) aims at giving machine-free characterisations of
complexity classes. Because it is usually sound but not complete, it actually provides certi-
ficates that a given program can be run within a given amount of resources. ICC is usually
applied on toy languages with restricted expressivity, we show here that it can be performed
on real programming languages.
Because it is usually a static, syntactical analysis of the programs, ICC is well-suited to be
performed at compile time. The bounds given by ICC can then be used to fuel some optimisa-
tion or to produce certificates of good behaviour. Modern compilers do most of their work in
a modular sequences of passes done on some Intermediate Representation (IR) language. The
IR is a generic typed assembly-like language and thus very well suited to express ICC criteria.
The modularity of the passes make it easy to add one and to re-use existing ones at will.
We focus here on the relatively simple analysis of Non-Size Increasing (NSI) programs. We’ve
implemented a NSI analysis for the LLVM compiler. This can be seen as a proof of concept
that ICC and compilers are able to interact productively.
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1 Introduction

In this article, we present an experiment in bringing analysis from Implicit Computational Complexity into real life
compilers.

1.1 Context and Motivations

ICC aims at finding syntactic criterion on programs that guarantee some semantic property (usually some complexity
bound). It emerged with the Bounded Recursion of Cobham [Cob62] but was really created by the breakthrough
result on Safe Recursion by Bellantoni and Cook [BC92]. Since then, many different directions have been studied in
ICC. The main ideas revolve around following dataflow (the Tiering of Leivant and Marion [LM95], the Size Change
Termination of Lee, Jones and Ben-Amram [LJBA01], the Non-Size Increasing programs of Hofmann [Hof99], . . . ),
performing a static check on values (the Quasi-interpretations of Bonfante, Marion and Moyen [BMM11], the mwp-
polynomials of Kristiansen and Jones [KJ09], . . . ) or enforcing a strict type checking (variations on Girard’s Linear
Logic [Gir87] such as Baillot and Terui’s DLAL [BT09]). Schöpp introduced a more restricted Bounded Linear Logic:
the Stratified Bounded Affine Logic [Sch07]. Hofmann and Jost [HJ03] furnish upper bounds on the heap usage in
functional programming by accepting some restrictions.

Most of these results usually concern “toy” languages such as Term Rewriting Systems [AM13], λ-calculus or the
Loop language. Even if such languages do have a strong utility in Theoretical Computer Science, they are not daily
used by programmers. On the other hand, actual languages use much more constructions (e.g. objects, pattern
matching, exceptions, . . . ) which make analysis complicated. Thus, even with 20 years of ICC, it is not possible today
to apply its results on actual programs. We start filling the gap.

The analysis we described here, based on NSI programs, it simple enough to be expressed on a small assembly-like
language. Since it only focus on memory allocation and deallocation, we can concentrate on these operations (that is,
the malloc and free in a C program) and on the control flow, and forget all the complicated constructions that may
be used by the programming language. Since this is a purely syntactical analysis (as all ICC), it is perfectly suited to
happen at compile time.

From the other end of the gap, we’ll use the intermediate representation in a compiler. During the compilation
process, the source code is first translated in an intermediate language where optimisations are performed before being
translated again into the target code in assembly language. This intermediate representation has few constructions and
is simple enough to perform all the optimisations steps. Especially for our practical case, it strips all the constructions
of the programs but keep the control flow and the allocations that we want to study.

Moreover, compilers already contain many analysis and optimisation tools that we can reuse. Most of these tools
are spread in modular passes that can be applied in various order. Typically, there is no need to rebuild the control
flow of the program. It is something that is already used by many compiler optimisations and thus that already exists
as a standalone pass. We just need to call this pass and use its result. This limits the amount of code we have to
write in order to perform our analysis.

1.2 Analysis and Optimisation

Compilers are usually focused on optimisation. Indeed, the goal is to produce an efficient code in order to have a fast
program. ICC mostly provides analysis without much optimisation of the code. However, analysis and optimisation
are not so far apart. . .

Firstly, an analysis can be used to fuel further optimisations. Typically, building the Control Flow Graph of a
program is an analysis that is used for many optimisations afterwards. Here, knowing the precise amount of memory
that a function or program will need can help optimising system calls: rather than using the standard library to find
free memory and allocate it, it becomes possible to let the program reuse its own memory efficiently.

Secondly, providing proven bounds on the time or space usage of a program is also a security property. If the
program provably uses a fixed amount of memory, then it will not try to perform an attack by heap or stack overflow,
this warns us if the program could try to exhaust system resources. Restricting the syntax in order to enforce (some)
security is similar to what Facebook does with the restricted FBJS. Since analysis is complex but verification is
(usually) easy, one can imagine a compiler that will provide a certificate for some property on the compiled code, in a
Proof Carrying Code paradigm [Nec97]. The certificate could be checked, for example, before uploading an application
to an application store for mobile devices to guarantee some safety to the user, or, at the other end, before downloading
the application to the device to check if it has sufficient capacity to run it.

Next, some ICC analysis are known to also embed some program transformation in them. Notably, the Quasi-
Interpretations method guarantee that the programs run in polynomial time if some sort of Dynamic programming is
used. Thus, a program admitting a QI can run in exponential time but the analysis says that it will run in polynomial
time after some (known) transformation. Bringing such an analysis in compiler will indicate which part of the code
should be transformed by which method.
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Lastly, these are also first steps in experimenting ICC into compilers. Thus, we chose to focus on a simple analysis
that is easy to express in the compiler’s intermediate representation rather than on a powerful analysis/optimisation
which require more work to be used. Thus, this can be seen as a proof of concept: yes, ICC and compilers can work
together and can fuel each other fruitfully. This opens the way for future works.

2 Non Size Increasing programs

2.1 Safe Recursion and Non Size Increasing

In Safe Recursion, Bellantoni and Cook analysed repeated iterations as a source of exponential growth. Typically,
exponentiation can be computed by iterating doubling, itself an iteration.

In order to prevent repeated iterations, they designed a syntactical criterion (hence, a static analysis) based on
splitting variables into normal and safe ones, which can be interpreted as with/without energy. Next, iteration must
be performed on a normal variable (which provides the “energy” to run the program) and the result must be safe (the
energy has been used). Thus, when computing the exponential with the usual recurrence 2n = 2× 2n−1, the result of
the recursion (2n−1) must be safe and cannot be used to control the doubling (2×).

However, repeated iterations is a powerful expressive construction to build many reasonable programs. Indeed,
writing a program by respecting the normal/safe tiering of arguments is often difficult. Typically, insertion sort works
by iterating the insertion of an element into a sorted list, itself an iteration. The Safe Recursion prevents writing the
insertion sort (or rather requires to write it in a non natural way).

Hofmann identified that the problem does not come from the exponential or sorting function but from the doubling
or insertion function. Indeed, doubling produces an output twice as large as its input while insertion produces an
output basically as large as the input. Thus, it is not harmful to iterate insertion, which does not increase the size
of its data (or only by a constant factor) while it is harmful to iterate doubling which drastically increases the size of
data. This justifies the detection of Non Size Increasing (NSI) programs.

In order to detect NSI programs, Hofmann introduced a new datatype, the diamond (�), with the particularity
that this datatype has no constructor. That is, there is no closed term of type � and only variables can have this type.
Moreover, variables of type � must be used linearly in the result of functions. Thus, � in the result can be seen as
“price” to be paid to compute and that can only be paid by diamonds already present in the arguments.

The next step is to make the type system aware of �. When working with lists, it is the cons that make the size
of lists, Hofmann requires a diamond for each cons. Thus, instead of having the classical type α, α list→ α list, cons
is now of type �, α, α list→ α list.

With this new type system, it is still possible to write the insertion sort in the usual way, but exponentiation is
not possible anymore.

2.2 NSI and imperative programs

The diamonds have a very nice and natural interpretation in imperative programs, as shown by Hofmann.
The classical representation of lists in an imperative language is to have cells containing a value and a pointer to

the next cell, the list itself being a pointer to the first cell. When performing a cons, a new cell must be created.
For this, new memory must be allocated (malloc). This new memory is exactly the diamond we need to perform the
cons! Indeed, if cons is given as a third argument a pointer (to a place in memory which is assumed to be free), then
it does not need to allocate memory and can use the one that is provided.

Hofmann shown that NSI programs can be compiled into malloc-free C programs. The diamonds are essentially
pointers and a program that is NSI does not need extra diamonds, hence does not need to allocate new memory.

Having a program which is guaranteed to be NSI is not only a complexity analysis. It also gives some security
properties (the program won’t overflow memory and won’t cause memory leaks) and some possibilities for optimisation.
It becomes indeed possible to completely remove the malloc from the code and let the program efficiently reuse its
memory. This will prevent several system calls and calls to the standard library that can slow down the program
execution.

2.3 A Control Flow Graph analysis

To prove a bound on space usage, we only need to know the maximum amount of diamonds required at any time.
That is, we can focus on the quantitative part of the analysis and forget about the qualitative part of how and where
these diamonds are reused. Consider, for example, the following insertion sort function (where d and d’ are �):
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insert(d, y, []) -> cons (d, y, [])
insert(d, y, cons (d’, x, xs)) ->

if x<y
then cons (d’, x, (insert(d, y, xs)))
else cons (d, y, cons (d’, x, xs))

sort([]) -> []
sort(cons (d, x, xs)) -> insert(d, x, sort(xs))

0

1 2

3

45

67

end

l = []

+1

l 6= []

-1

x < yx ≥ y

+1+1

+1

Figure 1: Resources Control Graph of the in-
sertion function

It is possible to have an overview of the diamonds (i.e. of the
malloc and free in an imperative version of the program) behaviour
during the recurrence. The recursion gets a diamond when pattern
matching is performed to read and compare; if it’s the good place
it uses two diamonds (calls cons two times): one to add the new
element and another to replace the previous element; otherwise, it
simply replaces the old element (with its own diamond, d’). This
way, we understand that the insert function will globally constructs
one element, and thus require and extra diamond, d, which can be
provided by sort.

It’s easy to do this analysis using a Control Flow Graph (CFG).
A Control Flow Graph is a graph representation of all paths that
might be traversed by a program during its execution. We can see
each node as a program state and each edge as an instruction.

For our analysis, we need to augment this CFG by adding a weight
(the diamond usage) to each instruction. This way it becomes the Resource Control Graph [Moy09] (RCG) of Figure 1.
Note that if we drop the qualitative part of the analysis, we don’t need the � type anymore as counting variables of
this type is equivalent to counting instructions producing or consuming it. This, however, only provides a proved
bound on space usage but cannot actually remove malloc and free from the program.

Using this RCG we can find the most expensive path according to this weight. A maximum weighted path is
quickly computable with a classical algorithm such as Dijkstra’s or Bellman-Ford’s. It’s equivalent to find the shortest
paths in a weighted graph. We also need to detect positive loop in a polynomial time. Here we are in the case where
we have a single entry source. The Bellman-Ford algorithm can be used here to provide the shortest path instead of
the Dijkstra’s one which is not able to deal with negative edge weights and detect negative loop.

We understand that, because the analysis is only static, it’s not accurate. We only consider the worst case to
ensure the NSI property, this is why we prefer to have false negatives instead of false positives. Avoiding both is
undecidable. . .

3 Compiler Infrastructure

Optimizer

Compiler

C + +

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

Figure 2: Compiler architecture

Naively, a compiler translates a human-readable
source code into a non-user-friendly assembly code
for machines. It takes the opportunity to analyze
and optimize the compiled program. All these ana-
lysis and transformations are done on a typed as-
sembly like language: the Intermediate Represent-
ation.

Because this Intermediate Representation (IR)
is a good abstraction level we can do our analysis
directly in compilers. Compiler comes with a lot of
tools working at different compilation times. Com-
pilers are designed to sequentially make analysis
and transformations called passes on the sources
code.

3.1 Compiler design

Compilers are generally composed of three parts,
shown on Figure 2:

• one front-end for each source language, it’s composed by a lexer and a parser which finally build an IR. This
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translation simplifies the job of the rest of the compiler which doesn’t want to deal with each expressivity of
each programming language.

• a middle-end also called optimizer or Pass Manager which provides information and/or transforms IR to se-
mantically equivalent IR supposed to be better/faster.

• and a back-end for each architecture which produces a machine code.

The Intermediate Representation is pretty similar to an assembly language. It’s a lower-level programming language
than the input one but it’s a higher-level than real assembly language.

The optimizer (opt in LLVM) provides optimizations but also analysis, both are called passes.
This optimizer is mainly composed by a Pass Manager that keeps analysis information up to date, manages memory

used, enforces enabled passes with a given order and make pass developer’s life simple thank to its modularity. These
passes visit and change the Intermediate Representation in the middle-end.

The optimizer is one of the several tools or modules provided by LLVM. Designed for more modularity, the
optimizations are built into distinct libraries and the LLVM Intermediate Representation is preserved permanently,
making it easy for other-ends to use them.

In our time, two mainly used compilers exist: GCC and LLVM. For our first prototype, our choice was LLVM
because: first of all, LLVM is well documented; the community is huge and very active; it uses the same Intermediate
Representation throughout the compilation; it’s modular; it’s more and more used. For instance, more, and more
efforts have been done to build Debian with LLVM1.

By comparison, GCC remains more used but performances and accessibility are equivalents. However the LLVM
community’s documentation and help are more appropriate. The modularity also helps to contribute without knowing
the entire working flow. The analysis are, of course, feasible in GCC, Compcert2, etc. Compcert is a certified compiler
using the Coq proof assistant, it guarantees that any transformations during the compilation cannot alter the program’s
semantics. The produced assembly will compute exactly what the source said before compilation.

The LLVM Project [Lat02] is a collection of modular and reusable compiler and tool chain technologies. LLVM
is an acronym for Low-Level Virtual Machine, but the scope of the project is not limited to the creation of virtual
machines. As the scope of LLVM grew, it became an umbrella project that included a variety of other compiler and
low-level tool technologies as well.

LLVM is almost well designed for our work because it:

• Offers modularity, simplicity and a good research environment for compilers developers.

• Operates transparently to the developer.

• Provides a multi-stage optimization strategy.

3.2 LLVM IR, instruction set and Data structure
The LLVM Intermediate Representation is a Typed Assembly Language (TAL) and a Static Single Assignment (SSA)
based representation which provides type safety, low-level operations, flexibility and capability to represent any high-
level languages cleanly. As we said, this representation is used throughout all phases of the compilation in LLVM.

A lot of well known optimizations are already dealing with this IR: Dead Code Elimination, Loop Invariant Code
Motion, Constant Propagation etc. . . for example: The Instruction Combination Pass is one of the simplest passes.
It knows some optimizable patterns like “add X, 0→ X”, “xor X,X → 0” etc. . . and can detect and replace them.

The LLVM Intermediate Representation is source-language-independent, mainly because it uses a low-level instruc-
tion set slightly richer than assembly languages, it’s a RISC-like virtual instruction set. The instruction set consists of
31 opcodes, just enough to don’t loose type expressivity but still a low-level representation. Most of these operations
are in a three-address form: that’s means that they take one or two operands and produce one result. But, unlike
RISC instructions, LLVM-IR is strictly typed, then type mismatch can easily be detected. Types can be primitive
or constructive (composed by several primitive types or constructive types). Each instruction has restrictions on the
arguments types. Instructions can be polymorphic: for instance add can operate on different types, this widely reduces
the number of opcodes. Here, we will only be interested in instructions for typed memory allocation.

The malloc instruction allocates one or more elements of a specific type on the heap, returning a typed pointer to
the new memory. The free instruction releases memory allocated through malloc. When the native code is generated,
this instructions are converted to the appropriate native function calls, allowing also customizations. There are no
implicit accesses to memory, this simplifies all memory access analysis.

LLVM has shown that an efficient low-level representation enriched with type information can support high-level
analysis and transformations.

1sylvestre.ledru.info/blog/2014/09/11/rebuild-of-debian-using-clang-3-5
2compcert.inria.fr/compcert-C.html
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4 RCG computation and positive loops detection
LLVM already builds the CFG of every function. LLVM provides some tools to visit and match instructions targeted
in the entire graph given. This representation can give foundations in order to create a new analysis.

Each node in the CFG represents a basic block, i.e. a succession of instructions without any branching. Directed
edges are used to represent jumps. A CFG starts with one entry-block and has one or several exit-blocks (or leaves).
That builds the structured programming concept.

The RCG can be built by traversing the entire CFG once and counting the number of memories allocations and
deallocations on each node. This can be done independently of the order of the blocks.

In order to do this, we use a LLVM tool: Basic Blocks visitor which goes through each basic block on the CFG .
We can add a function to run for each basic block. Here we just compute their weight and map this to be used by
another pass.

Now we can compute the maximal weight or worst case space that might be used by each function. We can use
the Bellman-Ford’s algorithm to find the heaviest path for our weighted graph in a polynomial time.

Basic Blocks are stocked in a list in the Function Class and not as a graph. We need to, recursively, travel through
each successor of blocks, starting with the entry one. To fill up this new graph we will need to use a Depth-First
Search to obtain our nodes in the correct order.

If we reconsider the analysis, it just provides an answer to the following question: “is the program NSI?”. We
actually don’t provide the accurate amount of space needed, but we detect if this amount is fixed. That is, we need
to detect positive loops without regarding how many times they will occur. Thus we consider all positive loops as
occurred a non-determined number of time. In fact we can be more precise by detecting static loops and upper bounds
but it already exists passes that find invariants and unroll loops.

5 Conclusions and further works
We built a static analyzer in almost 250 lines of code mostly because it reuses the LLVM’s environment and tools.
It can be split in two parts: the first builds a Resources Control Graph and the second computes functions weights
and detects positives loops. This analysis has been tested on classical lists manipulation such as reverse, concat,
insertion sort and quick sort. This tool can answer to the question “Is this program NSI?” in some cases. It
assumes that every loops’ body will be executed an undecidable number of time then it doesn’t provide accurate
bounds.

Furthermore, if this analysis is done on the entire program, it can be seen as a tool to detect memory leak. This
work is the beginning of the implementation of ICC theories into widely used compilers.

A lot of work remains to be done. First of all, dependence problems appear for non-analyzed functions called in the
current CFG. External libraries should be analyzed first and results need to be kept somewhere to avoid recompilation,
maybe by using an annotated system like the Clang Language Extensions3 or something similar for the Intermediate
Representation. It could be a great idea to provide an external library like libc entirely certified with some Implicit
Complexity properties. Those properties would be attached with the compiled library. Then, because it’s only added,
this could work on any pre-existent code. By this way we could globalize the “proof-carrying code” [Nec97] movement.

Optimizations can be considered by introducing a type diamond in a way to have more information about reusability
of each memory and by customizing the standard dynamic allocations and deallocations. Elimination of malloc calls
is not a new idea [Hof00b] but, as far as we know, it has never been done in a real compiler. Here we can replace
malloc and free calls by our own instructions to just simulate them without any system call.

We can also, by studying more accurately relations between input and bounds [AAG+08], approximate a Space
Complexity [ASM13] and, maybe, the termination [LJBA01] because this last work is also based on weighted Control
Flow Graphs or Resources Control Graphs [Moy09].

3http://clang.llvm.org/docs/LanguageExtensions.html
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Abstract:
Several techniques for analysis and transformations are used in compilers. Among them, the
peeling of loops for hoisting quasi-invariants can be used to optimize generated code, or simply
ease developers’ lives. In this paper, we introduce a new concept of dependency analysis
borrowed from the field of Implicit Computational Complexity (ICC), allowing to work with
composed statements called “Chunks” to detect more quasi-invariants. Based on an optim-
ization idea given on a WHILE language, we provide a transformation method - reusing ICC
concepts and techniques [Kri, KKP+81] - to compilers. This new analysis computes an invari-
ance degree for each statement or chunks of statements by building a new kind of dependency
graph, finds the “maximum” or “worst” dependency graph for loops, and recognizes if an en-
tire block is Quasi-Invariant or not. This block could be an inner loop, and in that case the
computational complexity of the overall program can be decreased.
In this paper, we introduce the theory around this concept and present a proof-of-concept
tool that we developed: an analysis and a transformation passes on a toy C parser written
in Python called “pycparser” implemented by Eli Benderskya. In the near future, we will
implement these techniques on real compilers, as some of our optimisations are visibly better
than current optimisations implemented in both GCC and LLVM.

ahttps://github.com/eliben/pycparser
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1 Introduction
Loop optimization techniques based on quasi-invariance are well-known in the compilers community. The transform-
ation idea is to peel loops a finite number of time and hoist invariants until there are no more quasi-invariants. As far
as we know, this technique is called “peeling” and it was introduced by Song et al. [SFGH00].

The present paper offers a new point of view on this work. From a proven optimization on a WHILE language by
Lars Kristiansen [Kri], we provide a redefinition of peeling and another transformation method based on techniques
developed in the field of Implicit Computational Complexity.

Implicit Computational Complexity (ICC) studies computational complexity in terms of restrictions of languages
and computational principles, providing results that do not depend on specific machine models. Based on static
analysis, it helps predict and control resources consumed by programs, and can offer reusable and tunable ideas
and techniques for compilers. ICC mainly focuses on syntactic [Cob62, BC92], type [Gir87, BT09] and Data Flow
[LJBA01, Hof99, KJ09, Moy09] restrictions to provide bounds on programs’ complexity. The present work was mainly
inspired by the way ICC community uses different concepts to perform Data Flow Analysis, e.g. “Size-change Graphs”
[LJBA01] or “Resource Control Graphs”[Moy09] which track data values’ behavior and use a matrix notation inspired
by [AA02], or “mwp-polynomials” [KJ09] to provide bounds on data size.

For our analysis, we focus on dependencies between variables to detect invariance. Dependency graphs [KKP+81]
can have different types of arcs regarding to represent different kind of dependencies. Here we will use a kind of
Dependence Graph Abstraction [Coc70] that can be used to find local and global quasi-invariants. Based on these
techniques, we developed an analysis and a transformation passes on a toy C parser written in Python. Initial tests
show a visible improvement over current GCC and LLVM optimisations, and we will be implementing our techniques on
real compilers in the near future.

We propose a tool, seen as a proof-of-concept, which is notably able to peel and hoist an inner loop, thus decreasing
the complexity of a program from n2 to n.

1.1 State of the art on Quasi-Invariant detection in loop
Invariants are basically detected using Algorithm 1.

Data: List of Statements in the Loop
Result: List of Loop-invariants LI
Initialization;
while search until there is no new invariant. . . do

for each statement s do
if each variable in s
has no definition in the loop or
has exactly one loop-invariant definition or
is constant then

Add s to LI;
end

end
end

Algorithm 1: Basic invariants detection
A dependency graph around variables is needed to provide relations between statements. For quasi-invariance, we

need to couple dependence and dominance informations. In [SFGH00], the authors define a variable dependency graph
(VDG) and detect a loop quasi-invariant variable x if, among all paths ending at x, no path contain a node included
in a circular path. Then they deduce an invariant length which corresponds to the length of the longest path ending
in x. In the present paper, this length is called invariance degree.

2 Rethinking the theory
In this section, we redefine our own types of relations between variables to build a new dependency graph and apply
a composition inspired by the size-change graph [LJBA01].

2.1 Relations and Data Flow Graph
We work with a simple imperative WHILE-language (the grammar is shown in Figure 1), with semantics similar to C.

A WHILE program is thus a sequence of statements, each statement being either an assignment, a conditional, a
while loop, a function call or a skip. The use command represent any command which does not modify its variables but
use them and should not be moved around carelessly (typically, a printf). Statements are abstracted into commands.
A command can be a statement or a sequence of commands. We also call a sequence of commands a chunk.
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(Variables) X ::= X1 | X2 | X3 | . . . Xn

(Expression) exp ::= X | op(exp,...,exp )
(Command) com ::= X = exp | com;com | skip |

while exp do com od |
if exp then com fi |
use(X1,...,Xn)

Figure 1: Grammar

We start by giving an informal but intuitive definition of the notion of Data Flow Graph (DFG). A DFG represents
dependencies between variables as a bipartite graph as in Figure 2. Each different types of arrow represents different
types of dependencies.

x

y

z

x

y

z

dependence

propagation

reinitialization

C := [x = x+ 1;

y = y;

z = 0; ]

Figure 2: Types of dependence

Each variable is showed twice: the occurrence on the left represents the variable before the execution of the com-
mand while the occurrence on the right represents the variable after the execution. Dependencies are then represented
by two types of arrows from variables on the left to variables on the right: plain arrows for direct dependency, dashed
arrows for propagation. Reinitialisation of a variable x then corresponds to the absence of arrows ending on the right
occurrence of x. Figure 2 illustrates these types of dependencies; let us stress here that the DFG would be the same
if the assignment y = y; were to be removed from C since the value of y is still propagated.

More formally, a DFG of a command C is a triple (V,Rdep,Rprop) with V the variables involved in the command C

and a pair of two relations on the set of variables. These two relations express how the values of the involved variables
after the execution of the command depend on their values before the execution. There is a direct dependence between
variables appearing in an expression and the variable on the left-hand side of the assignment. For instance x directly
depends on y and z in the statement x = y+z;. When variables are unchanged by the command we call it propagation.
Propagation only happens when a variable is not affected by the command, not when it is copied from another variable.
If the variable is set to a constant, we call this a reinitialization.

More technically, we will work with an alternative definition in terms of matrices. While less intuitive, this formal
definition allows for more natural definitions, based on standard linear algebra operations. Before providing the formal
definition, let us introduce the semi-ring {∅, 0, 1}: the addition ⊕ and multiplication ⊗ are defined in Figure 3. Let us
remark that, identifying ∅ as −∞, this is a sub-semi-ring of the standard tropical semi-ring, with ⊕ and ⊗ interpreted
as max and + respectively.

⊕ ∅ 0 1
∅ ∅ 0 1
0 0 0 1
1 1 1 1

⊗ ∅ 0 1
∅ ∅ ∅ ∅
0 ∅ 0 1
1 ∅ 1 1

Figure 3: Addition and Multiplication in the semi-ring {∅, 0, 1}.

Definition 350. A Data Flow Graph for a command C is a n × n matrix over the semi-ring {∅, 0, 1} where n is the
number of variables involved in C.

We write M(C) the DFG of C. At line i, column j, we have a ∅ if the output value of the jth variable does not
depend on the input value of the ith; a 0 in case of propagation (unmodified variable); and a 1 for any other kind of
dependence.

Definition 351. Let C be a command. We define In(C) (resp. Out(C)) as the set of variables used (resp. modified)
by C.

2.2 Constructing DFGs
We now describe how the DFG of a command can be computed by induction on the structure of the command. Base
cases (skip, use and assignment) are done in the obvious way, generalising slightly the definitions of DFGs shown in
Figure 2.
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Composition and Multipath

We now turn to the definition of the DFG for a (sequential) composition of commands. This abstraction allows us to
see a block of statements as one command with its own DFG.

Definition 352. Let C be a sequence of commands [C1; C2; . . . ; Cn]. Then M(C) is defined as the matrix product
M(C1)M(C2) . . .M(Cn).

Following the usual product of matrices, the product of two matrices A,B is defined here as the matrix C with
coefficients: Ci,j =

⊕n
k=1(Ai,k ⊗Bk,j).

This operation of matrix multiplication corresponds to the computation of multipaths [LJBA01] in the graph
representation of DFGs. We illustrate this intuitive construction on an example in Figure 4.

w
x
y
z

w
x
y
z

w
x
y
z

C1 C2


1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 1
∅ ∅ ∅ ∅



0 ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ 1 0 ∅
∅ ∅ ∅ 1



w
x
y
z

w
x
y
z

[C1; C2]


1 ∅ ∅ ∅
1 ∅ ∅ ∅
∅ 1 0 1
∅ ∅ ∅ ∅



Figure 4: DFG of Composition.
Here C1 := [w = w + x; z = y + 2; ] and C2 := [x = y; z = z ∗ 2; ]

Condition

We now explain how to compute the DFG of a command C := if E then C1;, from the DFG of the command C1.
Firstly, we notice that in C, all modified variables in C1, i.e. in Out(C1), will depend on the variables used in E.

Let us denote by M(C)(E) the corresponding DFG, i.e. the matrix M(C) ⊕ (EtO), where E (resp. O) is the vector
representing variables in1 Var(E) (resp. in Out(C1)), and (·)t denotes the transpose.

Secondly, we need to take into account that the command C1 may be skipped. In that case, the overall command
C should act as an empty command, i.e. be represented by the identity matrix Id (diagonal elements are equal to 0,
all other are equal to ∅).

Finally, the DFG of a conditional will be computed by summing these two possibilities, as in Figure 5.

Definition 353. Let C be a command of the form if E then C1;. Then M(C) = M(C1)
E ⊕ Id.

w
x
y
z

w
x
y
z

E O C1


1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 1
∅ ∅ ∅ ∅



∅
∅
∅
1



1
∅
1
1



w
x
y
z

w
x
y
z

[if E then C1]


1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ ∅ 1
1 ∅ 1 1



Figure 5: DFG of Conditional.
Here E := z ≥ 0 and C1 := [w = w + x; z = y + 2; y = 0; ];

While Loop

Finally, let us define the DFG of a command C of the form C := while E do C1;. This definition splits into two steps.
First, we define a matrix M(C∗1) representing iterations of the command C1; then we deal with the condition of the
loop in the same way we interpreted the conditional above.

When considering iterations of C1, the first occurrence of C1 will influence the second one and so on. Computing
the DFG of Cn1, the n-th iteration of C1, is just computing the power of the corresponding matrix, i.e. M(Cn1) = M(C1)

n.
But since the number of iteration cannot be decided a priori, we need to add all possible values of n. The following
expression then expresses the DFG of the (informal) command C∗1 corresponding to "iterating C1 a finite (but arbitrary)
number of times":

M(C∗1) = limitk→∞

k⊕
i=1

M(C1)
i

1I.e. the vector with a coefficient equal to 1 for the variables in Var(E), and ∅ for all others variables.
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w
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C3


1 ∅ ∅ ∅
1 ∅ ∅ ∅
∅ 1 0 1
∅ ∅ ∅ ∅
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z
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C
(2)
3


1 ∅ ∅ ∅
1 ∅ ∅ ∅
1 1 0 1
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C
(3)
3


1 ∅ ∅ ∅
1 ∅ ∅ ∅
1 1 0 1
∅ ∅ ∅ ∅



Figure 6: Finding fix point of dependence (simple example)
Here C3 :=[w = w + x; z = y + 2; x = y; z = z ∗ 2];

To ease notations, we note M(C
(k)
1 ) the partial summations

∑k
i=1 M(C1)

i.
Since the set of all relations is finite and the sequence (M(C

(k)
1 ))k60 is monotonous, this sequence is eventually

constant. I.e., there exists a natural number N such that M(C
(k)
1 ) = M(C

(N)
1 ) for all k > N . One can obtain the

following bound on the value of N .

Lemma 354. Consider a command C and define K = min(i, o), where i (resp. o) denotes the number of variables in
In(C) (resp. Out(C)). Then, the sequence (M(C(k)))k>K is constant.

Figure 6 illustrates the computation of ·∗. The second step then consists in dealing with the loop condition, using
the same constructions as for conditionals.

Definition 355. Let C be a command of the form while E do C1;. Then M(C) = M(C∗1)E.

2.3 Independence
Our purpose is to move commands around: exchange them, but more importantly to pull them out of loops when
possible. We allow these moves only when semantics are preserved: to ensure this is the case, we describe a notion of
independence.

Definition 356. If Out(C1) ∩ In(C2) = ∅ then C2 is independent from C1. This is denoted C1 ≺ C2.

It is important to notice that this notion is not symmetric. As an example, let us consider Figure 7: Here, C2 is

w
x
y
z

w
x
y
z

w
x
y
z

C1 C2


1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 ∅
∅ ∅ ∅ 0



0 ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ 1 0 ∅
∅ ∅ ∅ 1



w
x
y
z

w
x
y
z

[C1; C2]


1 ∅ ∅ ∅
1 ∅ ∅ ∅
∅ 1 0 ∅
∅ ∅ ∅ 1



Figure 7: Composition of independent chunks of commands
Here C1 :=[w = w + x; ] and C2 :=[x = y; z = z ∗ 2];

independent from C1 but the inverse is not true.
A particular case is self-independence, i.e. independence of a command w.r.t. itself. In that case, we can find

non-trivial program transformations preserving the semantics. We denote by JCK ≡ JDK the relation "C and D have the
same semantics".

Lemma 357 (Specialization for while). If C1 is self-independent:

Jwhile E do C1K ≡ Jif E then C1; While E do skipK

Remark that we need to keep the loop While with a skip statement inside because we need to consider an infinite
loop if E is always true to keep the semantic equivalent.

In general, we will consider mutual independence.

Definition 358. If C2 ≺ C1 and C1 ≺ C2, we say that C2 and C1 are mutually independents, and write C1 � C2.

While independence in one direction only, such as in the example above, does not imply that C1; C2 and C2; C1
have the same semantics, mutual independence allows to perform program transformation that do not impact the
semantics.
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Lemma 359 (Swapping commands (or chunks of commands)). If C1 � C2, then C1; C2 ≡ C2; C1

Lemma 360 (Moving out of while loops). If C1 is self-independent, i.e. C1 � C1, and if C1 � C2, then:

while E do [C1; C2] ≡ [if E then C1; while E do C2]

Based on those lemmas, we can decide that an entire block of statement is invariant or quasi-invariant in a loop
by computing the DFGs. The quasi-invariance comes with an invariance degree wich is the number of time the loop
needs to be peeled to be able to hoist the corresponding invariant. We can then implement program transformations
that reduce the overall complexity while preserving the semantics. In the next section, we will explain how this was
implemented on a “pycparser”.

3 In practice
Unlike Song et al. [SFGH00] who worked on a Single Static Assignment form, we decided to work directly on C syntax
mainly to more rapidly test our examples.

3.1 Preliminaries
To easily integrate our transformation, we decided to use “pycparser”. The principal interest was to simply get and
manipulate an Abstract Syntax Tree. As in compilers, a visitor allows us to do something every time a pattern is
encountered. Using a “WhileVisitor” we list all nested while-loops. Using a bottom-up strategy (the inner loop first),
this tool analyses and transforms the code if an invariant or quasi-invariant is detected. The analysis is divided in two
parts.

The first part aims to list relations. In our implementation we decided to define a relation object by three lists
of pairs: one for the direct dependences, the second for the propagations and the last for reinitializations. A relation
is computed for each command using a top-down strategy following the dominance tree. The relations are composed
when the corresponding command is a sequence of commands. As describe previously, we compute the maximum
relations possible for a while or if statement. For the if statement, we consider either if the condition is true or
false. Obviously this method can be enhanced by an analysis on bounds around conditional and number of iterations
for a loop. With those relations, we compute an invariance degree for each statement in the loop regarding to the
relations listed. Finally, we perform the peeling transformation: we remove all Loop-Quasi-Invariants statements out
of a given loop by peeling it.

3.2 Invariance degree computation
In this part, we will describe an algorithm – using the previous concepts – to compute the invariance degree of each
quasi-invariant in a loop. After that, we will be able to peel the loop at once instead of doing it iteratively. To simplify
and as a recall, Figure 8 shows a basic example of peeled loop.

Data: Dependency Graph and Dominance Graph
Result: List of invariance degree for each statement
Initialize every degrees to 0;
for each statement s do

if the current degree cd 6= 0 then
skip

else
Initialize the current degree cd to ∞;
if there is no dependence for the current chunk then

cd = 1;
else

for each dependence compute the degree dd of the command do
if cd ≤ dd and the current command dominates this dependence then

cd = dd + 1
else

cd = dd
end

end
end

end
end

Algorithm 2: Invariance degree computation.
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0 while(x<100){
1 b=b+1; //2
2 use(b);
3 x=x+1;
4 b=y+y; //1
5 use(b);
6 }

0 if (x < 100) //1
1 {
2 b_1= b+1;
3 use(b_1);
4 x = x+1;
5 b = y+y;
6 use(b);
7 }
8 if (x < 100) //2
9 {

10 b_1= b+1;
11 use(b_1);
12 x = x+1;
13 use(b);
14 }
15 while (x < 100)
16 {
17 use(b_1);
18 x = x+1;
19 use(b);
20 }

peeling

Figure 8: Example: Hoisting twice.

The invariance degrees are given as comment in front of each Quasi-Invariant statements. So b=y+y is invariant of
degree equal to one because y is invariant, that means it could be hoisted directly in the preheader of the loop. But b
is used before, in b=b+1, so it’s not the same b at the first iteration. We need to isolate this case by peeling one time
the entire loop to use the first b computed by the initial b. If b=y+y is successfully hoisted, then b is now invariant. So
we can remove b=b+1 but we need to do it at least one time after the first iteration to set b to the new and invariant
value. This is why the loop is peeled two times. The first time, all the statements are executed. The second time,
the first degree invariants are removed. The main work is to compute the proper invariance degree for each statement
and composed statements. This can be done statically using the dependency graph and dominance graph. Here is the
algorithm. Let suppose we have computed the list of dependencies for all commands in a loop.

This algorithm is fast because it is dynamic. It stores progressively each degree needed to compute the current
one and reuse them. Now that we did our analysis, we can peel the current loop.

3.3 Peeling loops

The transformation consists to create as many if statements before the loop as needed to remove all quasi-invariants
out of the loop. Each if will have the same condition as the while loop and will contain the incrementation of the
iteration variable. The maximum invariance degree is the number of time we need to peel the loop. So we can create
as many if statements before the loop. For each if statement, we include every commands with a higher or equal
invariance degree. For instance, the first if will contain every commands with an invariance degree higher or equal
to 1, the second one, higher or equal to 2 etc. . . and the final loop will contain every commands with an invariance
degree equal to ∞.

Renaming issue. On a non-SSA form, variables are often reused to store temporary values. The problem is that
if we hoist a part of loop which changes the value of one of those variables it’s possible to change de semantic. This
issue is illustrated in Figure 8.

In this example, the variable b can have 4 different values and 3 of them are used by a non-pure function. We thus
have to rename all variables assigned in the removed command, being careful with the first occurrence of the renamed
variable: if it’s an input variable we shall not rename it. We wrote the following algorithm 3.

Implementation details. This implementation is almost 400 lines of Python. It is able to compute relations of
each commands or sequence of commands. The relations are stored in three different lists corresponding to each type
of dependence described previously.

This tool focusses on a restricted C syntax and considers all function as non-pure. Functions with side effects can
be seen as an anchor in the sequence of statements, commands can not be moved around. But we can restrain the
conditions for peeling. We can allow to hoist pure functions as in [SFGH00]. All other side effects can be broken by
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0 srand(time(NULL));
1 int n=rand()%10000;
2 int j=0;
3 while(j<n){
4 fact=1;
5 i=1;
6 while (i<=n) {
7 fact=fact*i;
8 i=i+1;
9 }

10 j=j+1;
11 use(fact);
12 }

0 srand(time(NULL));
1 int n = rand() % 10000;
2 int j = 0;
3 if (j < n)
4 {
5 fact = 1;
6 i = 1;
7 while (i <= n)
8 {
9 fact = fact * i;

10 i = i + 1;
11 }
12 j = j + 1;
13 use(fact);
14 }
15 while (j < n)
16 {
17 j = j + 1;
18 use(fact);
19 }

peeling

1

10

100

1000

10000

100000

1e+06

1 10 100

m
s

n

Computation Time

peeled code compiled with Clang -O0

unp
eele

d cod
e co

mp
iled

wit
h Cla

ng
-O3

Figure 9: Hoisting inner loop

this transformation. Furthermore, this pass needs to use pointer analysis informations to trace more variables.

Data: The rank i of the removed command
and the list of commands C1 . . . Cn
Result: Well renamed list of commands
for j from 1 to i-1 do

for all x ∈ var(Cj) do
if x ∈ Out(Ci) then

if x ∈ In(Cj) and
it’s the first time this variable is encountered then

Do nothing
else

Rename x by a fresh variable
end

end
end

end
Algorithm 3: Renaming algorithm.

4 Conclusion and Future work

Developers expect that compilers provide certain more or less “obvious” optimizations. When peeling is possible, that
often means: either the code was generated; or the developers prefer this form (for readability reasons) and expect
that it will be optimized by the compiler; or the developers haven’t seen the possible optimization (mainly because of
the obfuscation level of a given code)

Our generic pass is able to provide a reusable abstract dependency graph and a corresponding loop optimization.
With this proof-of-concept, we proved that we can enhance compilers by offering a new simple transformation pass.

In this example (Figure 9), we compute the same factorial several times. We can detect it statically, so the
compiler has to optimize it at least in -O3. Our tests show that is done neither in LLVM nor in GCC (we also tried
-fpeel_loops with profiling). The generated assembly shows the factorial computation in the inner loop.

Moreover, the computation time of this kind of algorithm compiled with clang in -O3 computes n times the inner
loop so the time computation is increasing quadratically as shown on the right of Figure 9.

To provide some real benchmarks on large programs we need to implement it on real compilers. We are currently
implementing this tool first in LLVM and secondly in GCC. Furthermore, the Intermediate Representation in a SSA
form can simplify the analysis and the transformation, especially w.r.t. the renaming part.

We will take into account the others existing passes and choose the best order for the pass manager.
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