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Abstract—Implicit Computational Complexity (ICC) aims at
giving machine-free characterisations of complexity classes. Be-
cause it is usually sound but not complete, it actually provides
certificates that a given program can be run within a given
amount of resources. ICC is usually applied on toy languages with
restricted expressivity, we show here that it can be performed on
real programming languages.

Because it is usually a static, syntactical analysis of the
programs, ICC is well-suited to be performed at compile time.
The bounds given by ICC can then be used to fuel some
optimisation or to produce certificates of good behaviour. Modern
compilers do most of their work in a modular sequences of passes
done on some Intermediate Representation (IR) language. The
IR is a generic typed assembly-like language and thus very well
suited to express ICC criteria. The modularity of the passes make
it easy to add one and to re-use existing ones at will.

We focus here on the relatively simple analysis of Non-Size
Increasing (NSI) programs. We’ve implemented a NSI analysis
for the LLVM compiler. This can be seen as a proof of concept
that ICC and compilers are able to interact productively.

I. INTRODUCTION

In this article, we present an experiment in bringing analysis

from Implicit Computational Complexity into real life compil-

ers.

A. Context and Motivations

ICC aims at finding syntactic criterion on programs that

guarantee some semantic property (usually some complexity

bound). It emerged with the Bounded Recursion of Cob-

ham [Cob62] but was really created by the breakthrough result

on Safe Recursion by Bellantoni and Cook [BC92]. Since then,

many different directions have been studied in ICC. The main

ideas revolve around following dataflow (the Tiering of Leivant

and Marion [LM95], the Size Change Termination of Lee,

Jones and Ben-Amram [LJBA01], the Non-Size Increasing

programs of Hofmann [Hof99], . . . ), performing a static check

on values (the Quasi-interpretations of Bonfante, Marion

and Moyen [BMM11], the mwp-polynomials of Kristiansen

and Jones [KJ09], . . . ) or enforcing a strict type checking

(variations on Girard’s Linear Logic [Gir87] such as Baillot

and Terui’s DLAL [BT09]). Schöpp introduced a more re-

stricted Bounded Linear Logic: the Stratified Bounded Affine

Logic [Sch07]. Hofmann and Jost [HJ03] furnish upper bounds

on the heap usage in functional programming by accepting

some restrictions.

Most of these results usually concern “toy” languages such

as Term Rewriting Systems [AM13], λ-calculus or the LOOP

language. Even if such languages do have a strong utility

in Theoretical Computer Science, they are not daily used by

programmers. On the other hand, actual languages use much

more constructions (e.g. objects, pattern matching, exceptions,

. . . ) which make analysis complicated. Thus, even with 20

years of ICC, it is not possible today to apply its results on

actual programs. We start filling the gap.

The analysis we described here, based on NSI programs,

it simple enough to be expressed on a small assembly-like

language. Since it only focus on memory allocation and

deallocation, we can concentrate on these operations (that is,

the malloc and free in a C program) and on the control

flow, and forget all the complicated constructions that may

be used by the programming language. Since this is a purely

syntactical analysis (as all ICC), it is perfectly suited to happen

at compile time.

From the other end of the gap, we’ll use the intermediate

representation in a compiler. During the compilation process,

the source code is first translated in an intermediate language

where optimisations are performed before being translated

again into the target code in assembly language. This inter-

mediate representation has few constructions and is simple

enough to perform all the optimisations steps. Especially for

our practical case, it strips all the constructions of the programs

but keep the control flow and the allocations that we want to

study.

Moreover, compilers already contain many analysis and

optimisation tools that we can reuse. Most of these tools are

spread in modular passes that can be applied in various order.

Typically, there is no need to rebuild the control flow of the

program. It is something that is already used by many compiler

optimisations and thus that already exists as a standalone pass.

We just need to call this pass and use its result. This limits

the amount of code we have to write in order to perform our

analysis.



B. Analysis and Optimisation

Compilers are usually focused on optimisation. Indeed,

the goal is to produce an efficient code in order to have

a fast program. ICC mostly provides analysis without much

optimisation of the code. However, analysis and optimisation

are not so far apart. . .

Firstly, an analysis can be used to fuel further optimisations.

Typically, building the Control Flow Graph of a program is an

analysis that is used for many optimisations afterwards. Here,

knowing the precise amount of memory that a function or

program will need can help optimising system calls: rather

than using the standard library to find free memory and

allocate it, it becomes possible to let the program reuse its

own memory efficiently.

Secondly, providing proven bounds on the time or space

usage of a program is also a security property. If the program

provably use a fixed amount of memory, then it will not try

to perform an attack by overflow. Restricting the syntax in

order to enforce (some) security is similar to what Facebook

does with the restricted FBJS. Since analysis is complex but

verification is (usually) easy, one can imagine a compiler that

will provide a certificate for some property on the compiled

code, in a Proof Carrying Code paradigm [Nec97]. The

certificate could be checked, for example, before uploading

an application to an application store for mobile devices to

guarantee some safety to the user, or, at the other end, before

downloading the application to the device to check if it has

sufficient capacity to run it.

Next, some ICC analysis are known to also embed

some program transformation in them. Notably, the Quasi-

Interpretations method guarantee that the programs run in

polynomial time if some sort of Dynamic programming is used.

Thus, a program admitting a QI can run in exponential time but

the analysis says that it will run in polynomial time after some

(known) transformation. Bringing such an analysis in compiler

will indicate which part of the code should be transformed by

which method.

Lastly, these are also first steps in experimenting ICC into

compilers. Thus, we chose to focus on a simple analysis that

is easy to express in the compiler’s intermediate representation

rather than on a powerful analysis/optimisation which require

more work to be used. Thus, this can be seen as a proof of

concept: yes, ICC and compilers can work together and can

fuel each other fruitfully. This opens the way for future works.

II. NON SIZE INCREASING PROGRAMS

A. Safe Recursion and Non Size Increasing

In Safe Recursion, Bellantoni and Cook analysed repeated

iterations as a source of exponential growth. Typically, expo-

nentiation can be computed by iterating doubling, itself an

iteration.

In order to prevent repeated iterations, they designed a

syntactical criterion (hence, a static analysis) based on splitting

variables into normal and safe ones, which can be interpreted

as with/without energy. Next, iteration must be performed on

a normal variable (which provides the “energy” to run the

program) and the result must be safe (the energy has been

used). Thus, when computing the exponential with the usual

recurrence 2n = 2× 2n−1, the result of the recursion (2n−1)

must be safe and cannot be used to control the doubling (2×).

However, repeated iterations is a powerful expressive con-

struction to build many reasonable programs. Indeed, writing a

program by respecting the normal/safe tiering of arguments is

often difficult. Typically, insertion sort works by iterating the

insertion of an element into a sorted list, itself an iteration. The

Safe Recursion prevents writing the insertion sort (or rather

requires to write it in a non natural way).

Hofmann identified that the problem does not come from

the exponential or sorting function but from the doubling

or insertion function. Indeed, doubling produces an output

twice as large as its input while insertion produces an output

basically as large as the input. Thus, it is not harmful to iterate

insertion, which does not increase the size of its data (or only

by a constant factor) while it is harmful to iterate doubling

which drastically increases the size of data. This justifies the

detection of Non Size Increasing (NSI) programs.

In order to detect NSI programs, Hofmann introduced a

new datatype, the diamond (⋄), with the particularity that this

datatype has no constructor. That is, there is no closed term

of type ⋄ and only variables can have this type. Moreover,

variables of type ⋄ must be used linearly in the result of

functions. Thus, ⋄ in the result can be seen as “price” to be

paid to compute and that can only be paid by diamonds already

present in the arguments.

The next step is to make the type system aware of ⋄. When

working with lists, it is the cons that make the size of lists,

Hofmann requires a diamond for each cons. Thus, instead of

having the classical type α, α list → α list, cons is now of

type ⋄, α, α list → α list.

With this new type system, it is still possible to write

the insertion sort in the usual way, but exponentiation is not

possible anymore.

B. NSI and imperative programs

The diamonds have a very nice and natural interpretation in

imperative programs, as shown by Hofmann.

The classical representation of lists in an imperative lan-

guage is to have cells containing a value and a pointer to the

next cell, the list itself being a pointer to the first cell. When

performing a cons, a new cell must be created. For this, new

memory must be allocated (malloc). This new memory is

exactly the diamond we need to perform the cons! Indeed,

if cons is given as a third argument a pointer (to a place in

memory which is assumed to be free), then it does not need

to allocate memory and can use the one that is provided.

Hofmann shown that NSI programs can be compiled into

malloc-free C programs. The diamonds are essentially point-

ers and a program that is NSI does not need extra diamonds,

hence does not need to allocate new memory.

Having a program which is guaranteed to be NSI is not only

a complexity analysis. It also gives some security properties



(the program won’t overflow memory and won’t cause mem-

ory leaks) and some possibilities for optimisation. It becomes

indeed possible to completely remove the malloc from the

code and let the program efficiently reuse its memory. This will

prevent several system calls and calls to the standard library

that can slow down the program execution.

C. A Control Flow Graph analysis

For the NSI analysis we are searching for the maximum

amount of diamonds required at any time. Consider, for

example, the following insertion sort function (where d and

d’ are ⋄):

insert(d, y, []) -> cons(d, y, [])

insert(d, y, cons(d’, x, xs)) ->

if x<y

then cons(d’, x, (insert(d, y, xs)))

else cons(d, y, cons(d’, x, xs))

sort([]) -> []

sort(cons(d, x, xs)) -> insert(d, x, sort(xs))

It is possible to have an overview of the diamonds (i.e. of the

malloc and free in an imperative version of the program)

behaviour during the recurrence. The recursion gets a diamond

when pattern matching is performed to read and compare; if

it’s the good place it uses two diamonds (calls cons two

times): one to add the new element and another to replace the

previous element; otherwise, it simply replaces the old element

(with its own diamond, d’). This way, we understand that the

insert function will globally constructs one element, and thus

require and extra diamond, d, which can be provided by sort.

It’s easy to do this analysis using a Control Flow Graph

(CFG). A Control Flow Graph is a graph representation of

all paths that might be traversed by a program during its

execution. We can see each node as a program state and each

edge as an instruction.

For our analysis, we need to augment this CFG by adding

a weight (the diamond usage) to each instruction. This way

it becomes the Resource Control Graph [Moy09] (RCG) of

Figure 1.

Using this RCG we can find the most expensive path

according to this weight. A maximum weighted path is quickly

computable with a classical algorithm such as Dijkstra’s or

Bellman-Ford’s. It’s equivalent to find the shortest paths in

a weighted graph. We also need to detect positive loop in a

polynomial time. Here we are in the case where we have a

single entry source. The Bellman-Ford algorithm can be used

here to provide the shortest path instead of the Dijkstra’s one

which is not able to deal with negative edge weights and detect

negative loop.

We understand that, because the analysis is only static, it’s

not accurate. We only consider the worst case to ensure the

NSI property, this is why we prefer to have false negatives

instead of false positives. Avoiding both is undecidable. . .

III. COMPILER INFRASTRUCTURE

Naively, a compiler translates a human-readable source code

into a non-user-friendly assembly code for machines. It takes
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Fig. 1. Resources Control Graph of the insertion sort

the opportunity to analyze and optimize the compiled program.

All these analysis and transformations are done on a typed

assembly like language: the Intermediate Representation.

Because this Intermediate Representation (IR) is a good

abstraction level we can do our analysis directly in compilers.

Compiler comes with a lot of tools working at different

compilation times. Compilers are designed to sequentially

make analysis and transformations called passes on the sources

code.

A. Compiler design

Compilers are generally composed of three parts:

Optimizer

Compiler

C ++

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

• one front-end for each source language, it’s composed

by a lexer and a parser which finally build an IR. This

translation simplifies the job of the rest of the compiler

which doesn’t want to deal with each expressivity of each

programming language.

• a middle-end also called optimizer or Pass Manager

which provides information and/or transforms IR to se-

mantically equivalent IR supposed to be better/faster.



• and a back-end for each architecture which produces a

machine code.

The Intermediate Representation is pretty similar to an

assembly language. It’s a lower-level programming language

than the input one but it’s a higher-level than real assembly

language.

The optimizer (opt in LLVM) provides optimizations but

also analysis, both are called passes.

This optimizer is mainly composed by a Pass Manager

that keeps analysis information up to date, manages memory

used, enforces enabled passes with a given order and make

pass developer’s life simple thank to its modularity. These

passes visit and change the Intermediate Representation in

the middle-end.

The optimizer is one of the several tools or modules

provided by LLVM. Designed for more modularity, the op-

timizations are built into distinct libraries and the LLVM

Intermediate Representation is preserved permanently, making

it easy for other-ends to use them.

In our time, two mainly used compilers exist: GCC and

LLVM. For our first prototype, our choice was LLVM because:

first of all, LLVM is well documented; the community is huge

and very active; it uses the same Intermediate Representation

throughout the compilation; it’s modular; it’s more and more

used. For instance, more, and more efforts have been done to

build Debian with LLVM1.

By comparison, GCC remains more used but performances

and accessibility are equivalents. However the LLVM com-

munity’s documentation and help are more appropriate. The

modularity also helps to contribute without knowing the entire

working flow. The analysis are, of course, feasible in GCC,

Compcert2, etc. Compcert is a certified compiler using the

Coq proof assistant, it guarantees that any transformations

during the compilation cannot alter the program’s semantics.

The produced assembly will compute exactly what the source

said before compilation.

The LLVM Project [Lat02] is a collection of modular and

reusable compiler and tool chain technologies. LLVM is an

acronym for Low-Level Virtual Machine, but the scope of

the project is not limited to the creation of virtual machines.

As the scope of LLVM grew, it became an umbrella project

that included a variety of other compiler and low-level tool

technologies as well.

LLVM is almost well designed for our work because it:

• Offers modularity, simplicity and a good research envi-

ronment for compilers developers.

• Operates transparently to the developer.

• Provides a multi-stage optimization strategy.

B. LLVM IR, instruction set and Data structure

The LLVM Intermediate Representation is a Typed Assem-

bly Language (TAL) and a Static Single Assignment (SSA)

based representation which provides type safety, low-level

1sylvestre.ledru.info/blog/2014/09/11/rebuild-of-debian-using-clang-3-5
2compcert.inria.fr/compcert-C.html

operations, flexibility and capability to represent any high-

level languages cleanly. As we said, this representation is used

throughout all phases of the compilation in LLVM.

A lot of well known optimizations are already dealing with

this IR: Dead Code Elimination, Loop Invariant Code Motion,

Constant Propagation etc. . . for example: The Instruction

Combination Pass is one of the simplest passes. It knows some

optimizable patterns like “add X, 0 → X”, “xor X,X → 0”

etc. . . and can detect and replace them.

The LLVM Intermediate Representation is source-language-

independent, mainly because it uses a low-level instruction set

slightly richer than assembly languages, it’s a RISC-like virtual

instruction set. The instruction set consists of 31 opcodes, just

enough to don’t loose type expressivity but still a low-level

representation. Most of these operations are in a three-address

form: that’s means that they take one or two operands and

produce one result. But, unlike RISC instructions, LLVM-IR

is strictly typed, then type mismatch can easily be detected.

Types can be primitive or constructive (composed by several

primitive types or constructive types). Each instruction has

restrictions on the arguments types. Instructions can be poly-

morphic: for instance add can operate on different types, this

widely reduces the number of opcodes. Here, we will only be

interested in instructions for typed memory allocation.

The malloc instruction allocates one or more elements of

a specific type on the heap, returning a typed pointer to the

new memory. The free instruction releases memory allocated

through malloc. When the native code is generated, this

instructions are converted to the appropriate native function

calls, allowing also customizations. There are no implicit ac-

cesses to memory, this simplifies all memory access analysis.

LLVM has shown that an efficient low-level representation

enriched with type information can support high-level analysis

and transformations.

IV. RCG COMPUTATION AND POSITIVE LOOPS DETECTION

LLVM already builds the CFG of every function. LLVM

provides some tools to visit and match instructions targeted in

the entire graph given. This representation can give founda-

tions in order to create a new analysis.

Each node in the CFG represents a basic block, i.e. a

succession of instructions without any branching. Directed

edges are used to represent jumps. A CFG starts with one

entry-block and has one or several exit-blocks (or leaves). That

builds the structured programming concept.

The RCG can be built by traversing the entire CFG once

and counting the number of memories allocations and deallo-

cations on each node. This can be done independently of the

order of the blocks.

In order to do this, we use a LLVM tool: Basic Blocks

visitor which goes through each basic block on the CFG. We

can add a function to run for each basic block. Here we just

compute their weight and map this to be used by another pass.

Now we can compute the maximal weight or worst case

space that might be used by each function. We can use the



Bellman-Ford’s algorithm to find the heaviest path for our

weighted graph in a polynomial time.

Basic Blocks are stocked in a list in the Function Class and

not as a graph. We need to, recursively, travel through each

successor of blocks, starting with the entry one. To fill up this

new graph we will need to use a Depth-First Search to obtain

our nodes in the correct order.

If we reconsider the analysis, it just provides an answer to

the following question: “is the program NSI?”. We actually

don’t provide the accurate amount of space needed, but we

detect if this amount is fixed. That is, we need to detect

positive loops without regarding how many times they will

occur. Thus we consider all positive loops as occurred a non-

determined number of time. In fact we can be more precise by

detecting static loops and upper bounds but it already exists

passes that find invariants and unroll loops.

V. CONCLUSIONS AND FURTHER WORKS

We built a static analyzer in almost 250 lines of code mostly

because it reuses the LLVM’s environment and tools. It can

be split in two parts: the first builds a Resources Control

Graph and the second computes functions weights and detects

positives loops. This analysis has been tested on classical

lists manipulation such as reverse, concat, insertion

sort and quick sort. This tool can answer to the question

“Is this program NSI?” in some cases. It assumes that every

loops’ body will be executed an undecidable number of time

then it doesn’t provide accurate bounds.

Furthermore, if this analysis is done on the entire program,

it can be seen as a tool to detect memory leak. This work

is the beginning of the implementation of ICC theories into

widely used compilers.

A lot of work remains to be done. First of all, dependence

problems appear for non-analyzed functions called in the

current CFG. External libraries should be analyzed first and

results need to be kept somewhere to avoid recompilation,

maybe by using an annotated system like the Clang Language

Extensions3 or something similar for the Intermediate Rep-

resentation. It could be a great idea to provide an external

library like libc entirely certified with some Implicit Com-

plexity properties. Those properties would be attached with

the compiled library. Then, because it’s only added, this could

work on any pre-existent code. By this way we could globalize

the “proof-carrying code” [Nec97] movement.

Optimizations can be considered by customizing the stan-

dard dynamic allocations and deallocations. Elimination of

malloc calls is not a new idea [Hof00] but, as far as we

know, it has never been done in a real compiler. Here we can

replace malloc and free calls by our own instructions to

just simulate them without any system call.

We can also, by studying more accurately relations between

input and bounds [AAG+08], approximate a Space Complex-

ity [ASM13] and, maybe, the termination [LJBA01] because

this last work is also based on weighted Control Flow Graphs

or Resources Control Graphs [Moy09].

3http://clang.llvm.org/docs/LanguageExtensions.html
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