
Loop Quasi-Invariant Chunk Motion
by peeling with statement composition

Jean-Yves Moyen1, Thomas Rubiano1,2, and Thomas Seiller1

1 Department of Computer Science University of Copenhagen (DIKU)
2 Université Paris 13 - LIPN

Abstract. Several techniques for analysis and transformations are used in com-
pilers. Among them, the peeling of loops for hoisting quasi-invariants can be used
to optimize generated code, or simply ease developers’ lives. In this paper, we in-
troduce a new concept of dependency analysis borrowed from the field of Implicit
Computational Complexity (ICC), allowing to work with composed statements
called “Chunks” to detect more quasi-invariants. Based on an optimization idea
given on a WHILE language, we provide a transformation method - reusing ICC
concepts and techniques [8,10] - to compilers. This new analysis computes an
invariance degree for each statement or chunks of statements by building a new
kind of dependency graph, finds the “maximum” or “worst” dependency graph
for loops, and recognizes if an entire block is Quasi-Invariant or not. This block
could be an inner loop, and in that case the computational complexity of the over-
all program can be decreased. We already implemented a proof of concept on a
toy C parser3 analysing and transforming the AST representation.
In this paper, we introduce the theory around this concept and present a prototype
analysis pass implemented on LLVM. In a very near future, we will implement
the corresponding transformation and provide benchmarks comparisons.

Keywords: Static Analysis, Transformations, Optimization, Compilers, Loop Invari-
ants, Complexity, Quasi-Invariants

1 Introduction

A compiler turns some high-level program into a (semantically) equivalent low-level
assembly program. This translation implies many smaller transformations, notably be-
cause features such as objects, exceptions, or even loops need to be expressed in as-
sembly language. The compiler also performs many optimisations aiming at making
the code more efficient. These are often needed to streamline the code generated by the
transformations but can also be used to optimise the source code.

A command inside a loop is loop invariant code if its execution has no effect after
the first iteration of the loop. Typically, an assignment x:=0 in a loop is invariant
(provided x is not modified elsewhere). Loop invariants can safely be moved out of
loops (hoisted) in order to make the program run faster.

3 https://github.com/ThomasRuby/LQICM_On_C_Toy_Parser

https://github.com/ThomasRuby/LQICM_On_C_Toy_Parser

While loop invariant code is maybe not so frequent in source code, many transfor-
mations along the compilation process can generate some. For example, when compil-
ing the editors vim or emacs, an average of 10 commands per loop can be hoisted.
These are mostly generated by other optimisations.

A command inside a loop is quasi-invariant if its execution has no effect after a
finite number of iterations of the loop. Typically, if a loop contains the sequence x:=y,
y:=0, then y:=0 is invariant. However, x:=y is not invariant. The first time the loop
is executed, xwill be assigned the old value of y, and only from the second time onward
will x be assigned the value 0. Hence, this command is quasi-invariant. It can still be
hoisted out of the loop, but to do so requires to peel the loop first, that is execute its
body once (by copying it before the loop).

The number of times a loop must be executed before a quasi-invariant can be hoisted
is called here the degree of the invariant.

An obvious way to detect quasi-invariants is to first detect invariants (that is, quasi-
invariants of degree 1) and hoist them; and iterate the process to find quasi-invariant
of degree 2, and so on. This is, however, not very efficient since it may require a large
number of iterations to find some invariance degrees.

We provide here an analysis able to directly detect the invariance degree of any
statements in the loop. Moreover, our analysis is able to assign an invariance degree
non only to individual statements but also to groups of statements (called chuncks).
That way it is possible, for example, to detect that a whole inner loop is invariant and
hoist it, thus decreasing the asymptotic complexity of the program.

This analysis and transformation has first been implemented as a Proof of Concept
in a toy C-parser. Next, the analysis has been implemented as a prototype pass of the
mainstream compiler LLVM and the transformation is under way. The prototype is cur-
rently unable to handle several common situations (and leave them untouched) because
of choices made for the sake of simplicity. It is, nonetheless, powerful enough to make
significant progress compared to the existing loop invariant code motion techniques (it
can handle many more cases).

Loop optimization techniques based on quasi-invariance are well-known in the com-
pilers community. The transformation idea is to peel loops a finite number of time and
hoist invariants until there are no more quasi-invariants. As far as we know, this tech-
nique is called “peeling” and it was introduced by Song et al. [13].

Loop peeling and unrolling can also happen for entirely different reasons, mostly
to optimise pipelines. In these cases, the decision to unroll is based on loop size and
(predicted) number of iterations but not on the presence of quasi-invariants. It may, of
course, happen that quasi-invariant removal is performed as a side effect of this un-
rolling, but only as a side effect and not as the main goal.

The present paper offers a new point of view on invariant and quasi-invariant de-
tection. Adapting ideas from an optimization on a WHILE language by Lars Kris-
tiansen [8], we provide a way to compute invariance degrees based on techniques de-
veloped in the field of Implicit Computational Complexity.

Implicit Computational Complexity (ICC) studies computational complexity in terms
of restrictions of languages and computational principles, providing results that do not
depend on specific machine models. Based on static analysis, it helps predict and control

resources consumed by programs, and can offer reusable and tunable ideas and tech-
niques for compilers. ICC mainly focuses on syntactic [4,3], type [6,2] and Data Flow
[11,7,9,12] restrictions to provide bounds on programs’ complexity. The present work
was mainly inspired by the way ICC community uses different concepts to perform
Data Flow Analysis, e.g. “Size-change Graphs” [11] or “Resource Control Graphs”[12]
which track data values’ behavior and use a matrix notation inspired by [1], or “mwp-
polynomials” [9] to provide bounds on data size.

For our analysis, we focus on dependencies between variables to detect invariance.
Dependency graphs [10] can have different types of arcs representing different kind of
dependencies. Here we will use a kind of Dependence Graph Abstraction [5] that can be
used to find local and global quasi-invariants. Based on these techniques, we developed
an analysis pass and we will implement the corresponding transformation in LLVM.

We propose a tool which is notably able to give enough information to easily peel
and hoist an inner loop, thus decreasing the complexity of a program from O(n2) to
O(n).

1.1 State of the art on Quasi-Invariant detection in loop

Modern compilers find loop invariant code by recursively searching for variables whose
value only depends on either code that is outside the loop; or other loop invariant code.
To our knowledge, no compiler searches for loop quasi-invariant code.

A quasi-invariance detection has been described in [13]. The authors define a vari-
able dependency graph (VDG) and detect a loop quasi-invariant variable x if, among all
paths ending at x, no path contain a node included in a circular path. Then they deduce
an invariant length which corresponds to the length of the longest path ending in x. To
our knowledge, this analysis has not been implemented in a compiler. Moreover, they
only analyse individual commands and do not handle chunks. In the present paper, this
length is called invariance degree.

1.2 Contributions

This paper lies between the fields of Implicit Computational Complexity and Compila-
tion and provides significant advancement to both.

To the authors’ knowledge, this is the first application of ICC techniques on a main-
stream compiler. One interest is that our tool potentially applies to programs written in
any programming language managed by LLVM. Moreover, this work should be consid-
ered as a first step of a larger project that will make ICC techniques more accessible to
programmers. Thus, we show that 25 years after Bellantoni & Cook breakthrough [3],
ICC techniques are ready to move into “the real world”.

On a more technical side, our tool aims at improving on currently implemented loop
invariant detection and optimization techniques. The main LLVM tool for this purpose,
the Loop Invariant Code Motion pass (LICM), does not detect quasi-invariant of degree
more than 3 (and not all of those of degree 2). More importantly, LICM will not detect
quasi-invariant blocks of code (that we call chunk), such as whole loops. Our tool, on the
other hand, detects quasi-invariants of arbitrary degree and is able to deal with chunks.

For instance the optimization shown in Figure 5 is performed neither by LLVM nor by
GCC even at their maximum optimization level.

2 Data Flow Graphs

In this section, we sketch the main lines of the theory of data flow graphs. While in
later sections we will only be studying a specific case of those, the theory is quite
general and pinpoints to formal links with various works on static analysis [11,1,9], and
programming languages semantics [?,?].

Here data flow graphs are used to represent (weighted) relations between variables,
that is relations that carry some additional information represented by elements of a
semi-ring. In the next section, for instance, the semi-ring4 ({0, 1,∞},max,×) will be
used to represent various kinds of dependencies between variables. Consequently, all
examples will be given with this specific choice of semi-ring.

2.1 Definition of Data Flow Graphs

We will work with a simple imperative WHILE-language, with semantics similar to C.
The grammar is given by:

(Variables) X ::= X1 | X2 | X3 | . . . | Xn

(Expression) exp ::= X | op(exp,...,exp)
(Command) com ::= X = exp | com;com | skip | while exp do com od |

if exp then com else com fi | use(X1,...,Xn)
A WHILE program is thus a sequence of statements, each statement being either an

assignment, a conditional, a while loop, a function call or a skip. The use command
represents any command which does not modify its variables but use them and should
not be moved around carelessly (typically, a printf). In practice, we currently treat
all function calls as use, even if the function is pure. Statements are abstracted into
commands. A command can be a statement or a sequence of commands. We also call a
sequence of commands a chunk.

A data-flow graph for a given command C will be a weighted relation on the set V of
variables involved in C. Formally, this can be represented as a matrix over a semi-ring,
with the implicit choice of a denumeration of the set V . We now fix, until the end of
this section, an arbitrary semi-ring (S,+,×).

Definition 1 A Data Flow Graph (DFG) for a command C is a n × n matrix over the
semi-ring (S,+,×) where n is the number of variables involved in C.

We write M(C) the DFG of C.

For technical reasons, we identify the DFG of a command C with any embedding of
M(C) in a larger matrix. I.e. we will abusively call the DFG of C any matrix of the form(

M(C) 0
0 Id

)
,

4 The convention here is that 0×∞ = 0.

implicitly viewing the additional rows/columns as variables that do not appear in C.
In all examples, we will be using weighted relations, or weighted bi-partite graphs,

to illustrate these matrices. Moreover, we will always use the semi-ring ({0, 1,∞},max,×),
since it is the specific case that will be under study in later sections: it will be used to
represent dependencies: 0 will represent reinitialization, 1 will represent propagation,
and ∞ will represent dependence. Figure Figure 1 introduces both these notions and
the graphical convention used throughout this paper.

Graphically, dependencies are represented by two types of arrows from variables on
the left to variables on the right: plain arrows for direct dependency, dashed arrows for
propagation. Reinitialisation of a variable z then corresponds to the absence of arrows
ending on the right occurrence of z. Figure 1 illustrates these types of dependencies;
let us stress here that the DFG would be the same if the assignment y = y; were to be
removed5 from C since the value of y is still propagated.

x

y

z

x

y

z

dependence

propagation

reinitialization

C := [x = x + 1;

y = y;

z = 0;]

Fig. 1: Types of dependence

For convenience we define, given a command C, the following two sets of variables.

Definition 2 Let C be a command. We define In(C) (resp. Out(C)) as the set of variables
used (resp. modified) by C.

Note that in the case of dependencies, In(C) is exactly the set of variables that are
source of a “dependence” arrow, while Out(C) is the set of variables that either are
targets of dependence arrows or were reinitialised.

2.2 Constructing DFGs

We now describe how the DFG of a command can be computed by induction on the
structure of the command. Base cases (skip, use and assignment) should be defined
depending on what the DFG will be used for. When representing dependencies, as shown
in Figure 1, we simply formalise the implicit definitions used in the figure to define the
DFG in the case of assignments, define a variable e not part of the language, and define:

– M(skip) as the empty matrix6;
– M(use(X1, . . . , Xn)) as the matrix with coefficients from each Xi and e to e equal

to∞, and 0 coefficients otherwise.
5 Note that y = y; does not create a direct dependence
6 Up to the identification of the DFG with its embedding, it is therefore the “zero matrix” of any

size, i.e. the matrix with only 0 coefficients.

Composition and Multipaths. We now turn to the definition of the DFG for a (sequen-
tial) composition of commands. This abstraction allows us to see a block of statements
as one command with its own DFG.

Definition 3 Let C be a sequence of commands [C1; C2; . . . ; Cn]. Then M(C) is defined
as the matrix product M(C1)M(C2) . . .M(Cn).

Following the usual product of matrices, the product of two matricesA,B is defined
here as the matrix C with coefficients: Ci,j =

∑n
k=1(Ai,k ×Bk,j).

It is standard that the product of matrices of weights of two graphs F,G represents
a graph of length 2 paths. This operation of matrix multiplication corresponds to the
computation of multipaths [11] in the graph representation of DFGs. We illustrate this
intuitive construction on an example in Figure 2.

w
x
y
z

w
x
y
z

w
x
y
z

C1 C2


∞ 0 0 0
∞ 1 0 0
0 0 1 ∞
0 0 0 0



1 0 0 0
0 0 0 0
0 ∞ 1 0
0 0 0 ∞



w
x
y
z

w
x
y
z

[C1; C2]


∞ 0 0 0
∞ 0 0 0
0 ∞ 1 ∞
0 0 0 0



Fig. 2: DFG of Composition.
Here C1 := [w = w + x; z = y + 2;] and C2 := [x = y; z = z ∗ 2;]

Conditionals. We now explain how to compute the DFG of a conditional, i.e. we define
the DFG of C := if E then C1 else C2; from the DFG of the commands C1 and C2.

Firstly, we need to take into account that both commands C1 and C2 may be executed.
In that case, the overall command C should be represented by the sum M(C1) + M(C2).

However, in most cases, it is not enough to consider M(C1)+M(C2), and the DFG of
the command C should be obtained by adding a conditional correction that may depend
on the expressions E and C. This correction will here be written as CC(E).

In the case of dependencies, we can notice that all modified variables in C1 and C2
should depend on the variables used in E. Denoting E the vector representing variables
in7 Var(E), O the vector representing variables in Out(C1) ∪ Out(C2), and (·)t the
matrix transpose, we define CC(E) = EtO. Figure 3 illustrates this on an example.

Definition 4 Let C = if E then C1 else C2;. Then M(C) = M(C1)⊕M(C2)⊕ CC(E).

7 I.e. the vector with a coefficient equal to 1 for the variables in Var(E), and −∞ for all others
variables.

w
x
y
z

w
x
y
z

E O C1


∞ 0 0 0
∞ 1 0 0
0 0 1 ∞
0 0 0 0




0
0
0
∞



∞
0
∞
∞



w
x
y
z

w
x
y
z

[if E then C1]


∞ 0 0 0
∞ 1 0 0
0 0 0 ∞
∞ 0 ∞ ∞



Fig. 3: DFG of Conditional.
Here E :=z ≥ 0 and C1 :=[w = w + x; z = y + 2; y = 0;];

While Loop Finally, we define the DFG of a command C of the form C := while E do C1;.
Again, this definition splits into two steps. First, we define a matrix M(C∗1) repre-
senting iterations of the command C1; then we introduce a loop correction WC(E). In
the case of dependencies, the loop correction and the conditional correction coincide:
WC(E) = CC(E).

When considering iterations of C1, the first occurrence of C1 will influence the sec-
ond one and so on. Computing the DFG of Cn1 , the n-th iteration of C1, is just computing
the power of the corresponding matrix, i.e. M(Cn1) = M(C1)

n. But since the number of
iteration cannot be decided a priori, we need to sum over all possible values of n. The
following expression then defines the DFG of the (informal) command C∗1 corresponding
to ”iterating C1 a finite (but arbitrary) number of times”:

M(C∗1) = limitk→∞

k∑
i=1

M(C1)
i

To ease notations, we note M(C1)
(k) the partial summations

∑k
i=1 M(C1)

i.

Definition 5 Let C = while E do C1;. Then M(C) = M(C∗1) +WC(E).

Since the set of all relations is finite and the sequence (M(C1)
(k))k>0 is monotonic,

this sequence is eventually constant. I.e., there exists a natural number N such that
M(C1)

(k) = M(C1)
(N) for all k > N . In the case of the semiring ({0, 1,∞},max,×),

one can even obtain a reasonable bound on the value of N .

Lemma 1 Let C be a command, andK = min(i, o), where i (resp. o) denotes the num-
ber of variables in In(C) (resp. Out(C)). Then, the sequence (M(C(k)))k>K is constant.

3 Dependencies and Quasi-Invariants

We now study in more details the DFG representation of programs for the semiring
({0, 1,∞},max,×). Each different weight – or type of arrow – represents different
types of dependencies.

Each weight express how the values of the involved variables after the execution of
the command depend on their values before the execution. There is a direct dependence
between variables appearing in an expression and the variable on the left-hand side of

the assignment (except for the case of assignments of the form Y := Y). For instance x
directly depends on y and z in the statement x = y+ z;. When variables are unchanged
by the command we call it propagation. Propagation only happens when a variable is
not affected by the command, not when it is copied from another variable. If the variable
is set to a constant, we call this a reinitialization.

The quasi-invariance comes with an invariance degree which is the number of time
the loop needs to be peeled to be able to hoist the corresponding invariant. We can then
implement program transformations that reduce the overall complexity while preserv-
ing the semantics.

3.1 Invariance Degree

First, we want to warn the reader that the wanted transformation on a WHILE program
may bring a renaming issue if a peeled conditional chunk changes the value of a reused
variable (we give an intuition of that in section 4.1). Then, to simplify and be able to
show an interesting example, here we introduce the ϕ-function that, at runtime, can
choose the correct value of a variable depending on the path just taken. Note that this
issue does not exist on a SSA form (see subsection 4.2).

i := 0;
x := 42;
y := 5;
a := 12;
while i < 100 do :
| j := 0;
| s := 1;
| while j < y do :
| | s := s× j;
| | j := j + 1;
| if x > 100 do :
| | y1 := x+ a;
| if x <= 100 do :
| | y2 := x+ 100;
| y := ϕ(y1, y2);
| j := i− 1;
| a := 1;
| i := j + 2;

(a) An example

j := 0;

s := 1;

while j < y do :
| s := s× j
| j := j + 1

if x > 100 do :
| y1 := y + a;

if x <= 100 do :
| y2 := x+ 100;

y := ϕ(y1, y2);

a := 1;

j := i− 1;

i := j + 2;

s

j

y

y1

y2

a

j i

(b) Dependency graph of the outer while loop

Fig. 4: Exemple of dependency graph and invariance degrees

We now consider a loop C := while E do [C1; C2; . . . , Cn]. We will build a depen-
dence graph Dep(C) from the information given by the DFGs.

First, we need to introduce some notations. Given a variable i, we define the set i≺

as {Ck | i ∈ Out(Ck)}. Given a command Cm and a variable i ∈ In(Cm), we denote as
Cm
≺i the subset of i≺ defined as follows:

– it is an initial segment of i≺ w.r.t. the order <m on {Ck | k = 1, . . . n} defined as

Cm−1 <m Cm−2 <m · · · <m C1 <m Cn <m Cn−1 <m · · · <m Cm;

– a command Ck is the largest element of Cm≺i w.r.t. <m if and only if it is neither a
while nor a if.
This defines the subset of principal dependences of the command Cm w.r.t. a given

variable i. Intuitively, this principal dependence is the last command preceding Cm which
modified the value of the variable i. However, since while and if commands may be
skipped, we have to consider several main dependences in general. Based on this, we
can build the dependence graph which simply consists in writing the principal depen-
dences of each command.

Definition 6 Let C := while E do [C1; C2; . . . , Cn] be a command. We define the di-
rected graph Dep(C) as follows:

– the set of vertices V Dep(C) is equal to {C1, . . . , Cn};
– the set of edges EDep(C) is equal to]nm=1]i∈In(Cm) Cm≺i;
– the source s(i) of the edge Ck ∈ Cm

≺i is Ck;
– the target t(i) of the edge Ck ∈ Cm

≺i is Cm.

The invariance degree degC(Cm) of a command Cm w.r.t. C is then defined as follows.
When clear, we will avoid writing the subscript C to ease notations. If Cm is a source in
Dep(C), then deg(Cm) = 1. If Cm has a reflective edge in Dep(C), then deg(Cm) =
∞. Otherwise, we write Fib(Cm) the set of vertices in Dep(C) defined as {Ck | ∃e ∈
EDep(C), s(e) = Ck, t(e) = Cm}, and define deg(Cm) by the following equation, where
χ>m(i) = 1 if i > m and χ>m(i) = 0 otherwise:

deg(Cm) = max ({deg(Ci) + χ>m(i) | Ci ∈ Fib(Cm)})

In particular, if Cm is part of a cycle in Dep(C), its degree is equal to∞.
We now define, for all i ∈ N ∪ {∞}, the sets

deg−1(i) = {Ck | deg(C)k = i} deg−1+ (i) = {Ck | deg(Ck) > i},

and we note maxdeg(C) the smallest integer such that deg−1+ (maxdeg(C)) = deg−1(∞).
The following lemma will be used in the proof of the main theorem.

Lemma 1. Consider the set deg−1(i) for an integer i > 0 and the relation induced
from the dependency graph, i.e. Ci → Cj if and only if there is a sequence of edges from
Ci to Cj in Dep(C). Then (deg−1(i),→) is a partial order.

Proof. It is clear that → is transitive and reflexive. We only need to show that it is
antisymmetric. I.e. that there are no two commands Ci, Cj such that Ci → Cj and
Cj → Ci. We suppose that two such commands can be found and show it leads to a
contradiction. Indeed, if such a situation arises, it means that the dependency graph
contains a cycle P1, . . . , Pk with P1 = Pk = Ci. By definition of the degree, one has
deg(Pi+1) > deg(Pi). More to the point, one has deg(Pi+1) > deg(Pi) as long as
Pi = Ck and Pi+1 = Ch with k > h. Now, it is clear that one of the inequalities
deg(Pi+1) > deg(Pi) has to be strict, as no sequence Ci1 , Ci2 , . . . , Cik with i1 < i2 <
· · · < ik can form a cycle. This implies that deg(Ci) > deg(Ci); a contradiction.

Based on the invariance degree, we will be able to peel loops. For this purpose,
we define the following notation. Given a sequence of commands [C1; C2; . . . ; Cn], we
write [Č1; Č2; . . . ; Čn]

(i) the subsequence in which all commands of degree strictly less
than i are removed. We then define ifi = if E then [Č1; Č2; . . . ; Čn]

(i), and whilei =
while E then [Č1; Č2; . . . ; Čn]

(i). We can now state the main theorem of the paper,
which provides a general framework for peeling loops.

Theorem 1. Let C := while E do [C1; C2; . . . , Cn] be a command. Then

JCK ≡ Jif1; if2; . . . ; ifmaxdeg(C)−1; while∞K

The proof of this theorem is based on an induction, using the following lemma.

Lemma 2 Let C := while E do [C1; C2; . . . , Cn], and D := if1; while2. Then JCK ≡
JDK and for each command Cm appearing in while2, degC(Cm) = degD(Cm) + 1.

Proof. We start by proving the claim that for each command Cm appearing in while2,
degC(Cm) = degD(Cm) + 1. This is a consequence of the fact that the dependency graph
Dep(D) is obtained from Dep(C) by removing all vertices Cm for commands Cm of degree
1, together with their outgoing edges. Note that this defines a well-formed graph since
by definition of the degree, a command of degree 1 may only depend on commands
which are themselves of degree 1 (i.e. edges of target Cm are removed as well). Now,
it is clear from the definition of the dependence degree that degC(Cm) = ∞ implies
degD(Cm) = ∞, and that if degC(Cm)) = d the command Cm only depended commands
of degree at most d. From section 1 we can prove by induction that degD(Cm) = d− 1.

Then, one should realise that commands of degree 1 are in fact invariants of the loop
C. It is then clear that JCK ≡ JDK.

4 In practice

In the previous section, we have seen that the transformation is possible from and to
a WHILE-language. This section will progressively show that we can do it in real lan-
guages by introducing our implementations. First it will present our proof of concept8

which does both analysis and propose a transformation from C to C. After we will ex-
plain how we implemented a prototype analysis in a real compiler.

4.1 Proof of concept (PoC)

To easily and quickly integrate our transformation, we decided to use “pycparser”9, a
C parser written in Python. The principal interest was to simply get and manipulate
an Abstract Syntax Tree. Using a “WhileVisitor” we list all nested while-loops, then,
with a bottom-up strategy (the inner loop first), this tool analyses and transforms the
code if an invariant or quasi-invariant is detected. The analysis is divided in two parts:
the DFG construction and the invariance degree computation.

8 https://github.com/ThomasRuby/LQICM_On_C_Toy_Parser
9 https://github.com/eliben/pycparser

https://github.com/ThomasRuby/LQICM_On_C_Toy_Parser
https://github.com/eliben/pycparser

Analysis The first part aims to list relations between statements. In this implementation
we decided to define a relation object by one list of pairs (for the direct dependencies)
and two sets (for the propagations and reinitializations) of variables. A relation is com-
puted for each command using a top-down strategy following the dominance tree. The
relations are composed when the corresponding command is a sequence of commands.
As described previously, we compute the correction and the maximum relations pos-
sible for a while or if statement. With those relations, we compute an invariance
degree for each statement in the loop regarding to the relations listed (algorithm 1)

Peeling loops from C to C On a non-SSA form (see subsection 4.2), variables are
often reused to store temporary values. The problem is that if we hoist a part of loop
which changes the value of one of those variables it’s possible to change the semantic.
Furthermore, it’s harder if those variables are modified in a conditional chunk, in this
case a ϕ-function is needed. This issue is illustrated in Figure 5 if we replace y1, y2 by
y and ϕ-function is removed.

Implementation details For this PoC we decided to not consider hard renaming (with
ϕ-function) for the simple reason that it’s not necessary in real compiler. It is however
able to peel C programs in SSA form with no invariant conditional statements (see the
examples of the repository).

This implementation is almost 400 lines of Python. It is able to compute relations
of each commands or sequence of commands. This tool focuses on a restricted C syntax
and considers all functions as non-pure. Functions with side effects can be seen as an
anchor in the sequence of statements, commands can not be moved around. But we can
restrain the conditions for peeling. We can allow to hoist pure functions as in [13]. All
other side effects can be broken by this transformation, and thus should not be moved.

4.2 Prototype pass in LLVM

Compilers, and especially LLVM on which we are working, use an Intermediate Repre-
sentation (IR) to handle programs. This is a typed assembly-like language that is used
during all the stages of the compilation. Programs (in various different languages) are
first translated into the IR, then several optimizations are performed (implemented in
so-called passes), and finally the resulting IR is translated again in actual assembly lan-
guage depending on the machine it will run on. Using a common IR allows to do the
same optimizations on several different source languages and for several different target
architectures.

One important feature of the LLVM IR is the Single Static Assignment form (SSA).
A program is in SSA form if each variable is assigned at most once. In other words,
setting a program in SSA form require a massive α-conversion of all the variables to
ensure uniqueness of names. The advantages are obvious since this removes any name-
aliasing problem and ease analysis and transformation.

The main drawback of SSA comes when several different paths in the Control Flow
reach the same point (typically, after a conditional). Then, the values used after this
point may come from any branch and this cannot be statically decided. For example, if

the original program is if (y) then x:=0 else x:=1;C, it is relatively easy to
turn it into a pseudo-SSA form by α-converting the x: if (y) then x0:=0 else
x1:=1;C but we do not know in C which of x0 or x1 should be used.

SSA solves this problem by using ϕ-functions. That is, the correct SSA form will
be if (y) then x0:=0 else x1:=1; X:=ϕ(x0, x1); C.

While the SSA itself eases the analysis, we do have to take into account the ϕ
functions and handle them correctly.

Existing. LLVM does have Loop Invariant Code Motion (LICM) pass which hoists di-
rect invariants out of loops. Used with unrolling and instruction combination optimiza-
tions it can “peel” quasi-invariants. However, as far as we know, it does not compute
invariance degrees and does not detect quasi-invariant chunks.

Preliminaries First, we want to visit all loops using a bottom-up strategy (the inner
loop first). Then, as for the LICM, our pass is derived from the basic LoopPass.
Which means that each time a loop is encountered, our analysis is performed.

At this point, the purpose is to gather the relations of all instructions in the loop to
compose them and provide the final relation for the entire loop.

Then a Relation is generated for each command using a top-down strategy fol-
lowing the dominance tree. The SSA form helps us to gather dependence information
on instructions. By visiting operands of each assignment, it’s easy to build our map
of Relation. With all the current loop’s relations gathered, we compute the com-
positions, condition corrections and the maximums relations possible as described in
section 2.2. Obviously this method can be enhanced by an analysis on bounds around
conditional and number of iterations for a loop. Finally, with those composed relations
we compute an invariance degree for each statement in the loop following algorithm 1.

This algorithm is dynamic. It stores progressively each degree needed to compute
the current one and reuse them. Note that, for the initialization part, we are using LLVM
methods (canSinkOrHoist, isGuaranteedToExecute etc. . .) to figure out if
an instruction is movable or not. These methods provide the anchors instructions for the
current loop.

Peeling loop idea The transformation will consist in creating as many basic blocks
before the loop as needed to remove all quasi-invariants. For each block created, we
include every commands with a higher or equal invariance degree. For instance, the
first preheader block will contain every commands with an invariance degree higher
or equal to 1, the second one, higher or equal to 2 etc. . . to maxdeg. The final loop will
contain every commands with an invariance degree equal to∞.

Of course, hoisting quasi-invariant of high degrees is not necessarily a good idea
since it requires peeling the loop many times and thus greatly increase the size of the
code. The decision to hoist or not will depend on the quasi-invariance degree, the size
of the loop, . . .

Data: Dependency Graph and Dominance Graph
Result: List of invariance degree for each command
Initialize degrees of use to∞ and others to 0;
for each command Cm do

if the current degree deg(Cm) 6= 0 then
return deg(Cm);

else
Initialize the current degree deg(Cm) to∞;
if there is no dependence for the current chunk then

deg(Cm) = 1;
else

for each dependent command ordered (subsection 3.1) compute the degree deg(Cd) do
if deg(Cd) =∞ or Cd = Cm then

return∞;
end
if deg(Cm) ≤ deg(Cd) and d > m then

deg(Cm) = deg(Cd) + 1;
else

deg(Cm) = deg(Cd);
end

end
end
return deg(Cm)

end
end

Algorithm 1: Invariance degree computation.

Implementation details The only chunks considered in the current implementation
are the one consisting of while (any loops in LCSSA form) or if-then-else (any
forks which have a common post dominator existing in the loop) statements.

This implementation (including a preliminary version of peeling) is almost 3000
lines of C++. It is able to compute relations of each commands or sequence of com-
mands. However, it has, for the moment, some restrictions on the form of the loop
analyzed. First, loops with several exit blocks are ignored and left intact (typically a
loop including a break); furthermore, this tool considers all functions as non-pure as
for the Proof of Concept. Even with these restrictions, the pass is able to optimise code
that was previously left untouched, thus illustrating the power of the method.

5 Conclusion and Future work

5.1 Results

Developers expect that compilers provide certain more or less “obvious” optimizations.
When peeling is possible, that often means: either the code was generated; or the devel-
opers prefer this form (for readability reasons) and expect that it will be optimized by
the compiler; or the developers haven’t seen the possible optimization (mainly because
of the obfuscation level of a given code).

Our generic pass is able to provide a reusable abstract dependency graph and the
quasi-invariance degrees for further loop optimization or analysis.

In this example (Figure 5), we compute the same factorial several times. We can de-
tect it statically, so the compiler has to optimize it at least in -O3. Our tests showed that
is done neither in LLVM nor in GCC (we also tried -fpeel_loops with profiling).
The generated assembly shows the factorial computation in the inner loop.

0 int main(){
1 int n,i,x,y,z,a;
2 i=0;
3 x=42;
4 y=5;
5 a=12;
6 while(i<n){
7 j=0; // 1
8 s=1; // 1
9 while (j<y) { // 3

10 s=s*j;
11 j=j+1;
12 }
13 if (x>100) { // 2
14 y1=x+a;
15 }
16 if (x<=100) { // 1
17 y2=x+100;
18 }
19 y:=ϕ(y1,y2);
20 a=1; // 1
21 j=i-1; // ∞
22 i=j+2; // ∞
23 }
24 return i;
25 }
26
27 Dependencies:
28 [[], [], [0, 1, 4, 3], [5], [], [], [7], [6]]
29
30 Invariance degrees:
31 [1, 1, 3, 2, 1, 1, ∞, ∞]

0 int main() {
1 int n, i, x, y, z, a;
2 i=0;
3 x=42;
4 y=5;
5 a=12;
6 if(i<n){ // 1
7 j=0;
8 j_1=j;
9 s=1;

10 s_1=s;
11 [While]
12 [If1]
13 [If2]
14 y2_1=y2;
15 y:=ϕ(y1,y2);
16 a=1;
17 j=i-1;
18 i=j+2;
19 }
20 if(i<n){ // 2
21 j=j_1;
22 s=s_1;
23 [While]
24 [If1]
25 y1_1=y1;
26 y2=y2_2;
27 y:=ϕ(y1,y2);
28 j=i-1;
29 i=j+2;
30 }
31 if(i<n){ // 3
32 [While]
33 y1=y1_1;
34 y:=ϕ(y1,y2);
35 j=i-1;
36 i=j+2;
37 }
38 while(i<n){ // ∞
39 j=i-1;
40 i=j+2;
41 }
42 return i;
43 }

peeling

Fig. 5: Hoisting inner loop

Moreover, the computation time of this kind of algorithm compiled with clang
in -O3 still computes n times the inner loop so the computation time is quadratic,
while hoisting it result in linear time. For the example shown in Figure 5 (LLVM-IR in
Figure 6a), our pass will compute the right degrees.

1 ...
2 while.cond:
3 %j.0 = phi i32 [0, %entry], [%add20, %while.end]
4 %y.0 = phi i32 [5, %entry], [%y.2, %while.end]
5 %i.0 = phi i32 [undef, %entry], [%j.0, %while.end]
6 %a.0 = phi i32 [5, %entry], [0, %while.end]
7 %cmp = icmp slt i32 %j.0, %rem
8 br i1 %cmp, label %while.cond5, label %while.end21
9

10 while.cond5:
11 %fact.0 = phi i32 [%mul, %while.body8], [1, %while.cond]
12 %i.1 = phi i32 [%add, %while.body8], [1, %while.cond]
13 %cmp6 = icmp sle i32 %i.1, %y.0
14 br i1 %cmp6, label %while.body8, label %while.end
15
16 while.body8:
17 %mul = mul nsw i32 %fact.0, %i.1
18 %add = add nsw i32 %i.1, 1
19 br label %while.cond5
20
21 while.end:
22 %cmp10 = icmp sgt i32 %rem3, 100
23 %add12 = add nsw i32 %rem3, %a.0
24 %add12.y.0 = select i1 %cmp10, i32 %add12, i32 %y.0
25 %cmp14 = icmp sle i32 %rem3, 100
26 %add17 = add nsw i32 %rem3, 100
27 %y.2 = select i1 %cmp14, i32 %add17, i32 %add12.y.0
28 %add20 = add nsw i32 %j.0, 1
29 br label %while.cond
30
31 while.end21:
32 ret i32 %i.0
33 ...

(a) LLVM Intermediate Representation

--- vim -O1 EarlyOpt 7m5,276s
3808 number of loops
20465 number of instructions hoisted by LICM
2266 number of loops with several exit blocks
125 number of loops not well formed
2391 sum of loop not analyzed
1417 sum of loop analyzed by LQICM
2476 number of quasi-invariants detected
335 number of quasi-invariants Chunk detected
23 Number of chunks with deg >= 2
0.0686567 Average
29 Number of deg >= 2
0.0117124 Average

--- emacs -O1 EarlyOpt 15m52,556s
3161 number of loops
16415 number of instructions hoisted by LICM
1775 number of loops with several exit blocks
150 number of loops not well formed
1925 sum of loop not analyzed
1236 sum of loop analyzed by LQICM
2197 number of quasi-invariants detected
311 number of quasi-invariants Chunk detected
35 Number of chunks with deg >= 2
0.11254 Average
50 Number of deg >= 2
0.0227583 Average

(b) Statistics on vim and emacs.

To each instruction printed corresponds an invariance degree. The assignment in-
structions are listed by loops, the inner loop (starting with while.cond5) and the
outer loop (starting with while.cond). The inner loop has its own invariance degree
equal to 3 (line 10). Remark that we do consider the phi initialization instructions of
an inner loop. Here %fact.0 and %i.1 are reinitialized in the inner loop condition
block. So phi instructions are analyzed in two different cases: to compute the rela-
tion of the current loop or to give the initialization of a variable sent to an inner loop.
Our analysis only takes the relevant operand regarding to the current case and do not
consider others.

Statistics have been generated by our pass on the two editors vim and emacs to
evaluate the magnitude of new optimizations possible (Figure 6b). Note that the result
change a lot regarding to when our pass is called. Here, it is placed before all loop
optimizations to compare with number of instructions detected by LICM. However, it’s
important to understand that quasi-invariant could be generated by other passes.

The code of this pass is available online10. To provide some real benchmarks on
large programs we need to finish the transformation. We are currently working on.

10 https://github.com/ThomasRuby/lqicm_pass

https://github.com/ThomasRuby/lqicm_pass

5.2 Further works

The pass is currently a prototype. The transformation is still in preliminary form and
even the analysis is making some approximations (e.g. considering all functions as non-
pure) that hamper its efficiency. We will obviously work further on the pass to finish the
transformation and increase the number of cases we can handle.

On a more theoretical side, the current analysis is strongly inspired by other ICC
analysis such as Size Change Termination [11] (from which the Data Flow Graphs
and Multipaths are taken) or the mwp-analysis (from which the loop correction idea
is taken) [9]. As shown in subsection 2.1, it is easy to adapt the method to similar anal-
ysis, and most of the existing code can be reused. Thus, we plan on implementing a
mwp-inspired complexity analysis in LLVM, which should be able to guarantee the
polynomiality of large parts of the code.

Such certificates built at compile-time can be used in a Proof Carrying Code paradigm.
If the compiler is trusted (for example, untrusted developers upload source-code onto an
applications store and the compilation is made by the trusted store), then the certificate
ensure that certain properties (in this case, complexity) are valid.

Acknowledgments The authors wish to thank L. Kristiansen for communicating a manuscript
[8] that initiated the present work. Jean-Yves Moyen is supported by the European
Commision’s Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2014)
655222 - Walgo; Thomas Rubiano is supported by the ANR project “Elica” ANR-14-
CE25-0005; Thomas Seiller is supported by the European Commision’s Marie Skłodowska-
Curie Individual Fellowship (H2020-MSCA-IF-2014) 659920 - ReACT.

References
1. A. Abel and T. Altenkirch. A Predicative Analysis of Structural Recursion. Journal of

Functional Programming, 12(1), 2002.
2. P. Baillot and K. Terui. Light types for polynomial time computation in lambda calculus.

Information and Computation, 201(1), 2009.
3. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time func-

tions. Computational Complexity, 2, 1992.
4. A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor,

CLMPS. 1962.
5. John Cocke. Global common subexpression elimination. SIGPLAN Not., 5(7), 1970.
6. J.-Y. Girard. Linear logic. Th. Comp. Sci., 50, 1987.
7. M. Hofmann. Linear types and Non-Size Increasing polynomial time computation. In LICS,

pages 464–473, 1999.
8. L. Kristiansen. Notes on code motion. manuscript.
9. L. Kristiansen and N. D. Jones. The flow of data and the complexity of algorithms. Trans.

Comp. Logic, 10(3), 2009.
10. D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence graphs and

compiler optimizations. In POPL, 1981.
11. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The Size-Change Principle for Program

Termination. In POPL, 2001.
12. Jean-Yves Moyen. Resource control graphs. ACM Trans. Computational Logic, 10, 2009.
13. Litong Song, Yoshihiko Futurama, Robert Glück, and Zhenjiang Hu. A loop optimization

technique based on quasi-invariance. 2000.

	Loop Quasi-Invariant Chunk Motion by peeling with statement composition

