Loop Quasi-Invariant Chunk Motion
by peeling with statement composition

Jean-Yves Moyen Thomas Rubiano
Department of Computer Science Université Paris 13 - LIPN
University of Copenhagen (DIKU)

Department of Computer Science
moyen@lipn.univ-parisl3.fr University of Copenhagen (DIKU)

rubiano@lipn.univ-parisl3.fr

Thomas Seiller

Department of Computer Science
University of Copenhagen (DIKU)

seiller@di.ku.dk

Several techniques for analysis and transformations are used in compilers. Among them, the peel-
ing of loops for hoisting quasi-invariants can be used to optimize generated code, or simply ease
developers’ lives. In this paper, we introduce a new concept of dependency analysis borrowed from
the field of Implicit Computational Complexity (ICC), allowing to work with composed statements
called “Chunks” to detect more quasi-invariants. Based on an optimization idea given on a WHILE
language, we provide a transformation method - reusing ICC concepts and techniques [8} [10] - to
compilers. This new analysis computes an invariance degree for each statement or chunks of state-
ments by building a new kind of dependency graph, finds the “maximum” or “worst” dependency
graph for loops, and recognizes if an entire block is Quasi-Invariant or not. This block could be an
inner loop, and in that case the computational complexity of the overall program can be decreased.
We already implemented a proof of concept on a toy C parseIE-] analysing and transforming the AST
representation.

In this paper, we introduce the theory around this concept and present a prototype analysis pass
implemented on LLVM. In a very near future, we will implement the corresponding transformation
and provide benchmarks comparisons.

1 Introduction

A command inside a loop is an invariant if its execution has no effect after the first iteration of the
loop. Typically, an assignment x : =0 in a loop is invariant (provided x is not modified elsewhere). Loop
invariants can safely be moved out of loops (hoisted) in order to make the program faster.

A command inside a loop is quasi-invariant if its execution has no effect after a finite number of
iterations of the loop. Typically, if a loop contains the sequence x: =y, vy :=0, then y:=0 is invariant.
However, x : =y is not invariant. The first time the loop is executed, x will be assigned the old value
of v, and only from the second time onward will x be assigned the value 0. Hence, this command is
quasi-invariant. It can still be hoisted out of the loop, but to do so requires to peel the loop first, that is
execute its body once (by copying it before the loop).

The number of times a loop must be executed before a quasi-invariant can be hoisted is called here
the degree of the invariant.

1https ://github.com/ThomasRuby/LQICM_On_C_Toy_Parser

© J.Y. Moyen, T. Rubiano, T. Seiller
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
DICE 2017

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://github.com/ThomasRuby/LQICM_On_C_Toy_Parser

2 Loop Quasi-Invariant Chunk Motion

An obvious way to detect quasi-invariants is to first detect invariants (that is, quasi-invariants of
degree 1) and hoist them; and iterate the process to find quasi-invariant of degree 2, and so on. This
is, however, not very efficient since it may require a large number of iterations to find some invariance
degrees.

We provide here an analysis able to directly detect the invariance degree of any statements in the
loop. Moreover, our analysis is able to assign an invariance degree non only to individual statements but
also to groups of statements (called chuncks). That way it is possible, for example, to detect that a whole
inner loop is invariant and hoist it, thus decreasing the asymptotic complexity of the program.

Loop optimization techniques based on quasi-invariance are well-known in the compilers community.
The transformation idea is to peel loops a finite number of time and hoist invariants until there are no
more quasi-invariants. As far as we know, this technique is called “peeling” and it was introduced by
Song et al. [13]].

The present paper offers a new point of view on this work. From an optimization on a WHILE
language by Lars Kristiansen [8]], we provide a redefinition of peeling and another transformation method
based on techniques developed in the field of Implicit Computational Complexity.

Implicit Computational Complexity (ICC) studies computational complexity in terms of restrictions
of languages and computational principles, providing results that do not depend on specific machine
models. Based on static analysis, it helps predict and control resources consumed by programs, and can
offer reusable and tunable ideas and techniques for compilers. ICC mainly focuses on syntactic [4, 13l],
type [6, 2] and Data Flow [11, 7} 9} [12] restrictions to provide bounds on programs’ complexity. The
present work was mainly inspired by the way ICC community uses different concepts to perform Data
Flow Analysis, e.g. “Size-change Graphs” [11] or “Resource Control Graphs’[[12] which track data
values’ behavior and use a matrix notation inspired by [1]], or “mwp-polynomials” [9] to provide bounds
on data size.

For our analysis, we focus on dependencies between variables to detect invariance. Dependency
graphs [[10] can have different types of arcs representing different kind of dependencies. Here we will use
a kind of Dependence Graph Abstraction [5] that can be used to find local and global quasi-invariants.
Based on these techniques, we developed an analysis pass and we will implement the corresponding
transformation in LLVM.

We propose a tool which is notably able to give enough information to easily peel and hoist an inner
loop, thus decreasing the complexity of a program from n to n.

1.1 State of the art on Quasi-Invariant detection in loop

Invariants are basically detected using

A dependency graph around variables is needed to provide relations between statements. For quasi-
invariance, we need to couple dependence and dominance informations. In [13]], the authors define
a variable dependency graph (VDG) and detect a loop quasi-invariant variable x if, among all paths
ending at x, no path contain a node included in a circular path. Then they deduce an invariant length
which corresponds to the length of the longest path ending in x. In the present paper, this length is called
invariance degree.

1.2 Contributions

To the authors’ knowledge, this is the first application of ICC techniques on a mainstream compiler. One
interest is that our tool potentially applies to programs written in any programming language managed

J.Y. Moyen, T. Rubiano, T. Seiller 3

by LLVM. Moreover, this work should be considered as a first step of a larger project that will make ICC
techniques more accessible to programmers.

On a more technical side, our tool aims at improving on currently implemented loop invariant detec-
tion and optimization techniques. The main LLVM tool for this purpose, Loop Invariant Code Motion
(LICM), does not detect quasi-invariant of degree more than 3 (and not all of those of degree 2). More
importantly, LICM will not detect quasi-invariant blocks of code (what we call chunk), such as whole
loops. Our tool, on the other hand, detects quasi-invariants of arbitrary degree and is able to deal with
chunks. For instance the optimization shown in [Figure 9|is not performed by LLVM nor in GCC even at
their maximum optimization level.

2 In theory

In this section, we redefine our own types of relations between variables to build a new dependency graph
and apply a composition inspired by the graph composition of Size-Change Termination [11]].

2.1 Relations and Data Flow Graph

We work with a simple imperative WHILE-language (the grammar is shown in[Figure 1), with semantics
similar to C.

(Variables) X = X1 X | X3 ... | Xn
(Expression) exp = X |opl(exp,...,exp)
(Command) com == X=exp|com;com | skip |

while exp do com od |
if exp then com fi |
use (X1, ..., X»)

Figure 1: Grammar

A WHILE program is thus a sequence of statements, each statement being either an assignment, a
conditional, a while loop, a function call or a skip. The use command represents any command which
does not modify its variables but use them and should not be moved around carelessly (typically, a
printf). Statements are abstracted into commands. A command can be a statement or a sequence of
commands. We also call a sequence of commands a chunk.

Data: List of Statements in the Loop

Result: List of Loop-invariants LT

Initialization;

while search until there is no new invariant. .. do

for each statement s do
if each variable in s

has no definition in the loop or
has exactly one loop-invariant definition or

is constant then
| AddstoLI;

end
end

end
Algorithm 1: Basic invariants detection

4 Loop Quasi-Invariant Chunk Motion

We start by giving an informal but intuitive definition of the notion of Data Flow Graph (DFG). A
DFG represents dependencies between variables as a bipartite graph as in Each different types
of arrow represents different types of dependencies.

dependence
Ci=[x=x+1; X > X
propagation
Y= D T >y
reinitialization
z=0;] Z Z

Figure 2: Types of dependence

Each variable is shown twice: the occurrence on the left represents the variable before the execution
of the command while the occurrence on the right represents the variable after the execution. Depen-
dencies are then represented by two types of arrows from variables on the left to variables on the right:
plain arrows for direct dependency, dashed arrows for propagation. Reinitialisation of a variable z then
corresponds to the absence of arrows ending on the right occurrence of z. illustrates these types
of dependencies; let us stress here that the DFG would be the same if the assignment y = y; were to be
remove from C since the value of y is still propagated.

More formally, a DFG of a command C is a triple (V, ,%dep,%pmp) with V the variables involved in
the command C and a pair of two relations on the set of variables. These two relations express how the
values of the involved variables after the execution of the command depend on their values before the
execution. There is a direct dependence between variables appearing in an expression and the variable on
the left-hand side of the assignment. For instance x directly depends on y and z in the statement x = y+ z;.
When variables are unchanged by the command we call it propagation. Propagation only happens when
a variable is not affected by the command, not when it is copied from another variable. If the variable is
set to a constant, we call this a reinitialization.

More technically, we will work with an alternative representation in terms of matrices. While less
intuitive, this allows for more natural compositions, based on standard linear algebra operations. Before
providing the formal definition, let us introduce the semi-ring {0,0, 1}: the addition & and multiplication
® are defined in[Figure 3] Let us remark that, identifying 0 as —eo, this is a sub-semi-ring of the standard
tropical semi-ring, with ® and ® interpreted as max and + respectively.

Figure 3: Addition and Multiplication in the semi-ring {0,0,1}.

Definition 1 A Data Flow Graph for a command C is a n X n matrix over the semi-ring {0,0,1} where n
is the number of variables involved in C.

We write M(C) the DFG of C. At line i, column j, we have a 0 if the output value of the jth variable
does not depend on the input value of the ith; a 0 in case of propagation (unmodified variable); and a 1
for any other kind of dependence.

ZNote that y = y; does not create a direct dependence

J.Y. Moyen, T. Rubiano, T. Seiller 5

Definition 2 Let C be a command. We define In(C) (resp. Out(C)) as the set of variables used (resp.
modified) by C.

Note that In(C) and Out(C) are exactly the set of variables that are at either ends of the “dependence”
arrows.

2.2 Constructing DFGs

We now describe how the DFG of a command can be computed by induction on the structure of the
command. Base cases (skip, use and assignment) are done in the obvious way, generalising slightly the
definitions of DFGs shown in [Figure 2|

2.2.1 Composition and Multipath

We now turn to the definition of the DFG for a (sequential) composition of commands. This abstraction
allows us to see a block of statements as one command with its own DFG.

Definition 3 Let C be a sequence of commands [C1;Ca;...;Cq]. Then M(C) is defined as the matrix
product M(C1)M(C3)...M(Cyp).

Following the usual product of matrices, the product of two matrices A, B is defined here as the matrix
C with coefficients: C; j = @j_; (Aix ® By ;).

This operation of matrix multiplication corresponds to the computation of multipaths [11] in the
graph representation of DFGs. We illustrate this intuitive construction on an example in

Cy Ca [C1;Ca]
W7W ——————— > W W7W
X==-=--=-=-- > X X X X
Vacoommo s > yézy yézy
z I———7 z 4

Figure 4: DFG of Composition.
Here Ci :=[w=w+x;z=y+2;] and Co := [x = y;z = 2% 2;]

2.2.2 Condition

We now explain how to compute the DFG of a command C := if E then C;;, from the DFG of the
command Cj.

Firstly, we notice that in C, all modified variables in Cy, i.e. in Out(C;), will depend on the variables
used in E. Let us denote by M(C;)®! the corresponding DFG, i.e. the matrix M(C;) @ (E'O), where E
(resp. O) is the vector representing variables ilﬂVar(E) (resp. in Out(C})), and (-)" denotes the transpose.

Secondly, we need to take into account that the command C; may be skipped. In that case, the overall
command C should act as an empty command, i.e. be represented by the identity matrix Id (diagonal
elements are equal to 0, all other are equal to 0).

Finally, the DFG of a conditional will be computed by summing these two possibilities, as in[Figure 5|

Definition 4 Let C be a command of the form if E then Cy;. Then M(C) = M(Cy)El @ 1d.

31Le. the vector with a coefficient equal to 1 for the variables in Var(E), and @ for all others variables.

6 Loop Quasi-Invariant Chunk Motion

E 0 Cy [if E then C4]

W—=w

X==--=-=3 > X

y\y

Z Z
0 1 o 0 0 o 0 0
0 0 0 0 0 0 0 0
0 1 o 0 0 1 o 0 0 1
1 1 o 0 0 0 1 0 1 1

Figure 5: DFG of Conditional.
HereE:=z>0and C; :=w=w+x;z=y+2;y =0;];

Cs c? @
W7}
Yy ==--- >y yEe=—-- >y yE==--- >y
T 7 7 > T 7

Figure 6: Finding fix point of dependence (simple example)
Here C3 :=w=w+xz2=y+2;x =y;z=2%2];

2.2.3 While Loop

Finally, let us define the DFG of a command C of the form C := while E do Cy;. This definition splits
into two steps. First, we define a matrix M(C}) representing iterations of the command Cy; then we deal
with the condition of the loop in the same way we interpreted the conditional above.

When considering iterations of C;, the first occurrence of C; will influence the second one and so
on. Computing the DFG of C7, the n-th iteration of Cy, is just computing the power of the corresponding
matrix, i.e. M(C}) = M(C1)". But since the number of iteration cannot be decided a priori, we need
to add all possible values of n. The following expression then expresses the DFG of the (informal)
command C} corresponding to “iterating C; a finite (but arbitrary) number of times”:

k
M(C}) = limit_,oe PHM(Cy)’
i=1

To ease notations, we note M(C(lk)) the partial summations Y%, M(C;)’.
Since the set of all relations is finite and the sequence (M(Cgk)))/@o is monotonous, this sequence is

eventually constant. Le., there exists a natural number N such that M(C(lk)) = M(C(lN)) forall k > N. One
can obtain the following bound on the value of N.

Lemma 1 Consider a command C and define K = min(i,0), where i (resp. o) denotes the number of
variables in In(C) (resp. Out(C)). Then, the sequence (M(C™)));> is constant.

illustrates the computation of -*. The second step then consists in dealing with the loop
condition, using the same constructions as for conditionals.

Definition 5 Let C be a command of the form while E do Cy;. Then M(C) = M(C})El,

J.Y. Moyen, T. Rubiano, T. Seiller 7

2.3 Independence

Our purpose is to move commands around: exchange them, but more importantly to pull them out of
loops when possible. We allow these moves only when semantics are preserved: to ensure this is the
case, we describe a notion of independence.

Definition 6 If Out(C;)NIn(Cy) = @ then Cy is independent from Cy. This is denoted Cy < Ca.

It is important to notice that this notion is not symmetric. As an example, let us consider [Figure 7
Here, C, is independent from C; but the inverse is not true.

Cy Co [C1;C2]
w7)w ——————— > W W7)w
D ks > x/>x X/>x
Yy-------= AR >y y==----= >y
Zrmmmmmmm- > —— 2 —2Z

1 o 0 0 o o 0 0 1 o 0 0
1 o 0 0 o 0 0 0 1 o 0 0
o 0 0 0 o 1 0 0 o 1 0 0
o 0 0 0 o 0 0 1 o 0 0 1

Figure 7: Composition of independent chunks of commands

Here C; :=[w =w+x;] and Cy :=[x = y;z2 = z%2[;

A particular case is self-independence, i.e. independence of a command w.r.t. itself. In that case,
we can find non-trivial program transformations preserving the semantics. We denote by [C] = [D] the
relation ”’C and D have the same semantics”.

Lemma 2 (Specialization for while) IfC; is self-independent and Var(E) N Out(C;) = 0:
[while Edo C;1]] = [if E then C;;While E do skip]

Remark that we need to keep the loop While with a skip statement inside because we need to consider
an infinite loop if E is always true to keep the semantic equivalent.
In general, we will consider mutual independence.

Definition 7 IfC, < Cy1 and Cy < Co, we say that Cy and Cy are mutually independents, and write Cy =< Co.

While independence in one direction only, such as in the example above, does not imply that C;;C,
and Cy; C4 have the same semantics, mutual independence allows to perform program transformation that
do not impact the semantics.

Lemma 3 (Swapping commands) If C; < Cy, then [C1;Cs] = [[C2;C4]
Lemma 4 (Moving out of while loops) IfC, is self-independent (i.e. C1 < Cy), and if Cy < Co, then:
[while E do [C1;Cy]] = [if E then Cy;while E do Cy]

Based on those lemmas, we can decide that an entire block of statement is invariant or quasi-invariant
in a loop by computing the DFGs. The quasi-invariance comes with an invariance degree wich is the
number of time the loop needs to be peeled to be able to hoist the corresponding invariant. We can then
implement program transformations that reduce the overall complexity while preserving the semantics.

8 Loop Quasi-Invariant Chunk Motion

3 In practice

This section explains how we implemented the pass which computes the invariance degree and gives
the main idea of how the transformation can be performed. In the previous Section, we have seen that
the transformation is possible from and to a WHILE language; and from a previous implementatiorﬂ we
have shown it can be done on C Abstract Syntax Trees.

Compilers, and especially LLVM on which we are working, use an Intermediate Representation to
handle programs. This is an assembly-like language that is used during all the stages of the compilation.
Programs (in various different languages) are first translated into the IR, then several optimisations are
performed (implemented in so-called passes), and finally the resulting IR is translated again in actual
assembly language depending on the machine it will run on. Using a common IR allows to do the same
optimisations on several different source languages and for several different target architectures.

One important feature of the LLVM IR is the Single Static Assignment form (SSA). A program is
in SSA form if each variable is assigned at most once. In other words, setting a program in SSA form
require a massive ¢.-conversion of all the variables to ensure uniqueness of names. The advantages are
obvious since this removes any name-aliasing problem and ease analysis and transformation.

The main drawback of SSA comes when several different paths in the Control Flow reach the same
point (typically, after a conditional). Then, the values used after this point may come from any branch
and this cannot be statically decided. For example, if the original program is 1f (y) then x:=0
else x:=1;C,itisrelatively easy to turn it into a pseudo-SSA form by ¢-converting the x: 1f (y)
then xp:=0 else xj:=1;C but we do not know in C which of x or x; should be used.

SSA solves this problem by using @-functions that, at runtime, can choose the correct value de-
pending on the path just taken. That is, the correct SSA form will be if (y) then x¢:=0 else
x1:=1; X:=0(x9, x1); C.

While the SSA itself eases the analysis, we do have to take into account the ¢ functions and handle
them correctly.

3.1 Preliminaries

First, we want to visit all loops using a bottom-up strategy (the inner loop first). Then, as for the Loop
Invariant Code Motion (LICM) pass, our pass is derived from the basic LoopPass. Which means that
each time a loop is encountered, our analysis is performed.

At this point, the purpose is to gather the relations of all instructions in the loop to compose them
and provide the final relation for the current loop. We decided to define a Relation object by three
SmallPtrSet of Valuewx, listing the variables, the propagations and the initializations. Furthermore
we represent the dependencies by aDenseMap of Value* to SmallPtrSet<Valuex>. This way of
representing our data is not fixed, it’s certainly optimizable, but we think it’s sufficient for our prototype
analysis and examples. We will discuss the cost of this analysis later.

Then a Relation is generated for each command using a top-down strategy following the dom-
inance tree. The SSA form helps us to gather dependence information on instructions. By visiting
operands of each assignment, it’s easy to build our map of Relation. With all the current loop’s rela-
tions gathered, we compute the compositions, condition corrections and the maximums relations possible
as described previously. Obviously this method can be enhanced by an analysis on bounds around con-
ditional and number of iterations for a loop. Finally, with those composed relations we compute an
invariance degree for each statement in the loop.

4https ://github.com/ThomasRuby/LQICM_On_C_Toy_Parser

https://github.com/ThomasRuby/LQICM_On_C_Toy_Parser

J.Y. Moyen, T. Rubiano, T. Seiller 9

The only chunks considered in the current implementation are the one consisting of while or
if-then-else statements.

3.2 Invariance degree computation

In this part, we will describe an algorithm — using the previous concepts — to compute the invariance
degree of each quasi-invariant in a loop. After that, we will be able to peel the loop at once instead of
doing it iteratively. To simplify and as a recall, shows a basic example of peeled loop.

The invariance degrees are given as comment after each Quasi-Invariant statements. So b=y+y is
invariant of degree equal to one because y is invariant, that means it could be hoisted directly in the
preheader of the loop. But b is used before, in b=b+1, so it’s not the same b at the first iteration. We
need to isolate this case by peeling one time the entire loop to use the first b computed by the initial b.
If b=y+y is successfully hoisted, then b is now invariant. So we can remove b=b+1 but we need to do
it at least one time after the first iteration to set b to the new and invariant value. This is why the loop
is peeled two times. The first time, all the statements are executed. The second time, the first degree
invariants are removed. The main work is to compute the proper invariance degree for each statement
and composed statements. This can be done statically using the dependency graph and dominance graph.
Here is the algorithm. Let suppose we have computed the list of dependencies for all commands in a
loop.

Data: Dependency Graph and Dominance Graph
Result: List of invariance degree for each statement
Initialize degrees of use to o and others to 0;
for each statement s do
if the current degree cd # 0 then
| skip
else
Initialize the current degree cd to oo}
if there is no dependence for the current chunk then
‘ cd=1;
else
for each dependence compute the degree dd of the command do
if cd < dd and the current command dominates this dependence then
| cd=dd+1
else
| cd=dd
end
end

end
end

end
Algorithm 2: Invariance degree computation.

This algorithm is dynamic. It stores progressively each degree needed to compute the current one
and reuse them. Note that, for the initialization part, we are using LLVM methods (canSinkOrHoist,
isGuaranteedToExecute etc...) to figure out if an instruction is movable or not. These methods
provide the anchors instructions for the current loop.

10 Loop Quasi-Invariant Chunk Motion

0 if (x < 100) //1
while (x<100) { 1 {

b=b+1; //2 2 b_1= b+1;
use (b) ; 3 use(b_1);
x=x+1; 4 x = x+1;

b=y+y; //1 5 b= y+y;

use (b) ; 6 use (b) ;

} 7 }
8 if (x < 100) //2

10 b_1= b+1l;

11 use(b_1);

12 x = x+1;

13 use (b) ;

14 }

15 while (x < 100)
16 {

17 use(b_1);

18 x = x+1;

19 use (b) ;

20 }

Figure 8: Example: Hoisting twice.

3.3 Peeling loop idea

The transformation will consists in creating as many preheaders basic blocks before the loop as
needed to remove all quasi-invariants out of the loop. Each preheader will have the same condi-
tion as the . cond block of the loop and will contain the incrementation of the iteration variable. The
maximum invariance degree is the number of time we need to peel the loop. So we can create as many
preheaders before the loop. For each block created, we include every commands with a higher or
equal invariance degree. For instance, the first preheader block will contain every commands with an
invariance degree higher or equal to 1, the second one, higher or equal to 2 etc... and the final loop will
contain every commands with an invariance degree equal to co.

4 Conclusion and Future work

Developers expect that compilers provide certain more or less “obvious” optimizations. When peeling
is possible, that often means: either the code was generated; or the developers prefer this form (for
readability reasons) and expect that it will be optimized by the compiler; or the developers haven’t seen
the possible optimization (mainly because of the obfuscation level of a given code).

Our generic pass is able to provide a reusable abstract dependency graph and the quasi-invariance
degrees for further loop optimization or analysis.

In this example (Figure 9), we compute the same factorial several times. We can detect it statically,
so the compiler has to optimize it at least in —~03. Our tests showed that is done neither in LLVM nor
in GCC (we also tried —fpeel_loops with profiling). The generated assembly shows the factorial
computation in the inner loop.

Moreover, the computation time of this kind of algorithm compiled with clang in —03 still com-
putes n times the inner loop so the computation time is quadratic, while hoisting it result in linear time.
For the example shown in[Figure 9] our pass computes the degrees shown in[Figure T1|(where —1 repre-
sents a degree of oo, that is an instruction that cannot be hoisted).

PR

v

J.Y. Moyen, T. Rubiano, T. Seiller

srand (time (NULL)) ;

srand (time (NULL)) ;

11

int n-rand()%10000; 1 int n = rand() % 10000;
int j=0; ’ 2 Ant - 0;
! 3 i j <
while (j<n) { ‘ ’{'f (3 <)
ff?ﬁzl; 5 fact = 1;
7_’ . 6 i = l;
"’hlizct(f;g)t*i. 7 while (i <= n)
e ! 8 {
=14+ .
) i=1t1; 9 fact = fact » i;
41 10 i=1 4+ 1;
J=J+4i;
11 }
| use (fact) ; . 3= 3+ 1;
13 use (fact) ;
1i 14 }
pee ng 15 while (j < n)
16 {
17 j=3 + 1;
18 use (fact) ;
19 }

Figure 9: Hoisting inner loop

I ...
2 while.cond:

3 %$i.0 = phi 132 [1, %entry], [%i.l.lcssa, %while.end

1 %$j.0 = phi 132 [0, %entry], [%add8, %while.end

5 %$exitcond = icmp ne i32 %3j.0, 100

6 br il %exitcond, label %while.body, label %while.end9

8 while.body:
9 br label %while.cond3

Il while.cond3:

12 $fact.0 = phi 132 [1, %$while.body], [%mul, $%while.body6]
13 %i.1 = phi i32 [1, $while.body], [%add, %$while.body6

14 %cmp4 = icmp slt 132 %i.1, %rem

15 br il %cmp4, label $while.body6, label %$while.end

17 while.bodyé6:

18 $mul = mul nsw i32 %fact.0, %i.1l

19 %add = add nuw nsw 132 %i.1, 1

20 br label %while.cond3

2

22 while.end:

23 $fact.0.lcssa = phi i32 [%$fact.0, %while.cond3]
24 %i.l.1lcssa = phi 132 [%i.1, %while.cond3]

25 %$call7 = call ... 132 %i.l.lcssa, 132 $fact.0.lcssa)
26 %add8 = add nuw nsw i32 %3.0, 1

27 br label %while.cond

Figure 10: LLVM Intermediate Representation

12 Loop Quasi-Invariant Chunk Motion

———— MapDeg of while.cond3 --——-
mul nsw i32 %$fact.l, %i.1l = -1

3 %$add = add nuw nsw i32 %i.1, 1 = -1

—-—-—- MapDeg of while.cond --—--

$fact.0 = phi 132 [1, $while.body], ... =1

$i.1 = phi 132 [1, %while.body 1, ... =1

inner loop starting with while.cond3: =1

$fact.0.lcssa = phi i32 [%$fact.0, %while.cond3] = -1

%$i.1l.1lcssa = phi 132 [%i.1, %while.cond3] = -1

%$call7 = call ... 132 %i.l.lcssa, 132 %fact.0.lcssa) = -1
3 $add8 = add nuw nsw 132 %3.0, 1 = -1

Figure 11: Invariance Degree

To each instruction printed corresponds an invariance degree. The assignment instructions are listed
by loops, the inner loop (starting with while . cond3) and the outer loop (starting with while.cond).
The inner loop has its own invariance degree equal to 1 (line 9). Remark that we do consider the phi
initialization instructions of an inner loop. Here $fact .0 and %1i. 1 are reinitialized in the inner loop
condition block. So phi instructions are analysed in two different cases: to compute the relation of the
current loop or to give the initialization of a variable sent to an inner loop. Our analysis only takes the
relevant operand regarding to the current case and do not consider others.

The code of this pass is available onlineﬂ To provide some real benchmarks on large programs we
need to implement the transformation. We are currently implementing this second pass on LLVM.

Acknowledgments The authors wish to thank L. Kristiansen for communicating a manuscript [8]]
that initiated the present work. Jean-Yves Moyen is supported by the European Commision’s Marie
Sktodowska-Curie Individual Fellowship (H2020-MSCA-IF-2014) 655222 - Walgo; Thomas Rubiano is
supported by the ANR project “Elica” ANR-14-CE25-0005; Thomas Seiller is supported by the Euro-
pean Commision’s Marie Sktodowska-Curie Individual Fellowship (H2020-MSCA-IF-2014) 659920 -
ReACT.

References

[1] A. Abel & T. Altenkirch (2002): A Predicative Analysis of Structural Recursion. Journal of Functional
Programming 12(1).

[2] P. Baillot & K. Terui (2009): Light types for polynomial time computation in lambda calculus. Information
and Computation 201(1).

[3] S. Bellantoni & S. Cook (1992): A new recursion-theoretic characterization of the poly-time functions. Com-
putational Complexity 2.

[4] A. Cobham (1962): The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor: CLMPS.
[5] John Cocke (1970): Global Common Subexpression Elimination. SIGPLAN Not. 5(7).
[6] J.-Y. Girard (1987): Linear Logic. Th. Comp. Sci. 50.

[7] M. Hofmann (1999): Linear types and Non-Size Increasing polynomial time computation. In: LICS, pp.
464-473.

Shttps://github.com/ThomasRuby/lgicm pass

https://github.com/ThomasRuby/lqicm_pass

J.Y. Moyen, T. Rubiano, T. Seiller 13

[8] L. Kristiansen: Notes on Code Motion. Manuscript.
[9] L. Kristiansen & N. D. Jones (2009): The flow of data and the complexity of algorithms. Trans. Comp. Logic
10(3).
[10] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure & M. Wolfe (1981): Dependence Graphs and Compiler
Optimizations. In: POPL.

[11] C.S. Lee, N. D. Jones & A. M. Ben-Amram (2001): The Size-Change Principle for Program Termination.
In: POPL.

[12] Jean-Yves Moyen (2009): Resource control graphs. ACM Trans. Computational Logic 10.

[13] Litong Song, Yoshihiko Futurama, Robert Gliick & Zhenjiang Hu (2000): A Loop Optimization Technique
Based on Quasi-Invariance.

	Introduction
	State of the art on Quasi-Invariant detection in loop
	Contributions

	In theory
	Relations and Data Flow Graph
	Constructing DFGs
	Composition and Multipath
	Condition
	While Loop

	Independence

	In practice
	Preliminaries
	Invariance degree computation
	Peeling loop idea

	Conclusion and Future work

