More intensional versions of Rice's Theorem

Jean-Yves Moyen¹ Jakob Grue Simonsen¹ Jean-Yves.Moyen@lipn.univ-paris13.fr

> ¹Datalogisk Institut University of Copenhagen

Supported by the Marie Curie action "Walgo" program H2020-MSCA-IF-2014, number 655222 and the Danish Council for Independent Research Sapere Aude grant "Complexity via Logic and Algebra" (COLA).

April 2-3 2016

Rice's and Asperti-Rice's Theorems

Rice's Theorem

A cornerstone of computability.

Theorem (Rice, '53)

Any non-trivial and extensional set of programs is undecidable.

Rice's Theorem

A cornerstone of computability.

Theorem (Rice, '53)

Any non-trivial and extensional set of programs is undecidable.

extensional: do not separate programs computing the same function: $p \in \mathcal{P}, q \notin \mathcal{P} \Rightarrow \llbracket p \rrbracket \neq \llbracket q \rrbracket$.

Rice's Theorem

A cornerstone of computability.

Theorem (Rice, '53)

Any non-trivial and extensional set of programs is undecidable.

extensional: do not separate programs computing the same function: $p \in \mathcal{P}$, $q \notin \mathcal{P} \Rightarrow \llbracket p \rrbracket \neq \llbracket q \rrbracket$.

Proof.

$$\mathtt{p} \neq \mathrm{infinite\ loop},\, \mathtt{p} \in \mathcal{P},\, \mathrm{loop} \notin \mathcal{P}.$$

$$q'(x) = q(0); p(x).$$

$$q' \in P \Leftrightarrow q(0)$$
 terminates.

The power of Rice

Rice's Theorem allows to prove undecidability of a wide range of sets of programs:

- programs which (don't) terminate on input 0;
- programs which return 42 on input 54;
- programs which return an even result on any prime input;
- programs computing a total function;
- programs computing a bijection;
- ...

The power of Rice

Rice's Theorem allows to prove undecidability of a wide range of sets of programs:

- programs which (don't) terminate on input 0;
- programs which return 42 on input 54;
- programs which return an even result on any prime input;
- programs computing a total function;
- programs computing a bijection;
- ...

But it cannot be used for *intensional* sets that depend on **program** behaviour (complexity, ...)

Extensional equivalence

"Extensionality" of sets defines an equivalence on programs, the extensional equivalence (or Rice's equivalence):

$$p\Re q\Leftrightarrow \llbracket p\rrbracket = \llbracket q\rrbracket.$$

Extensional equivalence

"Extensionality" of sets defines an equivalence on programs, the extensional equivalence (or Rice's equivalence):

$$p\Re q\Leftrightarrow [\![p]\!]=[\![q]\!].$$

Rice's Theorem now state that:

- \Re is undecidable;
- ullet any equivalence less precise than $\mathfrak R$ is undecidable.

Extensional equivalence

"Extensionality" of sets defines an equivalence on programs, the extensional equivalence (or Rice's equivalence):

$$p\Re q\Leftrightarrow [\![p]\!]=[\![q]\!].$$

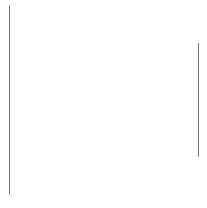
Rice's Theorem now state that:

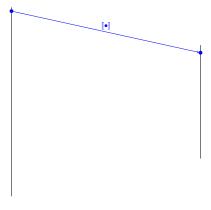
- \Re is undecidable;
- any equivalence less precise than \Re is undecidable.

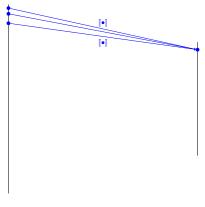
Theorem (Rice, again)

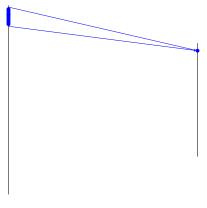
Any non-trivial set of programs which is the union of classes of \Re is undecidable.

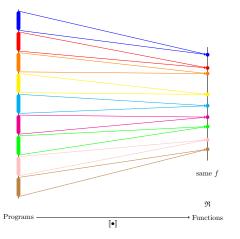
What about equivalences more precise than \Re ?

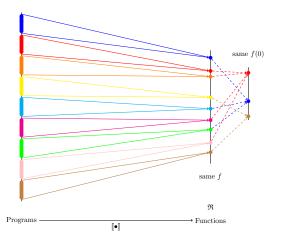


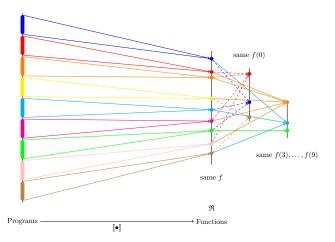


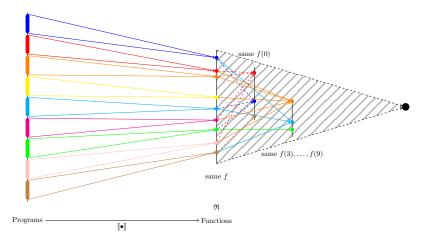


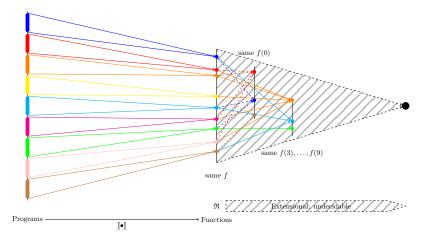


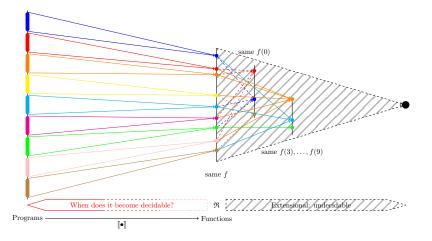












A first intensional version of Rice's Theorem.

$$\mathtt{p}\mathfrak{A}\mathtt{q} \Leftrightarrow \llbracket\mathtt{p}\rrbracket = \llbracket\mathtt{q}\rrbracket \ \ \mathrm{and} \ \mathtt{cplx}(\mathtt{p}) = \Theta(\mathtt{cplx}(\mathtt{q})) \quad \ (\text{``clique''})$$

A first intensional version of Rice's Theorem.

$$\mathtt{p}\mathfrak{A}\mathtt{q} \Leftrightarrow \llbracket\mathtt{p}\rrbracket = \llbracket\mathtt{q}\rrbracket \ \ \mathrm{and} \ \mathtt{cplx}(\mathtt{p}) = \Theta(\mathtt{cplx}(\mathtt{q})) \quad \ (\text{``clique''})$$

Theorem (Asperti, '08)

Any non-trivial set of programs which is the union of classes of \mathfrak{A} is undecidable.

A first intensional version of Rice's Theorem.

$$\mathtt{p}\mathfrak{A}\mathtt{q} \Leftrightarrow \llbracket \mathtt{p} \rrbracket = \llbracket \mathtt{q} \rrbracket \ \ \mathrm{and} \ \mathtt{cplx}(\mathtt{p}) = \Theta(\mathtt{cplx}(\mathtt{q})) \quad \ (\text{``clique''})$$

Theorem (Asperti, '08)

Any non-trivial set of programs which is the union of classes of \mathfrak{A} is undecidable.

The set of programs computing the sorting function in polynomial time.

A first intensional version of Rice's Theorem.

$$\mathtt{p}\mathfrak{A}\mathtt{q} \Leftrightarrow \llbracket\mathtt{p}\rrbracket = \llbracket\mathtt{q}\rrbracket \ \ \mathrm{and} \ \mathtt{cplx}(\mathtt{p}) = \Theta(\mathtt{cplx}(\mathtt{q})) \quad \ (\text{``clique''})$$

Theorem (Asperti, '08)

Any non-trivial set of programs which is the union of classes of \mathfrak{A} is undecidable.

The set of programs computing the sorting function in polynomial time.

Proof: Same as Rice!

p not equivalent to infinite loop. q'(x) = q(0); p(x).

A first intensional version of Rice's Theorem.

$$\mathtt{p}\mathfrak{A}\mathtt{q} \Leftrightarrow \llbracket \mathtt{p} \rrbracket = \llbracket \mathtt{q} \rrbracket \ \ \mathrm{and} \ \ \mathtt{cplx}(\mathtt{p}) = \Theta(\mathtt{cplx}(\mathtt{q})) \quad \ (\text{``clique''})$$

Theorem (Asperti, '08)

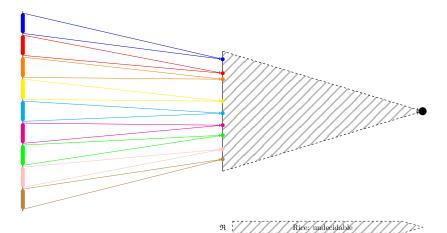
Any non-trivial set of programs which is the union of classes of \mathfrak{A} is undecidable.

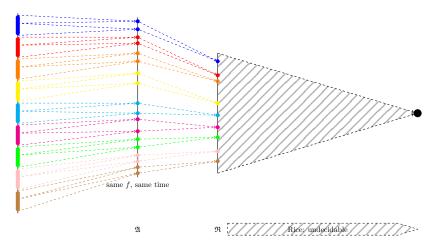
The set of programs computing the sorting function in polynomial time.

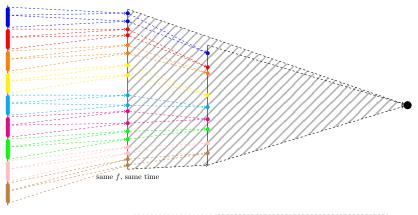
Proof: Same as Rice!

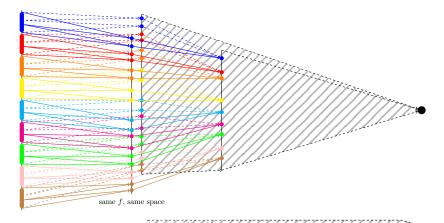
p not equivalent to infinite loop. q'(x) = q(0); p(x).

If q(0) terminates, it does so with a **fixed** complexity so p and q' have the same complexity up to an additive factor.

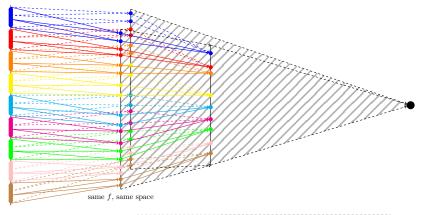


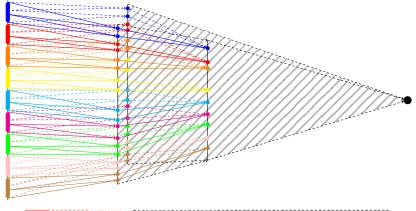


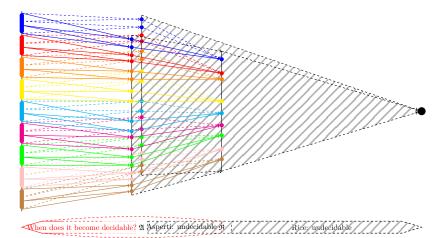


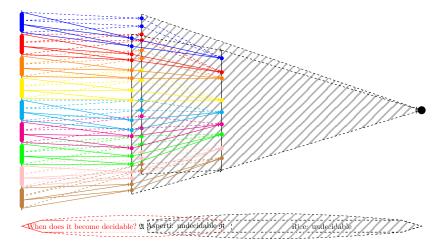


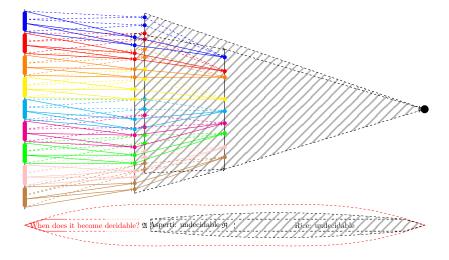
4日 > 4日 > 4目 > 4目 >





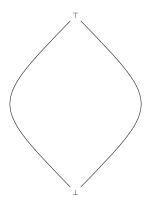






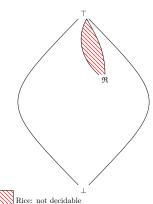
The equivalences lattice Not the subject of today's talk!

- The set of all equivalences is a complete lattice.
- \perp : equality, \top : one class with everything.



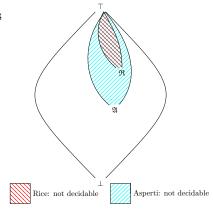
The equivalences lattice Not the subject of today's talk!

- The set of all equivalences is a complete lattice.
- \perp : equality, \top : one class with everything.
- Rice: nothing in the principal filter at \Re is decidable.



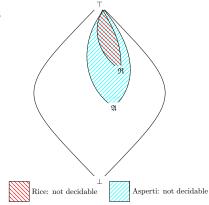
The equivalences lattice Not the subject of today's talk!

- The set of all equivalences is a complete lattice.
- \perp : equality, \top : one class with everything.
- Rice: nothing in the principal filter at \mathfrak{R} is decidable.
- Asperti: nothing in the principal filter at A is decidable.



The equivalences lattice Not the subject of today's talk!

- The set of all equivalences is a complete lattice.
- \perp : equality, \top : one class with everything.
- Rice: nothing in the principal filter at ℜ is decidable.
- Asperti: nothing in the principal filter at A is decidable.



Complicated and interesting structure.

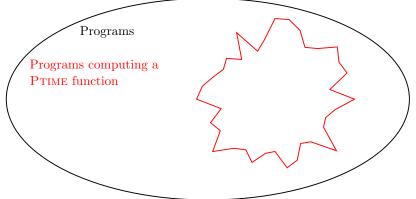
Ongoing works with J. G. Simonsen and J. Avery.

First generalisation

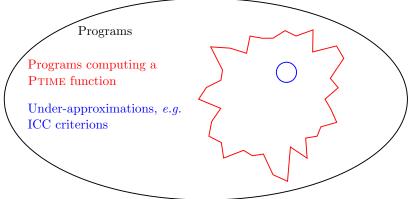
Today's talk

Two generalisations of Rice's Theorem relaxing the extensionality condition.

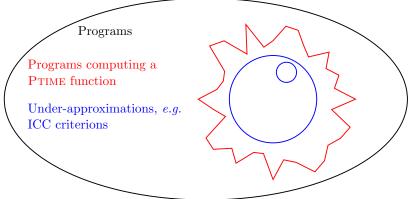
- lacktriangle Rather than searching equivalences more precises than \mathfrak{R} , keep it but consider sets that are not just union of classes.
- 2 Try the same approach with a wide range of others equivalences.



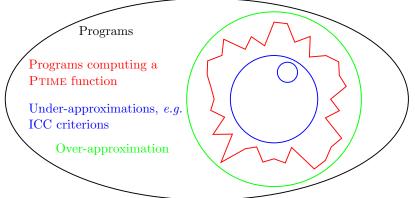
is **not** PPTIME, the set of polytime **programs**. It is undecidable by Rice's Theorem.



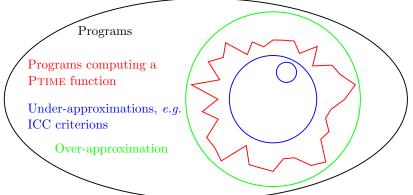
• is an ICC criterion if it captures one program for each PTIME function.



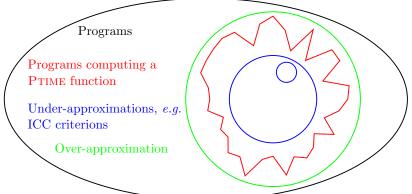
• is an ICC criterion if it captures one program for each PTIME function.



Can ○ be decidable and "small enough"?



Can \bigcirc be decidable and "small enough"? Upper bound: $p \in \bigcirc \Rightarrow [p] \in PTIME$.



Can \bigcirc be decidable and "small enough"? Upper bound: $p \in \bigcirc \Rightarrow [p] \in PTIME$. Lower bound: $p \notin \bigcirc \Rightarrow [p] \notin PTIME$.

Vocabulary

A set of programs is:

- non-trivial if it is neither empty, nor the set of all programs.
- extensional if it is the union of classes of \Re ;
- partially extensional (for F) if it contains all the programs with $[\![p]\!] \in F$ (over approximation).
- extensionally complete (for F) if it contains one program for each $f \in F$.
- extensionally sound (for F) if it contains only programs with $[\![p]\!] \in F$ (under approximation).
- an ICC characterisation (of F) if it is both extensionally sound and complete for F.
- extensionally universal if it is extensionally complete for the set of computable partial functions.

Theorem

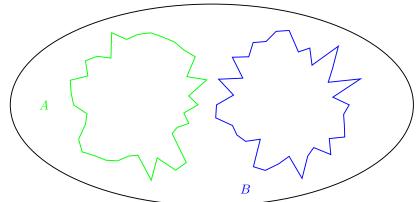
Any non-empty, partially extensional and decidable set is extensionally universal.

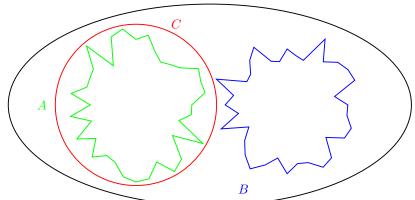
Theorem

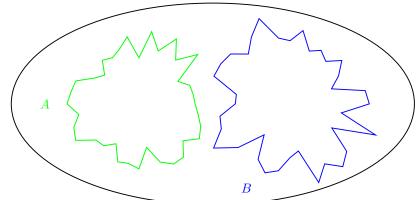
Any non-empty, partially extensional and decidable set is extensionally universal.

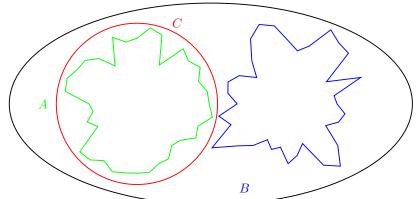
Definition

Two sets A and B are recursively separable if there exists C decidable with $A \subset C$ and $B \cap C = \emptyset$.









Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Definition

Two sets A and B are recursively separable if there exists C decidable with $A \subset C$ and $B \cap C = \emptyset$.

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Definition

Two sets A and B are recursively separable if there exists C decidable with $A \subset C$ and $B \cap C = \emptyset$.

"Decidable over-approximation of A that does not intersect B."

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Definition

Two sets A and B are recursively separable if there exists C decidable with $A \subset C$ and $B \cap C = \emptyset$.

"Decidable over-approximation of A that does not intersect B."

$$\begin{array}{l} A = \{\, \mathbf{p} \, : \, \llbracket \mathbf{p} \rrbracket \, (0) = 0 \,\} \\ B = \{\, \mathbf{p} \, : \, \llbracket \mathbf{p} \rrbracket \, (0) \notin \{0, \bot\} \,\} \end{array} \right\} \ \text{recursively inseparable}$$

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

$$\begin{array}{l} A = \{\, \mathbf{p} \, : \, \llbracket \mathbf{p} \rrbracket \, (0) = 0 \,\} \\ B = \{\, \mathbf{p} \, : \, \llbracket \mathbf{p} \rrbracket \, (0) \notin \{0, \bot\} \,\} \end{array} \right\} \ \text{recursively inseparable}$$

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Example

$$A = \{ \mathbf{p} : [\![\mathbf{p}]\!] (0) = 0 \}$$

$$B = \{ \mathbf{p} : [\![\mathbf{p}]\!] (0) \notin \{0, \bot\} \}$$
 recursively inseparable

Proof.

 \mathcal{P} decidable, partially extensional for [p], \mathcal{P} contains no program for [q].

$$r'(x) = if r(0)=0 then p(x) else q(x)$$

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Example

$$A = \{ p : [p](0) = 0 \}$$

$$B = \{ p : [p](0) \notin \{0, \bot\} \}$$
 recursively inseparable

Proof.

 \mathcal{P} decidable, partially extensional for $[\![p]\!]$, \mathcal{P} contains no program for $[\![q]\!]$.

r'(x) = if r(0)=0 then p(x) else q(x)
$$[r](0) = 0 \Rightarrow r' \in \mathcal{P}$$
 $[r](0) \notin \{0, \bot\} \Rightarrow r' \notin \mathcal{P}$

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Example

$$A = \{ \mathbf{p} : [\![\mathbf{p}]\!] (0) = 0 \}$$

$$B = \{ \mathbf{p} : [\![\mathbf{p}]\!] (0) \notin \{0, \bot\} \}$$
 recursively inseparable

Proof.

 \mathcal{P} decidable, partially extensional for [p], \mathcal{P} contains no program for [q].

$$\begin{array}{ll} \texttt{r'(x)} = \texttt{if r(0)=0 then p(x) else q(x)} \\ \llbracket \texttt{r} \rrbracket (0) = 0 \Rightarrow \texttt{r'} \in \mathcal{P} \\ \llbracket \texttt{r} \rrbracket (0) \notin \{0, \bot\} \Rightarrow \texttt{r'} \notin \mathcal{P} \end{array} \right\} \text{ recusively separated by } \mathcal{P}.$$

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Example

A decidable set containing all programs for the identity also contains programs for constant functions, the infinite loop, sorting, SAT, deciding correctness of MELL proof nets, . . .

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Example

A decidable set containing all programs for the identity also contains programs for constant functions, the infinite loop, sorting, SAT, deciding correctness of MELL proof nets, . . .

Example (Rice)

Any non-empty extensional set is partially extensional. Hence, if decidable, must be extensionally universal, and thus trivial.

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Example

Any computable function is computed by infinitely many programs: a finite set is decidable, hence if partially extensional would be extensionally universal.

Theorem

Any non-empty, partially extensional and decidable set is extensionally universal.

Example

Any computable function is computed by infinitely many programs: a finite set is decidable, hence if partially extensional would be extensionally universal.

Example

Any computable function is computed by programs of arbitrarily large size.

Theorem

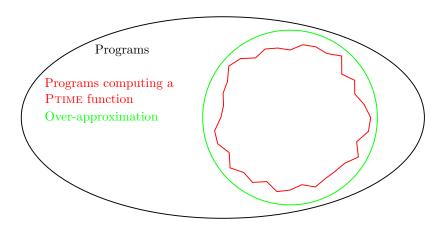
Any non-empty, partially extensional and decidable set is extensionally universal.

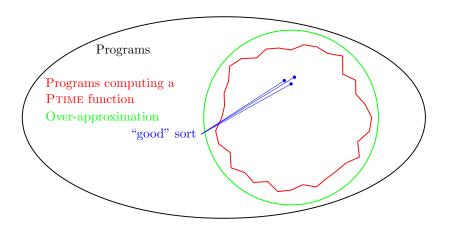
Theorem

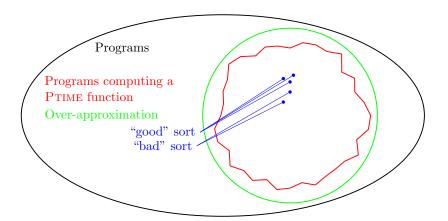
Any non-empty, partially extensional and decidable set is extensionally universal.

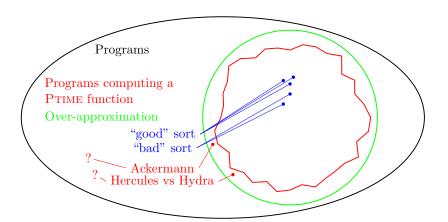
Example

Any decidable set containing all programs for PTIME functions contains programs for any computable function.

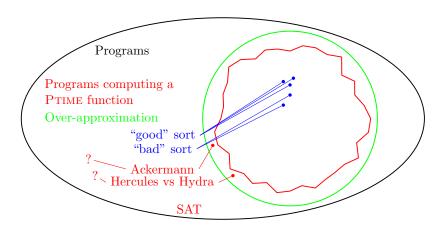




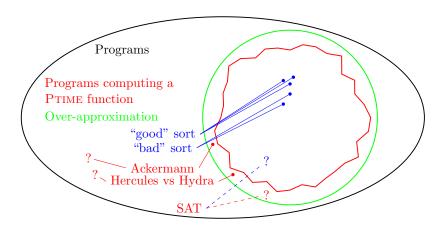




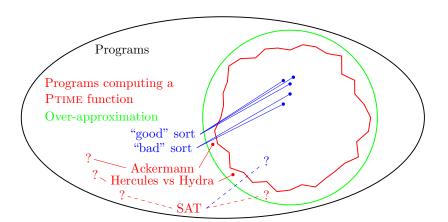
Example



Example



Example



Second generalisation

Definition

 (S, \approx) : a set and an equivalence. switching family compatible with \approx : a family $I = (\pi_s)_{s \in S}$ of computable total functions $\pi_s : S \times S \to S$

Definition

 (S, \approx) : a set and an equivalence. switching family compatible with \approx : a family $I = (\pi_s)_{s \in S}$ of computable total functions $\pi_s : S \times S \to S$

$$\pi_s(x,y) \approx \begin{cases} x \\ y \\ ??? \end{cases}$$

Definition

 (S, \approx) : a set and an equivalence. switching family compatible with \approx : a family $I = (\pi_s)_{s \in S}$ of computable total functions $\pi_s : S \times S \to S$

$$\pi_s(x,y) \approx \left\{ \begin{array}{l} x \\ y \\ ???? \end{array} \right\}$$
 for all or some x,y .

Definition

 (S, \approx) : a set and an equivalence. switching family compatible with \approx : a family $I = (\pi_s)_{s \in S}$ of computable total functions $\pi_s : S \times S \to S$ $A_I = \{ s \in S : \forall x, y.\pi_s(x, y) \approx x \}$ $B_I = \{ s \in S : \forall x, y.\pi_s(x, y) \approx y \}$

$$\pi_s(x,y) \approx \left\{ \begin{array}{l} x \\ y \\ ???? \end{array} \right\}$$
 for all or some x,y .

Definition

 (S, \approx) : a set and an equivalence. switching family compatible with \approx : a family $I = (\pi_s)_{s \in S}$ of computable total functions $\pi_s : S \times S \to S$ $A_I = \{ s \in S : \forall x, y.\pi_s(x, y) \approx x \}$ $B_I = \{ s \in S : \forall x, y.\pi_s(x, y) \approx y \}$ recursively inseparable.

$$\pi_s(x,y) \approx \left\{ \begin{array}{l} x \\ y \\ ??? \end{array} \right\}$$
 for all or some x,y .

Definition

```
(S, \approx): a set and an equivalence.

switching family compatible with \approx: a family I = (\pi_s)_{s \in S} of computable total functions \pi_s : S \times S \to S

A_I = \{ s \in S : \forall x, y.\pi_s(x, y) \approx x \}

B_I = \{ s \in S : \forall x, y.\pi_s(x, y) \approx y \} recursively inseparable.
```

Example

Projections can form a switching family.

Definition

 (S, \approx) : a set and an equivalence. switching family compatible with \approx : a family $I = (\pi_s)_{s \in S}$ of computable total functions $\pi_s : S \times S \to S$ $A_I = \{ s \in S : \forall x, y.\pi_s(x, y) \approx x \}$ $B_I = \{ s \in S : \forall x, y.\pi_s(x, y) \approx y \}$ recursively inseparable.

Example

Projections can form a switching family.

Example (Standard switching family)

 $r'(x) = \pi_r(p,q)(x) = \text{if } r(0)=0 \text{ then } p(x) \text{ else } q(x).$ Compatible with \mathfrak{R} (and many others).

Vocabulary

 \mathfrak{P} : equivalence on programs. A set of programs is:

- extensional compatible if it is the union of blocks of \mathfrak{P} ;
- partially extensional partially compatible if it contains one block of \mathfrak{P} ;
- extensionally complete complete (for a set of blocks) if it intersects each of these;
- extensionally sound
- an ICC characterisation
- extensionally universal universal if it interesects each single block of \mathfrak{P} .

Second Result

Theorem

Let \mathfrak{P} be a partition of a set S and $I = (\pi_s)_{s \in S}$ be a switching family compatible with it.

Any non-empty decidable partially compatible subset of S is universal.

Second Result

Theorem

Let \mathfrak{P} be a partition of a set S and $I = (\pi_s)_{s \in S}$ be a switching family compatible with it.

Any non-empty decidable partially compatible subset of S is universal.

Proof.

$$\begin{aligned} [x] \subset S', & [y] \cap S' = \emptyset & s' = \pi_s(x, y) \\ \pi_s(x, y) \mathfrak{P} x \Rightarrow s' \in S' \\ \pi_s(x, y) \mathfrak{P} y \Rightarrow s' \notin S' \end{aligned} \right\} \text{ recursively inseparable.}$$

Theorem

Any non-empty decidable partially compatible set of programs is universal.

Theorem

Any non-empty decidable partially compatible set of programs is universal.

Example (Complexity)

 Φ : complexity measure (Blum). $p \equiv_{\Phi} q \text{ iff } \Phi_p \in \Theta(\Phi_q)$.

The standard switching family is compatible with \equiv_{Φ} . $r'(x) = \pi_r(p,q)(x) = \text{if } r(0)=0 \text{ then } p(x) \text{ else } q(x).$ when r(0) terminates it does so with a constant complexity.

Any non-empty decidable set of programs partially compatible with \equiv_{Φ} is universal and must contain programs of arbitrarily high complexity.

Theorem

Any non-empty decidable partially compatible set of programs is universal.

Theorem

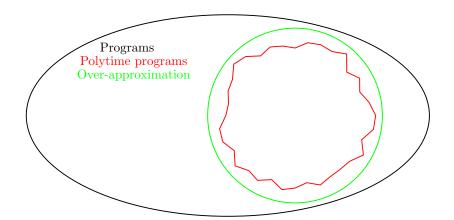
Any non-empty decidable partially compatible set of programs is universal.

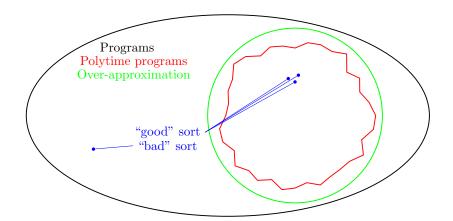
Example (Polynomial time)

 Φ : time complexity. PPTIME: set of polytime *programs* (**not** all programs computing PTIME functions); it is undecidable and partially compatible with \equiv_{Φ} .

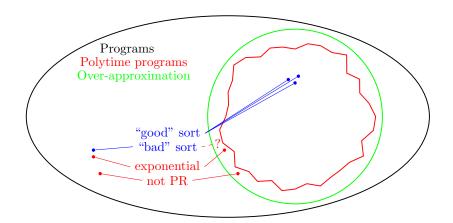
Any decidable set of programs including all polytime programs also includes programs of arbitrarily high time complexity.

Any attempt at finding a decidable over-approximation of PPTIME is doomed to also contain many extremely "bad" programs.









Theorem

Any non-empty decidable partially compatible set of programs is universal.

Theorem

Any non-empty decidable partially compatible set of programs is universal.

Example (Linear space (not closed under composition))

 Φ : space complexity. PLINSPACE: set of *programs* computing in linear space; it is partially compatible with \equiv_{Φ} .

Any decidable set of programs including all linear space programs also contains programs of arbitrarily high space complexity.

Example (Asperti-Rice)

Theorem

Any non-empty decidable partially compatible set of programs is universal.

Example (Asperti-Rice)

Theorem

Any non-empty decidable partially compatible set of programs is universal.

Example (Asperti-Rice)

The standard switching family is compatible with $\mathfrak{A} = \mathfrak{R} \cap \equiv_{\Phi}$.

Any decidable non-empty set partially compatible with $\mathfrak A$ is universal.

Especially, the only decidable unions of blocks of $\mathfrak A$ are the trivial ones.

Going further

Example (Spambot)

 $p \equiv q$ if they send the same number of mails (**not** a Blum complexity measure). The standard switching family is compatible with it.

Any decidable set containing all the programs that never send mail also contains spambots.

Going further

Example (Spambot)

 $p \equiv q$ if they send the same number of mails (**not** a Blum complexity measure). The standard switching family is compatible with it.

Any decidable set containing all the programs that never send mail also contains spambots.

Other equivalences?

Going further

Example (Spambot)

 $p \equiv q$ if they send the same number of mails (**not** a Blum complexity measure). The standard switching family is compatible with it.

Any decidable set containing all the programs that never send mail also contains spambots.

Other equivalences?

Other switching families?