More intensional versions of Rice’s Theorem

Jean-Yves Moyen* Jakob Grue Simonsen'
Jean-Yves.Moyen@univ-parisl3.fr simonsen@diku.dk

Department of Computer Science, University of Copenhagen (DIKU)
Njalsgade 128-132, 2300 Copenhagen S, Denmark

Abstract

Classic results in computability theory are almost invariably extensional: they concern the be-
haviour of partial recursive functions rather than the programs computing them. We provide gener-
alised versions of two classic results Rice’s Theorem and the Rice-Shapiro Theorem and demonstrate
how they may be applied to study intensional properties such as time and space complexity. In
particular we obtain simple proofs of several striking negative results about overapproximations of
intensional properties, for example that any decidable property of programs that (strictly) contains
the set of polytime program must contain programs of arbitrarily high time complexity.

1 Introduction

A cornerstone of computability theory is Rice’s Theorem [Ric53]: any non-trivial extensional set of
programs is undecidable (extensionality roughly means that the set depends only on the partial functions
computed by the program). This very generic formulation allows to prove undecidability of a variety of
sets e.g. “programs that, on input 0, return 42", “programs that compute a bijection” or “programs that
compute a non-total function”.

Rice’s Theorem showcases a fundamental dichotomy between programs and the partial functions
they compute: it gives an undecidability criterion for sets of programs, but these sets are defined by
the function computed by the programs. Underlying this dichotomy and the Theorem is the notion
of extensional equivalence “two programs are equivalent iff they compute the same function”. Rice’s
Theorem basically tells us that this equivalence is undecidable.

Even after 60 years, scant research has been made in intensional analogues of Rice’s Theorem, i.e.
undecidability results concerning how programs compute rather than what they compute. One exception
is Asperti’s work on complezity cliques [Asp08]. Roughly, Asperti refines the extensional equivalence
relation into the equivalence relation “two programs are equivalent if they compute the same function
with comparable (up to big-©) complexity” and then states the corresponding result that this equivalence
relation is also undecidable.

In this work, we generalise Rice’s Theorem in a different direction. Rather than trying to refine the
extensional equivalence relation and find other, more precise, ones that are still undecidable, we will first
lift the strict extensionality of sets and then generalise to any kind of equivalence between programs. The
first generalisation is to remove the strict extensionality of the sets considered. We will only ask that the
studied sets accept all the programs computing one given function, but we put no condition on programs
computing other functions (they may or not be in the set). This allows to consider more intensional
sets of programs. The second generalisation is to completely change the equivalence relations considerd.
We must still impose very general conditions on such relations (via so-called switching families). This
allows both to refine the equivalence (i.e., Asperti’s Result fits perfectly in the generalised setting) and
to consider completely different equivalences.

Our work has implications for Implicit Computational Complexity (ICC). Classical ICC provides
sound but incomplete criteria for a given property (such as computing a PTIME function). The criteria

*Supported by the Marie Sklodowska—Curie action “Walgo”, program H2020-MSCA-IF-2014, number 655222
fPartially supported by the Danish Council for Independent Research Sapere Aude grant “Complexity via Logic and
Algebra” (COLA).

Jean-Yves.Moyen@univ-paris13.fr
simonsen@diku.dk

are sound in the sense that being accepted certifies the complexity bound, but incomplete in the sense
that some “good” programs are nonetheless rejected (but extensional completeness is usually required,
e.g. every PTIME function is computed by some program accepted, but not all programs running in
polynomial time are accepted). That is, a classical ICC criterion admit false negatives but guarantees
the absence of false positives. In this sense, an ICC criterion can be seen as a certificate of good behaviour
by the program. It is an under-approximation of the target set.

Consider the non-classical view: what if we try to characterise over-approximations rather than
under-approximations? From an ICC point of view, that means a criterion that accepts false positives
but no false negatives. Every program in the target set should be recognised but we will also accept some
“bad eggs” in the process. The hope being that there will be few of them and that they won’t be too
bad. Typically, it would make sense to accept all the polytime programs plus “a few” exponential time
ones. As long as there’s not too many exponential ones and they’re “only” exponential and not worse,
this is still interesting. Typically, most accepted programs would run fast (e.g., in a couple of minutes)
and some would be slower but not too slow.

Moreover, having over-approximation can be a good way to prove lower bounds on complexity. Clas-
sical complexity has been very good to provide upper bounds on complexity (e.g., SAT is in NP), but
is bad at providing lower bounds (thus making separation results between complexity classes hard to
prove). Classical ICC, via under-approximations, can only provide upper bounds: if the program is
accepted, then it is guaranteed to have complexity at most the one of the criterion, but if the program
is rejected, nothing is known. Having an over-approximation could help provide lower bounds: if the
program is rejected, then it is guaranteed to have a “bad” behaviour.

Howewver, our intensional versions of Rice’s Theorem will show that over-approximations are patently
not a viable path: There will, necessarily, always be many bad eggs and there will always be some
extremely bad ones.

2 Notations and Rice’s Theorem

We assume an unspecified, Turing-complete programming language, in the proofs we’ll use an informal
syntax for programs. We note [p] the function computed by a program p and conversely Py the set
of all programs computing function f. We define the extensional equivalence, or Rice’s equivalence, as
pRq < [p] = [q]-
We say that a set of programs P is
e non-trivial if it is neither empty, nor the set of all programs.
e crtensional if it is the union of classes of fR;
e partially extensional for a set of functions F' if it contains all the programs computing a function
in F': Pr C P (over approximation of Pr). It does not need to be extensional for other functions;
o cxtensionally complete for a set a functions F if it can computes all these functions: F' C [P];
e extensionally sound for a set a functions F' if it can compute only these functions: [P] C F' (under
approximation of Pr);
e an ICC characterisation of a set of functions F if it is both extensionally sound and complete for
F, i.e. it computes exactly these functions: [P] = F}
e extensionally universal if it is extensionally complete for the set of computable partial functions
(each computable partial function is computed by at least one program in P).
Note that any extensionally universal set of programs must be infinite as there are infinitely many
computable functions.

Theorem 2.1 (Rice[Ric53]). Any (non-trivial) extensional set of programs is undecidable.

Sketch of proof. Let p be in the set and suppose that the infinite loop isn’t. Consider the program q’ (x)
= q(0); p(x). It computes the same thing as p (and hence is in the set) iff q(0) terminates (and loops
otherwise), an undecidable property. O

Note for later reference, that Rice’s Theorem could equivalently be formulated as: “Every decidable
extensional set of programs is trivial”.

3 The Rice and Rice-Shapiro Theorems, intensionally

We now provide intensional versions of two classic results; the proofs use simple tools from classical
recursion theory, but are different from the proofs of the classical extensional versions.

3.1 Rice, intensional version

Definition 3.1 (Recursively separable). Two sets A and B are said to be recursively separable (a concept
due to Smullyan [Smu58|) if there is a decidable set C such that A C C and B()C =). The sets A and
B are said to be recursively inseparable if they are not recursively separable.

That is, C may overapproximate A, but will never contain elements of B. A classical example of
recursively inseparable sets (see [Pap94], Section 3.3) is:

Lemma 3.2. Let A={p : [p](0)=0} and B={p : [p](0) ¢ {0, L}}. They are recursively insep-
arable.

Our first generalisation of Rice’s Theorem is to replace the “extensional” condition by partial exten-
sionality.

Theorem 3.3. Any non-empty decidable partially extensional set of programs is extensionally universal.

That is, any decidable over-approximation of an extensional set of programs contains at least one
program for any computable partial function. Among other, it must contain at least one program that
always loops. Thus, for example, a decidable set of programs capturing all the programs that compute
the constant function — 0 must also capture (at least) one program that always loops. There is no
hope of reaching intensional completeness and keeping extensional soundness.

Note that, contrary to Rice’s Theorem, we only require the set of program to be non-empty rather
than non-trivial. Indeed, the trivial set of all programs is certainly decidable, partially extensional and
extensionally universal.

Sketch of proof. Suppose that the set is partially extensional for [p] but contains no program computing
[a]. Consider program r’(x) = if r(0)=0 then p(x) else q(x). It isin the set if r(0) = 0 and out
if r(0) terminates on another value, thus deciding the set would recursively separate A and B above. [

Corollary 3.4 (Rice’s Theorem). Any (non-trivial) extensional set of programs is undecidable.
Sketch of proof. An extensional and extensionally universal set must be the set of all programs. O

This Theorem has as immediate corollaries several folklore results that are usually explained by simple
ad-hoc arguments (e.g. “adding arbitrarily many dummy x:=x instructions”)—the theorem provides a
uniform means of proving these. It is also more general than Rice’s Theorem.

Corollary 3.5 (Many programs). For any computable function f, there are infinitely many programs
computing it.

Proof. If Py is finite, it is decidable. By construction, it is partially extensional for f, hence by the
Theorem it must be extensionally universal and thus infinite, an absurdity. O

Note that this is a bit less trivial than what it appears: The corollary states that it is not possible
to design a programming language with only finitely many possible implementations of a given function
without losing Turing completeness.

Corollary 3.6 (Arbitrary size). For any N, every computable function is computable by a program of
size larger than N.

Proof. Let P={p : |p| < N }. It is finite, hence by previous Corollary cannot contain all the programs
computing a given function. O

3.2 Rice-Shapiro, intensional version
We can apply the same idea to the Rice-Shapiro Theorem Theorem [MS55, Sha56]:

Theorem 3.7 (Rice-Shapiro). Let F' be a recursively enumerable set of computable functions. f € F &
there exists g € F with finite domain D such that ¥d € D, f(d) = g(d).

The “power” of this Theorem comes from the following construction: Suppose that f is in F. As
f € F, there exists g with finite domain D in F that agrees on f on this finite domain. Now, consider
any function f’ that also agrees on g on this finite domain. Using the < direction of the Theorem,
f' € F. Thus, any function that agrees with f on a finite domain D must be in F' and the only thing
one can do to compare functions (especially to determine whether a given program computes a given
function or not) is to check a finite number of inputs.

The intensional version is:

Theorem 3.8. Let P be a recursively enumerable partially extensional set of programs. Then, for any
computable function f, there exists a program p € P such that [p] differs from f only on finitely many
nputs.

Note that P here is recursively enumerable and not necessarily decidable as in Rice’s Theorem. For
example, if P is a recursively enumerable set of programs partially extensional for a total function (e.g.,
the constant function z — 0), then by choosing f to be the totally undefined function, we can conclude
that P must contain a program that loops on all but finitely many inputs, by choosing f : +— 1 we can
conclude that P must also contain a program that return 1 on all but finitely many inputs.

4 Beyond Rice’s Theorem

The second, and broader, generalisation we make is to choose other equivalence relations than the Rice
relation fR.

4.1 Switching families

Definition 4.1. Let S be a set and = an equivalence relation on S. A switching family compatible
with ~ is a family I = (7m;)ses of computable total functions 75 : S x S — S such that the sets
Ar={se€S : Va,yms(x,y) =z} and By ={s €S : Va,ynms(z,y) =~ y} are recursively inseparable.

The definition implies that neither A; nor By is decidable. Also, there may be elements in S neither
in Ay nor in By such that 74(x, y) is not always equivalent to x and not always equivalent to y. Note that
the classical projections 71 (x,y) = = and ma(z,y) = y are switching functions but in general switching
functions do not need to ignore one of their arguments.

The constructions of r’ in the proof of the Theorem 3.3 constitutes a switching family with r’(x) =
m(p,q)(x) = if r(0) then p(x) else q(x). We call this the standard switching family.

4.2 Rice’s Theorem, second generalisation

Let B = {P;1,Pa,...} be a partition of a set S and P be a subset of S, it is
e compatible with B if it is the union of classes of ;
e partially compatible for a block Py if it contains all the elements in that block: P, C P. Note that
it does not need to be compatible for other blocks;
o complete for a set of blocks Py, ,Px,, ... if it contains at least one element of each of these blocks:
P ﬂ Pki 7& (2)7

e universal if it is complete for P itself: it contains at least one element in each block of the partition.

Theorem 4.2. Let P be a partition of a set S and I = (74)ses be a switching family compatible with it.
Any non-empty decidable partially compatible subset of S is universal.

Sketch of proof. Let x be in a class included in the set and y be in a class that does not intersect it.
Consider s’ = ms(z,y). Deciding if s’ is in the set would recursively separate Ay and By, which is
impossible by definition of the switching family. O

4.3 Examples : computational complexity

We now come to our most striking example: any decidable set of of programs containing, for instance,
the polynomial-time programs, must contain programs of arbitrarily high complexity.

Example 4.3 (Complexity). Let ® be a complexity measure in the sense of Blum. Let =g be the
equivalence relation p =4 q iff &, € O(®).

The standard switching family is compatible with the above relation: when r(0) terminates it does
so with a constant complexity, whence the global complexity is the one of p (resp. q) up to a constant
additive factor.

Hence, any non-empty decidable set of programs partially compatible with =¢ is universal and must
contain programs of arbitrarily high complexity.

This example can be specialised by making the partially compatible set more precise. Note that
we consider sets of programs defined by properties of the programs themselves, and not necessarily by
properties of the computed function (i.e. this is not the set of programs computing PTIME functions as
it does not include inefficient programs that compute a “simple” function in a long time).

Example 4.4 (Polynomial time). Let PPTIME be the set of programs whose runtime is polynomial.
It is partially compatible with =g when ® is the usual time complexity. Thus, any decidable set that
includes all the programs computing in polynomial time must also include programs of arbitrarily high
time complexity. Including not only exponential programs but also non primitive recursive ones and
even non multiple recursive ones.

Any attempt at finding a decidable over-approximation of PPTIME is doomed to also contain many
extremely “bad” programs.

Example 4.5 (Linear space). Let PLINSPACE be the set of programs computing in linear space. It
is partially compatible with =¢ when @ is the usual space complexity. Thus, any decidable set that
contains PLINSPACE must also contains programs of arbitrarily high space complexity.

Thus, even for sets not closed under composition, over-approximations cannot both be decidable and
contain only programs of restricted space complexity.

Example 4.6 (Asperti-Rice, [Asp08]). Let 2 be the equivalence relation p2lq iff ([p] = [q] and @, €
®(<I>q)). The standard switching family is compatible with it (seeing relations as subset of couples, we
have 2l = (R[) =o), the standard switching family being compatible with both).

Hence, any non-empty decidable set of programs partially compatible with 2 is universal. This
generalises Asperti’s result that the only decidable compatibles sets (i.e. “Complexity cliques” in his
formalism) are the trivial ones.

References

[Asp08] Andrea Asperti. The Intensional Content of Rice’s Theorem. In Proceedings of the 85th Annual
ACM SIGPLAN - SIGACT Symposium on Principles of Programming Languages (POPL 2008),
2008.

[MS55] John R. Myhill and John Cedric Shepherdson. Effective operations on partial recursive func-
tions. Zeitschrift fir mathematische Logik und Grundlagen der Mathematik, 1:310-317, 1955.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Ric53] Henry Gordon Rice. Classes of Recursively Enumerable Sets and Their Decision Problems.
Transactions of the American Mathemathical Society, 74:358-366, 1953.

[Sha56] Normann Shapiro. Degrees of computability. Transactions of the AMS, 82:281-299, 1956.

[Smu58] Raymond M. Smullyan. Undecidability and recursive inseparability. Zeitschrift fir mathema-
tische Logik und Grundlagen der Mathematik, 4(7-11):143-147, 1958.

	Introduction
	Notations and Rice's Theorem
	The Rice and Rice-Shapiro Theorems, intensionally
	Rice, intensional version
	Rice-Shapiro, intensional version

	Beyond Rice's Theorem
	Switching families
	Rice's Theorem, second generalisation
	Examples : computational complexity

