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Flips

A s asimple that transforms one combinatorial
structure into another

Many notions of flips: flips In , rotations in
sliding tokens on

Many variants, a lot of work, many open questions
| will show two examples, one positive, one negative, with many open questions
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Flips

Part |

Flips in Triangulations of Simple Polygons
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Flipping In Simple Polygons

Given: two triangulations T, and T,
of a simple polygon

Goal: transformT |ntoT by

canae  NP- complete'

Question: given T, and T,, what
IS the minimum number of flips
(the )
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Example
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Done!




Bounds on the Flip Distance

Convex Polygons: at most 2n — 10 flips.
In general: Q(n?) flips necessary.

Example: the double chain; a special polygon on 2n vertices.
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Double Chains as Gadgets

One additional vertex decreases the flip distance.







Double Chains as Gadgets

Two facts about extreme triangulations [Lubiw, Pathak 2012]:

point in red region: flip distance is exactly 4n — 4.

no point in green region: flip distance is exactly (n — 1)~
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Rectilinear Steiner Arborescence

Given: N sinks on grid,

()
>

. monotone paths

on grid from origin to sinks A

()
N

N\

W/
Question: exists arborescence Q___T_<

NN AN

of length at most k? L

O

|
NP-complete [Shi, Su, 2000] d|>—'—5—<
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Triangulations and Grid Paths

1 4
Triangulations of a special polygon correspond to x- and

-monotone grid paths from

A flip can move the head of the path.

F Wolfgang Mulzer — Flipping 13



Triangulations and Grid Paths

1 4
Triangulations of a special polygon correspond to x- and

-monotone grid paths from

A flip can change a bend of the path.
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The Reduction — Main Challenges

We want to reduce to

How to represent sinks of the ?

How to relate flip distance to length of the ?
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C

Representing Sinks
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Representing Sinks

If the last edge of the path is at the sink, 4d — 4 flips suffice.

F Wolfgang Mulzer — Flipping

17



Source and Target Triangulation

One modified double chain in (1,1) position (grid path).

For each . a small double chain, in extreme position.

Lemma: Flip distance is short iff grid path visits all sites.
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The Reduction — Main Challenges

We want to reduce to

How to relate flip distance to length of the ?
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Flip Distance and RSA Length

Problem: chain flips are difficult to analyze

ldea: make grid path static

. all edges and cells covered

by the grid path during the traversal
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Flip Distance and RSA Length

Problem: chain flips are difficult to analyze

ldea: make grid path static

. all edges and cells covered
by the grid path during the traversal

1
1

Lemma: From each trace, we can obtain RSA of
comparable length.
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The Reduction — Main Challenges

We want to reduce to




Conclusion for Part |

IS , by a reduction from
Does there exist a ?
What about the case (probably hard)?

What about computing the
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of the flip graph?
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Flips

Part Il

Flipping Non-Crossing Paths
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Introduction

Question. Can every
Into each other by
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(edge flips)

be transformed
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Introduction

Question. Can every
Into each other by
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(edge flips)

be transformed
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Introduction

Question. Is the
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~(S) connected for every point set S?
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Introduction

Question. Is the

Types of Flips

P1
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~(S) connected for every point set S?

for evc%/ ,

Iff corresponding paths

Pn

pn—l

S,

P1

Pn
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Introduction

Question. Is the ~(S) connected for every point set S?

for eV(}/ , S,

Iff corresponding paths

Examples

>
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Introduction

Question. Is the ~(S) connected for every point set S?

for eV(}/ , S,

Iff corresponding paths
—vyes, ifSisin
Examples

>
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Results

Theorem 1: If the subgraph of F (S) induced by the set of plane spanning paths
with starting edge e is connected for any fixed (directed) edge e,
the flip-graph is also connected. ./L
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Results

Theorem 2: The flip-araph F (S) Is connected, if S IS In
position.
! this talk
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Generalized Double Circles (GDCs)

o o concave chains
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Generalized Double Circles (GDCs)

© 0¢g0°
o o 3 chains, i
O O w' ICe cream cone
@)
O .
4 chamg, | | O o o @)
2 opposite chains size 2 _
O o © 0 0 4
@) @)
o all chains size 3 0 g O
O O O O
o © double circle
@) O
o © o
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General Proof Strategy

uncrossed Hamilton cycle

Idea: Flip arbitrary path to a canonical path. (boundary edges)

canonical path: path consisting entirely of boundary edges.
Let P be a plane spanning path.
Iteratively flip P to a canonical path by:

the number of boundary edges

the overall (combinatorial) of P.
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General Proof Strategy

Idea: Flip arbitrary path to a canonical path.

canonical path: path consisting entirely of boundary edges.
Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

the number of boundary edges

the overall (combinatorial) of P.
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General Proof Strategy

b, = # boundary edges
Idea: Flip arbitrary path to a canonical path. LR :

canonical path: path consisting entirely of boundary edges.

. e
Let P be a plane spanning path. \
S0

Iteratively flip P to a canonical path by:

the number of boundary edges

the overall (combinatorial of P. T .
( ) b, = # boundary edges

length(e) = min(b1,b>)
length(P ) =2_._plength(e)
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General Proof Strategy

Idea: Flip arbitrary path to a canonical path.

~=

canonical path: path consisting entirely of boundary edges.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

the number of boundary edges

the overall (combinatorial) of P.

length(e) = min(b1,b2)
length(P ) =2_._plength(e)
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General Proof Strategy

Idea: Flip arbitrary path to a canonical path.

canonical path: path consisting entirely of boundary edges.
Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

the number of boundary edges

the overall (combinatorial) of P.

The proof uses a detailed case distinction to show that there
IS always an improving flip.
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Conclusion Part Il

*  Flip connectivity for and
«  Sufficient condition to consider paths with
 For , the connectedness of the flip graph

« What is the of the flip graph?

Thank you
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point sets.
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