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A flip is a simple local operation that transforms one combinatorial

structure into another

Many notions of flips: flips in triangulations, rotations in binary search trees,

sliding tokens on graphs, …

Many variants, a lot of work, many open questions

I will show two examples, one positive, one negative, with many open questions
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Part I

Flips in Triangulations of Simple Polygons



Flipping in Simple Polygons
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Given: two triangulations T1 and T2 

    of a simple polygon

Goal: transform T1 into T2 by

  flipping one diagonal at a time

Can always be done in O(n2) flips

Question: given T1 and T2, what

  is the minimum number of flips

  (the flip distance)

NP-complete!
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flippablenot 

flippable

Example
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Example

Done!
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Bounds on the Flip Distance

Convex Polygons: at most 2n – 10 flips.

In general: (n2) flips necessary.

Example: the double chain; a special polygon on 2n vertices.

xnx1 x2

y1

y2 yn
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A Lower Bound

Two extreme triangulations of the double chain.

[Hurtado, Noy, Urrutia, 1999]: flip distance is (n – 1)2.
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Double Chains as Gadgets

One additional vertex decreases the flip distance.
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Double Chains as Gadgets

One additional vertex decreases the flip distance.4n – 4 flips instead of (n – 1)2.
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Double Chains as Gadgets

Two facts about extreme triangulations [Lubiw, Pathak 2012]:

x1 x2

y1

y2

point in red region: flip distance is exactly 4n – 4.

no point in green region: flip distance is exactly (n – 1)2.
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Rectilinear Steiner Arborescence

Given: N sinks on n x n grid, k

Arborescence: monotone paths

  on grid from origin to sinks

Question: exists arborescence

  of length at most k? 

NP-complete [Shi, Su, 2000]
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Triangulations and Grid Paths

3
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Triangulations of a special polygon correspond to x- and 

  y-monotone grid paths from (1,1).

A flip can move the head of the path.
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Triangulations and Grid Paths

3

1
1 4
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y3

x1 x4

Triangulations of a special polygon correspond to x- and 

  y-monotone grid paths from (1,1).

A flip can change a bend of the path.
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The Reduction – Main Challenges

3
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How to represent sinks of the RSA?

How to relate flip distance to length of the RSA?

We want to reduce RSA to PolyFlip.
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Representing Sinks
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Representing Sinks

1
1

5

5

x5

y5

If the last edge of the path is at the sink, 4d – 4 flips suffice.
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Source and Target Triangulation

One modified double chain in (1,1) position (grid path).

For each RSA-site: a small double chain, in extreme position.

Lemma: Flip distance is short iff grid path visits all sites.
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The Reduction – Main Challenges
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How to represent sinks of the RSA?

How to relate flip distance to length of the RSA?

We want to reduce RSA to PolyFlip.
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Flip Distance and RSA Length

1
1

Problem: chain flips are difficult to analyze

Idea: make grid path static

Trace: all edges and cells covered

 by the grid path during the traversal
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Flip Distance and RSA Length

1
1

Problem: chain flips are difficult to analyze

Idea: make grid path static

Trace: all edges and cells covered

 by the grid path during the traversal

Lemma: From each trace, we can obtain RSA of 

  comparable length.
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The Reduction – Main Challenges

3
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1 4
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x1 x4

How to represent sinks of the RSA?

How to relate flip distance to length of the RSA?

We want to reduce RSA to PolyFlip.
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Conclusion for Part I

Does there exist a PTAS?

What about the convex case (probably hard)? 

PolyFlip is NP-complete, by a reduction from RSA.

What about computing the diameter of the flip graph?



Flips
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Part II

Flipping Non-Crossing Paths
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Introduction

Question. Can every plane straight-line paths be transformed 

into each other by flipping edges?

?

(edge flips)
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Introduction

Question. Can every plane straight-line paths be transformed 

into each other by flipping edges?

?

(edge flips)
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Introduction

Question. Is the flip-graph F(S) connected for every point set S?
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Introduction

Question. Is the flip-graph F(S) connected for every point set S?

• vertex for every plane, straight-line spanning path on S,

• edge iff corresponding paths differ by a single flip.

Types of Flips

p1

pn

pn−1
p1

pn
p1

pn
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Introduction

Question. Is the flip-graph F(S) connected for every point set S?

• vertex for every plane, straight-line spanning path on S,

• edge iff corresponding paths differ by a single flip.

Examples

S = S =
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Introduction

Question. Is the flip-graph F(S) connected for every point set S?

• vertex for every plane, straight-line spanning path on S,

• edge iff corresponding paths differ by a single flip.

Examples

S = S =

yes, if S is in convex position [Akl, Islam, Meijer 2007]
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Results

Theorem 1: If the subgraph of F (S) induced by the set of plane spanning paths 

with starting edge e is connected for any fixed (directed) edge e, 

the flip-graph is also connected.
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Results

Theorem 2: The flip-graph F (S) is connected, if S is in wheel or 

generalized double circle (GDC) position.

this talk
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Generalized Double Circles (GDCs)

concave chains
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Generalized Double Circles (GDCs)

3 chains, 

2 chains size 2 ice cream cone

double chain

4 chains, 

2 opposite chains size 2

double circle

all chains size 3
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General Proof Strategy

canonical path: path consisting entirely of boundary edges.

Idea: Flip arbitrary path to a canonical path.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

(i) increasing the number of boundary edges

(ii) decreasing the overall (combinatorial) length of P .

uncrossed Hamilton cycle 

(boundary edges)
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General Proof Strategy
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General Proof Strategy

canonical path: path consisting entirely of boundary edges.

Idea: Flip arbitrary path to a canonical path.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

(i) increasing the number of boundary edges

(ii) decreasing the overall (combinatorial) length of P .

e

b1 = # boundary edges

b2 = # boundary edges

length(e) = min(b1,b2)

length(P ) =ePlength(e)
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General Proof Strategy

canonical path: path consisting entirely of boundary edges.

Idea: Flip arbitrary path to a canonical path.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

(i) increasing the number of boundary edges

(ii) decreasing the overall (combinatorial) length of P .
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length(P ) =ePlength(e)



Wolfgang Mulzer – Flipping 39

General Proof Strategy

canonical path: path consisting entirely of boundary edges.

Idea: Flip arbitrary path to a canonical path.

Let P be a plane spanning path.

Iteratively flip P to a canonical path by:

(i) increasing the number of boundary edges

(ii) decreasing the overall (combinatorial) length of P .

The proof uses a detailed case distinction to show that there 

is always an improving flip.
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Conclusion Part II

• Flip connectivity for wheel and generalized double circle point sets.

• Sufficient condition to consider paths with fixed starting edge.

• For general point sets, the connectedness of the flip graph remains open.

• What is the diameter of the flip graph?

Thank you
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