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Abstract

We show that, as a consequence of a new result of Pér on universal Tverberg partitions, any
large-enough set P of points in R? has a (d + 2)-sized subset whose Radon point has half-space
depth at least ¢g4 - | P|, where ¢4 € (0,1) depends only on d. We then give two applications of

this result. The first is to computing weak e-nets by random sampling. The second is to show
d
2

that given any set P of points in R? and a parameter € > 0, there exists a set of O (e_L J+1>

ng—dimensional simplices (ignoring polylogarithmic factors) spanned by points of P such that
they form a transversal for all convex objects containing at least e - |P| points of P.
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1 Introduction

Radon’s lemma states that, given any set Q of (d+2) points in R?, there always exists a partition of
Q into two sets, say Q1 and )2, such that conv Q1 Nconv Qo # 0. Further, if @ is in general position,
then a dimension argument implies that such a partition {Q1, Q2}—called a Radon partition of
(Q—is unique and conv Q1 N conv Q2 consists of a single point, called the Radon point of Q) and
denoted by Radon Q.

In this paper we present an application of the following statement, which is one consequence of a
recent theorem of Pér (see [3]).

Lemma 1 (Proof in Section Section . For every d € N there is f(d) € N such that every set
P C R? of f(d) points in general position contains two disjoint sets A, B C P with |A| = d+2, |B| =
d+ 1 such that the Radon point of A is contained in conv B. Furthermore, the Radon partition of
A consists of two sets of sizes [%J +1 and {%1 + 1.

For some background on Lemma (1} we refer the reader to [4].

We use Lemma [I| to prove the following theorem. Given a set P of points in R?, the half-space
depth of a point ¢ € R? with respect to P is defined to be the minimum number of points of P
contained in any half-space containing .
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Theorem 2 (Proof in Section . For every d € N there is h(d) € N such that every set P of at
least h(d) points in R in general position contains a set P' C P of size (d+2) with Radon P’ being
contained in at least % vertex-disjoint simplices spanned by the points of P\ P'. In particular,

Radon P’ has half-space depth at least % with respect to P.

We expect that Theorem [2| will find further applications in algorithms, discrete and combinatorial
geometry and data analysis. Here we give two applications related to the computation of weak
e-nets.

Definition 3. Given a set P of points in R and a parameter € > 0, a set N C R? is a weak
e-net with respect to convex sets for P if for every convex set K with |K N P| > € |P|, we have
KNN#0.

Definition 4. Given positive integers d,p,q with p > q > L%J, let CHS(d, p,q) denote the smallest
integer such that the following holds. For any compact conver object K C RY and any set P C R¥\ K
of points, if every subset of P of size p has a g-sized subset whose convex hull is disjoint from K,
then P can be separated from K with CHS(d,p,q) half-spaces (that is, there exists a set H of
CHS(d, p,q) half-spaces such that K C (Ve h and (e h) NP =0).

It is known that CHS(d,p,q) is finite for large-enough values of ¢; in fact it is a special case of
the more general so-called Hadwiger-Debrunner (p, q) problem for convex sets in R? (see [12]). In
particular,

1. ([8]) For p > ¢ =d+ 1 we have
2 CISO
CHS(d, p, g) = O (p* log”®* 1% p) |

where ¢’ is an absolute constant.

2. ([12]) For any real 8> 0 and p > ¢ = (1 + ) - |4] we have
1
CHS&prD:=C)(q%9+Blogp)-

Theorem [5] states our application of Theorem [2] The proof follows the method of Mustafa and
Ray [11]; we present their proof modified appropriately to give a general explicit bound in terms
of CHS (d, p, q) and h(d).

Theorem 5 (Proof in Section. Let P be a set of n points in R? and e € [O, %] a given parameter.
Further let ¢ > L%J be an integer and define p = q-h(d), where h(d) is the function from Theorem@.
Let R be a uniform random sample of P of size

@-d-CHSQan)JogCHS@LRQ)bgl
67

€

where co is a large-enough constant independent of d,e and q. Then with probability at least 1%, the
following holds.



1. Let Q be the set of Radon points of all (d+ 2)-sized subsets of R. Then QU R is a weak e-net
for P, of size O (]R|d+2>.

2. Let T be the set of convex-hulls of all (LgJ + 1)—sized subsets of R. Then each convex object
containing at least €|P| points of P intersects at least one element of T. Note that |T| =

0 (yR| L%J“).
In particular, one can set ¢ = (d+ 1) to get a random sample R satisfying the above, of size

R|:O<d-CHS(d,(d+1)-h(d),(d+1))‘logCHS(d,(dJrl)-h(d),(d+1))ilogi).

Remark 1. The first part of Theorem [5| gives a bound on the size of the e-net that is weaker
than the current best bound due to Matousek and Wagner [10], which is of the order of O (eid)
(ignoring polylogarithmic factors; see also [1}, [5]). Yet our construction of a weak e-net is novel and
interesting as it uses certain Radon points of the underlying set P. It also shows that one can get
close to the best-known bounds by using a single random sample of P.

Remark 2. The existence of weak e-nets of size o (6%) is a long-standing open problem, and the

case in R? has seen no substantial progress since 1995 (recently the bound in two dimensions was
improved in [I5]). The second part of Theorem 5| shows that it is possible to improve the upper-
bound if one is willing to consider hitting with higher-dimensional simplices instead of points.

Remark 3. The function h(d) in Theorem [2| depends on f(d) of Lemma [I} and is unlikely to be
near-tight. We leave improving it as an open question; in particular, given d € N, the determination
of the smallest h (d) such that any set P of points in R? has a set Q C P of size d+2 with Radon Q

having half-space depth at least %.

2 Proof of Lemma [l and Theorem [2.

We need some definitions. We set m = (r —1)(d+1) +1, and for k € [d+ 1] the block By, is the set
of integers {(r —1)(k—1)+1,(r —1)(k—1)+2,...,(r — 1)k + 1}. The blocks are of size r each
and they almost form a partition of [m], only neighboring blocks have a common element, namely
(r—1)k+1 € BN By, for all k € [d]. Call an r-partition {1, ..., I} of [m] special if |I[;NBy| =1
for every j € [r] and every k € [d + 1].

Pér’s result is about sequences S = (ay,...,ayn) of vectors in R?. A sequence (b1,...,b) is a
subsequence of S of length t if b; = a;; for all j € [t] where 1 < i; < ip < ... <4 < N.
Given a sequence S = (a1,...,an), a; € R%, an r-partition {S1,Ss,...,S,} of S is in one-to-one
correspondence with an r-partition {;,..., I, } of [m] via a; € S; if and only if ¢ € I;. An r-partition
of S is called special if the corresponding r-partition of [m] is special.

Tverberg’s theorem states that given a set P of (r — 1)(d + 1) + 1 points in R, there exists a
partition of P into r sets whose convex-hulls contain a common point.

We can now state Pér’s result [14].



Theorem A (Universality theorem for Tverberg partitions). Assume d,r,t € N, r > 2, and
m = (r—1)(d+ 1)+ 1 < t. Then there exists N = N(d,r,t) € N such that every sequence
S = (a1,...,an) of vectors (in general position) in R contains a subsequence S' = (by,...,b;) (of
length t) such that the Tverberg partitions of every subsequence of length m of S’ are exactly the
special partitions.

Remark. When the points of S (or P) come from the moment curve I'(z) = {y(z): z € RT} where
y(x) = (z,22,...,2%), then there is a natural ordering S = (y(x1),...,v(z,)) with 11 < 22 < ... <
ZTp. Now let 0 < 1 < ... < x, a rapidly increasing sequence of real numbers, meaning that, for
every h € [n — 1], 41/ is at least as large as some (large) constant cq,; depending only on
d,r, h. It is not hard to check that in this case all Tverberg partitions of all m = (r — 1) (d + 1) +1
long subsequences of S are the special ones. This (and other examples as well) show that no other
set of partitions can be universal, i.e., that exist as Tverberg partitions in a large-enough point set.

We are going to apply the universality theorem in the special case r =3 and t = m = (r — 1)(d +
1)+ 1 =2d + 3. In this case N(d,r,t) depends on d only and thus we can set f(d) = N(d,r,t) =
N(d,3,2d + 3).

Proof of Lemma . Order the elements of P arbitrarily to obtain a sequence S = (pl, ey pf(d)).
Apply Theorem [Al to S with r = 3, t = m = 2d + 3. We get a subsequence S’ of length m all of
whose Tverberg 3-partitions are exactly the special ones. Define IT = {z € [m] : z = 1 mod 4} and
Iy ={z€[m]:z=3mod 4} and I3 = {z € [m] : z is even}. Note that |I1| = {%W +1, |I2] = L%J +1
and |I3| = d+ 1. See figure for an example with d = 5 (elements of Iy, Is and I3 are depicted with
crosses, squares and circles, respectively).

By B, Bs B, Bs Bg
X (e} o [e] X o u} o X (e} o o X

It is easy to see that {I1, I3, I3} is a special partition of [m]: every block contains exactly one
element of Iy, I, I3. Let the corresponding partition of S’ be {Si,S2,53}. Theorem [A| implies
that ﬂ? convS; # (. Set A = S;USy and B = S3. Then the Radon point of A, which is
conv S1 Nconv Ss, is contained in conv B. O

Proof of Theorem @ Consider a (2d + 3)-uniform hypergraph H = (P, FE) on the vertex set P,
where e € E if and only if the (2d 4+ 3) points of e can be partitioned into two sets e = e; U e
such that |e1| = d + 2, and Radon e € conv es. We will call the set e; the Radon-base of the edge
e. By the result of de Caen [7], any r-uniform hypergraph on n vertices and m edges contains an
independent set of size at least

r—1 nrt

e
On the other hand, Lemma [I| implies that any set @ of f(d) points of P must contain two disjoint
sets—Ag C @ of size (d+ 2) and Bg C @ of size (d 4+ 1)—such that Radon Ag € conv Bg. Then
the (2d + 3) points Ag U Bg form an edge in 7. This implies that no subset of P of size f(d) can
be independent in H. Thus, with r = 2d + 3, we have

|P|2d+3
(2d + 3) f(d)2d+2”

2d+3
2d + 2 | P|2+2
(2d+3)302  |E|7n

< size of max. ind. setin’ H < f(d) = |E|> 5



By the pigeonhole principle, there exists a (d + 2)-sized set P’ C P that is the Radon-base of a set
E’ of edges of E, where

|P|2d+3
|E| 2(2d+3) ] (d)27F2

(a72) (a12)

The (d+ 1)-uniform hypergraph consisting of the sets E” = {¢’ \ P’: ¢’ € E'} has the property that
the convex hull of the elements of each set contains Radon P’. It suffices to show that it contains
a matching of size (|P|)—and this follows from known lower-bounds on matchings in uniform

hypergraphs (see [2]). For simplicity, we instead present a direct argument, though with worse
constants.

B >

Iteratively construct a matching by adding a (d + 1)-sized set from E” to the matching, and
deleting all sets from E” whose intersection with this added set is non-empty. Each set added to
the matching can cause the deletion of at most (d + 1) - (U;l) sets of E”, as a vertex of P\ P’ can
belong to at most (1)) sets of E” (each set in E” has size (d+1)). The size of the final matching is
the number of iterations, which, by the above discussion, is lower-bounded by

|P|2d+3

2@d+3)7@ 2 | (|P|
B / ().
P2d+3

22d+3)7(@? 2/ (|P] 1P| 2(2d + 3)(d + 1) f(d) 22
w/( d>(d+ 1)2@, where h(d) = T .

A calculation then shows that

3 Proof of Theorem [

Proof of Theorem @ Consider the system system induced on P by the intersection of CHS (d, p, q)
half-spaces in R?. It has VC-dimension © (d - CHS (d, p, q) - log CHS (d, p, q)) [6] and so the e-net
theorem ([9]; see also [13]) implies that R is an e-net for this set system with probability at least
%. Assume this is the case and let K be any convex set containing at least ¢|P| points of P.

Claim 6. There exists Rx C R of size p such that the convex hull of every subset of Ri of size q
intersects K.

Proof. If for every subset of R of size p there exists a ¢-sized subset whose convex hull is disjoint
from K, then by the definition of CHS (d, p, ¢), all points of R can be separated from K by a set H
of CHS (d, p, q) half-spaces. The common intersection of these half-spaces contains K and hence at
least €| P| points of P and no point of R, a contradiction to the assumption that R is an e-net for
the set system induced on P by the intersection of CHS (d, p, q) half-spaces. O

By Theorem [2| Ry has a (d + 2)-sized subset, say R}, such that Radon R’ € @ is contained in at

least LLR—S)‘ vertex-disjoint simplices spanned by points of Rx \ R. Now Radon R’ must lie inside
K: otherwise the half-space separating it from K must contain at least one point from each simplex



containing Radon Rj—mnamely it must contain at least [Brel _ _p

W) = w@ = ¢ points of Rg. But then
the convex hull of these ¢ points does not intersect K, a contradiction to Claim [} Thus RU Q is

a weak e-net for P.

The proof of 2. follows from the fact that one of the two Radon partitions of R/ has size at most
LgJ + 1, and its convex-hull must intersect K.

This completes the proof. O
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