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Imre Bárány∗ Nabil H. Mustafa†

Abstract

We show that, as a consequence of a new result of Pór on universal Tverberg partitions, any
large-enough set P of points in Rd has a (d+ 2)-sized subset whose Radon point has half-space
depth at least cd · |P |, where cd ∈ (0, 1) depends only on d. We then give two applications of
this result. The first is to computing weak ε-nets by random sampling. The second is to show

that given any set P of points in Rd and a parameter ε > 0, there exists a set of O
(
ε−b

d
2 c+1

)
⌊
d
2

⌋
-dimensional simplices (ignoring polylogarithmic factors) spanned by points of P such that

they form a transversal for all convex objects containing at least ε · |P | points of P .

Keywords: Tverberg’s theorem, Radon’s lemma, weak ε-nets, half-space depth, transversals.

1 Introduction

Radon’s lemma states that, given any set Q of (d+2) points in Rd, there always exists a partition of
Q into two sets, say Q1 and Q2, such that conv Q1∩conv Q2 6= ∅. Further, if Q is in general position,
then a dimension argument implies that such a partition {Q1, Q2}—called a Radon partition of
Q—is unique and conv Q1 ∩ conv Q2 consists of a single point, called the Radon point of Q and
denoted by Radon Q.

In this paper we present an application of the following statement, which is one consequence of a
recent theorem of Pór (see [3]).

Lemma 1 (Proof in Section Section 2). For every d ∈ N there is f(d) ∈ N such that every set
P ⊂ Rd of f(d) points in general position contains two disjoint sets A,B ⊂ P with |A| = d+2, |B| =
d+ 1 such that the Radon point of A is contained in conv B. Furthermore, the Radon partition of
A consists of two sets of sizes

⌊
d
2

⌋
+ 1 and

⌈
d
2

⌉
+ 1.

For some background on Lemma 1, we refer the reader to [4].

We use Lemma 1 to prove the following theorem. Given a set P of points in Rd, the half-space
depth of a point q ∈ Rd with respect to P is defined to be the minimum number of points of P
contained in any half-space containing q.

∗Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences 13 Reáltanoda Street Budapest 1053
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Theorem 2 (Proof in Section 2). For every d ∈ N there is h(d) ∈ N such that every set P of at
least h(d) points in Rd in general position contains a set P ′ ⊆ P of size (d+2) with Radon P ′ being

contained in at least |P |
h(d) vertex-disjoint simplices spanned by the points of P \ P ′. In particular,

Radon P ′ has half-space depth at least |P |h(d) with respect to P .

We expect that Theorem 2 will find further applications in algorithms, discrete and combinatorial
geometry and data analysis. Here we give two applications related to the computation of weak
ε-nets.

Definition 3. Given a set P of points in Rd and a parameter ε > 0, a set N ⊆ Rd is a weak
ε-net with respect to convex sets for P if for every convex set K with |K ∩ P | ≥ ε · |P |, we have
K ∩N 6= ∅.

Definition 4. Given positive integers d, p, q with p ≥ q >
⌊
d
2

⌋
, let CHS(d, p, q) denote the smallest

integer such that the following holds. For any compact convex object K ⊆ Rd and any set P ⊆ Rd\K
of points, if every subset of P of size p has a q-sized subset whose convex hull is disjoint from K,
then P can be separated from K with CHS(d, p, q) half-spaces (that is, there exists a set H of
CHS(d, p, q) half-spaces such that K ⊆

⋂
h∈H h and

(⋂
h∈H h

)⋂
P = ∅).

It is known that CHS(d, p, q) is finite for large-enough values of q; in fact it is a special case of
the more general so-called Hadwiger-Debrunner (p, q) problem for convex sets in Rd (see [12]). In
particular,

1. ([8]) For p ≥ q = d+ 1 we have

CHS(d, p, q) = O
(
pd

2
logc

′d3 log d p
)
,

where c′ is an absolute constant.

2. ([12]) For any real β > 0 and p ≥ q = (1 + β) ·
⌊
d
2

⌋
we have

CHS(d, p, q) = O
(
q2p

1+ 1
β log p

)
.

Theorem 5 states our application of Theorem 2. The proof follows the method of Mustafa and
Ray [11]; we present their proof modified appropriately to give a general explicit bound in terms
of CHS (d, p, q) and h(d).

Theorem 5 (Proof in Section 3). Let P be a set of n points in Rd and ε ∈
[
0, 12
]

a given parameter.

Further let q >
⌊
d
2

⌋
be an integer and define p = q ·h(d), where h(d) is the function from Theorem 2.

Let R be a uniform random sample of P of size

c2 · d · CHS (d, p, q) · log CHS (d, p, q)

ε
log

1

ε
,

where c2 is a large-enough constant independent of d, ε and q. Then with probability at least 9
10 , the

following holds.
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1. Let Q be the set of Radon points of all (d+ 2)-sized subsets of R. Then Q∪R is a weak ε-net

for P , of size O
(
|R|d+2

)
.

2. Let T be the set of convex-hulls of all
(⌊

d
2

⌋
+ 1
)
-sized subsets of R. Then each convex object

containing at least ε|P | points of P intersects at least one element of T . Note that |T | =

O
(
|R|b

d
2c+1

)
.

In particular, one can set q = (d+ 1) to get a random sample R satisfying the above, of size

|R| = O

(
d · CHS (d, (d+ 1) · h (d) , (d+ 1)) · log CHS (d, (d+ 1) · h (d) , (d+ 1))

1

ε
log

1

ε

)
.

Remark 1. The first part of Theorem 5 gives a bound on the size of the ε-net that is weaker
than the current best bound due to Matoušek and Wagner [10], which is of the order of O

(
1
εd

)
(ignoring polylogarithmic factors; see also [1, 5]). Yet our construction of a weak ε-net is novel and
interesting as it uses certain Radon points of the underlying set P . It also shows that one can get
close to the best-known bounds by using a single random sample of P .

Remark 2. The existence of weak ε-nets of size o
(
1
εd

)
is a long-standing open problem, and the

case in Rd has seen no substantial progress since 1995 (recently the bound in two dimensions was
improved in [15]). The second part of Theorem 5 shows that it is possible to improve the upper-
bound if one is willing to consider hitting with higher-dimensional simplices instead of points.

Remark 3. The function h(d) in Theorem 2 depends on f(d) of Lemma 1, and is unlikely to be
near-tight. We leave improving it as an open question; in particular, given d ∈ N, the determination
of the smallest h (d) such that any set P of points in Rd has a set Q ⊆ P of size d+2 with Radon Q

having half-space depth at least |P |
h(d) .

2 Proof of Lemma 1 and Theorem 2.

We need some definitions. We set m = (r− 1)(d+ 1) + 1, and for k ∈ [d+ 1] the block Bk is the set
of integers {(r − 1)(k − 1) + 1, (r − 1)(k − 1) + 2, . . . , (r − 1)k + 1}. The blocks are of size r each
and they almost form a partition of [m], only neighboring blocks have a common element, namely
(r−1)k+1 ∈ Bk∩Bk+1 for all k ∈ [d]. Call an r-partition {I1, . . . , Ir} of [m] special if |Ij ∩Bk| = 1
for every j ∈ [r] and every k ∈ [d+ 1].

Pór’s result is about sequences S = (a1, . . . , aN ) of vectors in Rd. A sequence (b1, . . . , bt) is a
subsequence of S of length t if bj = aij for all j ∈ [t] where 1 ≤ i1 < i2 < . . . < it ≤ N .
Given a sequence S = (a1, . . . , am), ai ∈ Rd, an r-partition {S1, S2, . . . , Sr} of S is in one-to-one
correspondence with an r-partition {Ii, . . . , Ir} of [m] via ai ∈ Sj if and only if i ∈ Ij . An r-partition
of S is called special if the corresponding r-partition of [m] is special.

Tverberg’s theorem states that given a set P of (r − 1)(d + 1) + 1 points in Rd, there exists a
partition of P into r sets whose convex-hulls contain a common point.

We can now state Pór’s result [14].
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Theorem A (Universality theorem for Tverberg partitions). Assume d, r, t ∈ N, r ≥ 2, and
m = (r − 1)(d + 1) + 1 ≤ t. Then there exists N = N(d, r, t) ∈ N such that every sequence
S = (a1, . . . , aN ) of vectors (in general position) in Rd contains a subsequence S′ = (b1, . . . , bt) (of
length t) such that the Tverberg partitions of every subsequence of length m of S′ are exactly the
special partitions.

Remark. When the points of S (or P ) come from the moment curve Γ(x) = {γ(x) : x ∈ R+} where
γ(x) = (x, x2, . . . , xd), then there is a natural ordering S = (γ(x1), . . . , γ(xn)) with x1 < x2 < . . . <
xn. Now let 0 < x1 < . . . < xn a rapidly increasing sequence of real numbers, meaning that, for
every h ∈ [n − 1], xh+1/xh is at least as large as some (large) constant cd,r,h depending only on
d, r, h. It is not hard to check that in this case all Tverberg partitions of all m = (r − 1) (d+ 1) + 1
long subsequences of S are the special ones. This (and other examples as well) show that no other
set of partitions can be universal, i.e., that exist as Tverberg partitions in a large-enough point set.

We are going to apply the universality theorem in the special case r = 3 and t = m = (r − 1)(d+
1) + 1 = 2d + 3. In this case N(d, r, t) depends on d only and thus we can set f(d) = N(d, r, t) =
N(d, 3, 2d+ 3).

Proof of Lemma 1. Order the elements of P arbitrarily to obtain a sequence S =
(
p1, . . . , pf(d)

)
.

Apply Theorem A to S with r = 3, t = m = 2d + 3. We get a subsequence S′ of length m all of
whose Tverberg 3-partitions are exactly the special ones. Define I1 = {z ∈ [m] : z ≡ 1 mod 4} and
I2 = {z ∈ [m] : z ≡ 3 mod 4} and I3 = {z ∈ [m] : z is even}. Note that |I1| =

⌈
d
2

⌉
+1, |I2| =

⌊
d
2

⌋
+1

and |I3| = d+ 1. See figure for an example with d = 5 (elements of I1, I2 and I3 are depicted with
crosses, squares and circles, respectively).

B1
B2 B3

B4 B5
B6

It is easy to see that {I1, I2, I3} is a special partition of [m]: every block contains exactly one
element of I1, I2, I3. Let the corresponding partition of S′ be {S1, S2, S3}. Theorem A implies
that

⋂3
1 conv Si 6= ∅. Set A = S1 ∪ S2 and B = S3. Then the Radon point of A, which is

conv S1 ∩ conv S2, is contained in conv B.

Proof of Theorem 2. Consider a (2d + 3)-uniform hypergraph H = (P,E) on the vertex set P ,
where e ∈ E if and only if the (2d + 3) points of e can be partitioned into two sets e = e1 ∪ e2
such that |e1| = d+ 2, and Radon e1 ∈ conv e2. We will call the set e1 the Radon-base of the edge
e. By the result of de Caen [7], any r-uniform hypergraph on n vertices and m edges contains an
independent set of size at least

r − 1

r
r
r−1

· n
r
r−1

m
1
r−1

.

On the other hand, Lemma 1 implies that any set Q of f(d) points of P must contain two disjoint
sets—AQ ⊆ Q of size (d+ 2) and BQ ⊆ Q of size (d+ 1)—such that Radon AQ ∈ conv BQ. Then
the (2d+ 3) points AQ ∪BQ form an edge in H. This implies that no subset of P of size f(d) can
be independent in H. Thus, with r = 2d+ 3, we have

2d+ 2

(2d+ 3)
2d+3
2d+2

· |P |
2d+3
2d+2

|E|
1

2d+2

≤ size of max. ind. set in H < f(d) =⇒ |E| ≥ |P |2d+3

2(2d+ 3)f(d)2d+2
.
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By the pigeonhole principle, there exists a (d+ 2)-sized set P ′ ⊆ P that is the Radon-base of a set
E′ of edges of E, where

|E′| ≥ |E|( |P |
d+2

) ≥ |P |2d+3

2(2d+3)f(d)2d+2( |P |
d+2

) .

The (d+1)-uniform hypergraph consisting of the sets E′′ = {e′ \ P ′ : e′ ∈ E′} has the property that
the convex hull of the elements of each set contains Radon P ′. It suffices to show that it contains
a matching of size Ω(|P |)—and this follows from known lower-bounds on matchings in uniform
hypergraphs (see [2]). For simplicity, we instead present a direct argument, though with worse
constants.

Iteratively construct a matching by adding a (d + 1)-sized set from E′′ to the matching, and
deleting all sets from E′′ whose intersection with this added set is non-empty. Each set added to
the matching can cause the deletion of at most (d+ 1) ·

(|P |
d

)
sets of E′′, as a vertex of P \ P ′ can

belong to at most
(
n
d

)
sets of E′′ (each set in E′′ has size (d+ 1)). The size of the final matching is

the number of iterations, which, by the above discussion, is lower-bounded by

|P |2d+3

2(2d+3)f(d)2d+2( |P |
d+2

) /(
|P |
d

)
(d+ 1).

A calculation then shows that

|P |2d+3

2(2d+3)f(d)2d+2( |P |
d+2

) /(
|P |
d

)
(d+ 1) ≥ |P |

h(d)
, where h(d) =

2(2d+ 3)(d+ 1)f(d)2d+2

(d+ 2)!d!
.

3 Proof of Theorem 5

Proof of Theorem 5. Consider the system system induced on P by the intersection of CHS (d, p, q)
half-spaces in Rd. It has VC-dimension Θ (d · CHS (d, p, q) · log CHS (d, p, q)) [6] and so the ε-net
theorem ([9]; see also [13]) implies that R is an ε-net for this set system with probability at least
9
10 . Assume this is the case and let K be any convex set containing at least ε|P | points of P .

Claim 6. There exists RK ⊆ R of size p such that the convex hull of every subset of RK of size q
intersects K.

Proof. If for every subset of R of size p there exists a q-sized subset whose convex hull is disjoint
from K, then by the definition of CHS (d, p, q), all points of R can be separated from K by a set H
of CHS (d, p, q) half-spaces. The common intersection of these half-spaces contains K and hence at
least ε|P | points of P and no point of R, a contradiction to the assumption that R is an ε-net for
the set system induced on P by the intersection of CHS (d, p, q) half-spaces.

By Theorem 2, RK has a (d+ 2)-sized subset, say R′K , such that Radon R′K ∈ Q is contained in at

least |RK |h(d) vertex-disjoint simplices spanned by points of RK \R′K . Now Radon R′K must lie inside
K: otherwise the half-space separating it from K must contain at least one point from each simplex
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containing Radon R′K—namely it must contain at least |RK |h(d) = p
h(d) = q points of RK . But then

the convex hull of these q points does not intersect K, a contradiction to Claim 6. Thus R ∪Q is
a weak ε-net for P .

The proof of 2. follows from the fact that one of the two Radon partitions of R′K has size at most⌊
d
2

⌋
+ 1, and its convex-hull must intersect K.

This completes the proof.
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