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Preface

The use of random sampling in the field of discrete and computational geometry
started in the 1980s, motivated by the challenges in designing efficient algorithms
for geometric problems. While these earlier uses were tightly coupled with spe-
cific geometric scenarios, soon the key problems were formulated abstractly in the
framework of combinatorial and geometric set systems. We state one of the princi-
pal structures that will be studied in this framework. Let X be a set of n elements
and F a collection of subsets of X; the pair (X,F) forms a set system.

Epsilon-nets: Given a parameter ε ∈ (0, 1], a set N ⊆ X is an ε-net
of (X,F) if each S ∈ F of size at least ε |X| has non-empty intersection
with N .

The goal is to find ε-nets of small size; this of course depends on the structure and
complexity of (X,F). A classical geometric instance of this question—first studied
in 1987 and settled conclusively in 2017—is to determine, given any set P of n
points in R

d, the smallest N ⊆ P such that any half-space containing at least εn
points of P contains at least one point of N .

Selective aspects of ε-nets have been presented in earlier texts (Combinatorial Ge-
ometry, Pach and Agarwal, 1995; The Discrepancy Method, Chazelle, 2000; Lectures
on Discrete Geometry, Matoušek, 2004; Geometric Approximation Algorithms, Har-
Peled, 2011). However, the last ten years have seen significant progress with many
open problems in the area having been resolved during this time. These include
optimal lower bounds for ε-nets for most geometric set systems, the use of shallow-
cell complexity to unify proofs, simpler algorithms to construct ε-nets, and the use
of ε-approximations for construction of coresets via sensitivity analysis, to name a
few. This book presents a didactic account of these recent developments. We will
revisit classical results, but with new and more elegant proofs which unify earlier
work.

Chapter 1 introduces the two key technical ingredients that lie at the heart
of the analysis of random sampling methods in this book: the complexity
of certain combinatorial structures arising in geometric configurations and
the probability of a random variable deviating far from its expectation.
While historically these two have been considered separate statements with
entirely different proofs, we present a powerful probabilistic technique from
which both of these bounds can be deduced in a uniform way.

Chapters 2 and 3 initiate the study of ε-nets for some basic geometric set
systems in R

2, delineating the precise geometric properties that are relevant
to the construction of ε-nets; these are then combined with probabilistic
techniques to derive asymptotically optimal bounds on the size of ε-nets.

ix
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x PREFACE

While these will be superseded later by more general and powerful com-
binatorial machinery, they are important in understanding the intuition,
ideas, and analysis at their most elementary level.

The move from geometric to combinatorial set systems requires formulat-
ing and proving analogs of geometric properties for combinatorial systems.
Chapters 4 and 5 are devoted to building this technical foundation. First,
the VC-dimension and the shallow-cell complexity of combinatorial set sys-
tems are introduced and studied as measures of complexity of a set system.
These are then used to construct combinatorial equivalents of geometric
properties relevant to ε-net constructions.

Chapters 6 to 8 present the current best bounds for ε-nets for combinatorial
set systems (X,F), where the bounds depend on the VC-dimension and the
shallow-cell complexity of F . Together these chapters contain the insight
that one can derive optimal bounds for geometric set systems from combi-
natorial bounds based on the shallow-cell complexity of the corresponding
set system. Chapter 9 studies a geometric case where small ε-nets do not
exist, set systems induced by convex sets in R

d, and where one has to turn
to the notion of a weak ε-net.

Chapters 10 and 11 are concerned with lower bounds on sizes of ε-nets,
based on the insight that a lower bound on the size of an ε-net for a given
set system (X,F) follows from a lower bound on the VC-dimension of a
related set system, the k-fold union of F . These lower bounds are then
used to show optimality of the ε-net bounds presented earlier.

Chapters 12 to 15 study another notion of samples, ε-approximations, for
both geometric and combinatorial set systems. It also includes an applica-
tion of ε-approximations for constructing small coresets for some geometric
optimization problems.

Chapter 16 concludes the book with a list of bounds on the VC-dimension
and shallow-cell complexity for most commonly studied geometric set sys-
tems, as well as on sizes of their ε-nets and ε-approximations. This will
serve as a reference for those looking for the state-of-the-art bounds on
these topics.

We now briefly list some topics which are not in this book: algorithms tailored to
construct ε-nets efficiently for specific geometric set systems, efficient deterministic
versions of the probabilistic algorithms, range searching and other classic algorith-
mic applications, bounds for combinatorial discrepancy of geometric set systems.
This choice was guided by two factors. First, the techniques involved in these are
rather different, often relying on detailed geometric data-structures; doing justice
to this essentially requires another book. Second, parts of it have been covered very
nicely in earlier texts (e.g., in The Discrepancy Method by Chazelle).

While our key objective is to give a clear account of the ideas (as much as is possible
by us), we also hope that reading this book is a pleasant experience (the wonderful
texts Combinatorial Geometry by Pach and Agarwal and Lectures in Discrete Ge-
ometry by Matoušek being exemplary in this regard). We have also taken care to
make the present text useful for teaching: all calculations are written in sufficient
detail; each section begins with an “overview of ideas” which gives intuition into
the proof; wherever possible we first present the simplest non-trivial instance of the
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PREFACE xi

idea before dealing with the more general case; each chapter can be read mostly
independently (though it might use earlier results); additional insights, ideas and
calculations that are not crucial to the main text are interspersed throughout in
small font size. Each section typically contains one or two results, and is carved up
into smaller themes that are delineated by the symbol .

The text should be suitable as a first introduction to sampling aspects for senior
undergraduate and graduate students in computer science, mathematics and sta-
tistics. While mathematical maturity will certainly help in appreciating the ideas
presented here, only a basic familiarity with discrete mathematics, probability and
combinatorics is required to understand the material. For background on these
topics, the following books are recommended:

H. Tijms. Understanding Probability: Chance Rules in Everyday Life.
Cambridge University Press, 2007.

J. Matoušek and J. Nešetřil. Invitation to Discrete Mathematics. Oxford
University Press, 2008.

M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge University Press, 2017.

For teaching a course on these topics, we recommend that around 2 hours of class
time be devoted to each chapter; this text is suitable for a 30 to 40 hour course on
the subject (there is considerable freedom in the choice of topics to cover). We also
hope that this book will be useful for researchers in the field as a reference text
for looking up specific bounds as well as learning quickly the ideas and techniques
behind specific results.

We would be grateful if any errors are reported to nabilhmustafa@gmail.com.

Acknowledgments. This text benefited greatly from feedback and discus-
sions with several mentors, colleagues and students. In particular, I am grateful
to the following people: Imre Bárány, Victor-Emmanuel Brunel, Jean Cardinal,
Timothy Chan, Bernard Chazelle, Mónika Csikós, Kunal Dutta, Fritz Eisenbrand,
David Eppstein, Jeff Erickson, Martina Gallato, Arijit Ghosh, Andrey Kupavskii,
Jesús De Loera, Frédéric Meunier, Wolfgang Mulzer, Márton Naszódi, János Pach,
Dömötör Pálvölgyi, Dominique Perrin, Jeff Phillips, Saurabh Ray, Güntor Rote,
Gabor Tardos, Csaba Tóth, Kasturi Varadarajan, and Emo Welzl.

I am also grateful to the Agence Nationale de la Recherche (ANR) for funding my
research for the past ten years, and to my colleagues at LIPN, Villetaneuse and
LIGM, Marne-la-Vallée.

It was a pleasure to work the people from the AMS Publishing. I would like to
especially thank Ina Mette for her great help and patience.

Nabil H. Mustafa
Nogent-sur-Marne, September 2021
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Background

Basic notation. The cardinality of a finite set X is denoted by |X|. For a real
number a, �a� denotes the largest integer less than or equal to a; similarly �a�
denotes the smallest integer greater than or equal to a. We use the notation [n] for
the set {1, . . . , n}, where n is a positive integer. We will use the notation A = B±C,
where A, B ∈ R and C ∈ R

+, as a shorthand for A ∈ [B − C, B + C]. We will use
log n for logarithms with base 2, and lnn for logarithms with base e. The letters N,
R, Z are reserved for the set of all natural numbers, reals and integers, respectively.

Asymptotic notation. For two real valued functions f and g, we say that f =
O (g) if there exist large-enough constants n, C > 0 such that f (x) ≤ Cg (x) for
all x ≥ n. Here the values of n, C might depend on other quantities considered
as constants; we will explicitly point out such dependencies when they occur. The
notation f = Ω(g) is equivalent to g = O (f), f = Θ(g) if and only if f = O (g)

and f = Ω(g), and f = o (g) if limx→∞
f(x)
g(x) = 0.

Set systems. Given a finite set X, 2X will denote the collection of all subsets of
X. Similarly, for 0 ≤ k|X|,

(
X
k

)
will denote the collection of all subsets of X of size

k, and so
∣∣(X

k

)∣∣ = (|X|
k

)
. A set system is a pair (X,F), where X is a set and F is

a collection of subsets of X. When X is clear from the context, we will simply use
F to denote the set system.

Geometric notions. R
d will denote the d-dimensional Euclidean space. For a

measurable set X ⊆ R
d, vol (X) denotes the d-dimensional Lebesgue measure of X.

The symbol ∂X denotes the boundary of X ⊆ R
d, and int (X) the interior of X.

For p ∈ R
d and r > 0, Ball(p, r) denotes the closed ball of radius r centered at p. A

set X ⊂ R
d is convex if for every p, q ∈ X, the segment pq is contained in X. The

set conv (X) is defined to be the intersection of all convex sets in R
d containing X.

Alternatively, q ∈ conv (X) if and only if there exist points p1 ∈ X, . . . , pd+1 ∈ X
and nonnegative reals t1, . . . , td+1 such that

∑
i ti = 1 and q =

∑
i tipi. A finite

set X ⊂ R
d is said to be ‘in convex position’ if p /∈ conv (X \ {p}) for all p ∈ X.

Radon’s theorem states that given any set P of d + 2 points in R
d, there exists a

partition of P into two disjoint sets P1 and P2 such that conv (P1)∩ conv (P2) 
= ∅.

General position. Throughout the text we will often assume that a configuration
of geometric objects is ‘in general position’. That is, all properties and correspond-
ing results are invariant to an arbitrarily small perturbation of the configuration.
For example, for a set of n points in R

d in general position, we will assume that
no d + 1 points lie on a common hyperplane, no d + 2 on a common sphere and so
on. The specific properties assumed for a configuration in general position will be
explicitly stated where used.

xiii
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xiv BACKGROUND

Point-hyperplane duality. The dual of a point p = (p1, . . . , pd) ∈ R
d is the

hyperplane p1x1 + p2x2 + · · ·+ pd−1xd−1 − xd = −pd. The dual of a ‘non-vertical’
hyperplane h : a1x1+ · · ·+ad−1xd−1+xd = b is the point (a1, . . . , ad−1, b). The key
property of duality, easy to verify using the above mappings, is that it preserves
incidences and sidedness. That is, for any point p ∈ R

d and any hyperplane h, p lies
above h (with respect to the xd-coordinate) if and only if the point corresponding
to the dual of h lies below hyperplane corresponding to the dual of p.

Graphs. An undirected graph is usually denoted by G = (V, E), where V is the

set of its vertices, and E ⊆
(
V
2

)
is the set of its edges. When the sets V and E are

not explicitly defined, they will be denoted by V (G) and E (G). If {u, v} ∈ E, we
say that u and v are adjacent in G, and that v is a neighbor of u (and vice versa).
For any v ∈ V , NG(v) ⊆ V will be the set of vertices of V which are adjacent to v.

The complete graph, where E =
(
V
2

)
, on t vertices will be denoted by Kt, and the

complete bipartite graph with t1, t2 vertices in the two partite sets will be denoted
by Kt1,t2 . A subset V ′ ⊆ V such that there are no edges between any two vertices
of V ′ in G is called an independent set. Any V ′ ⊆ V such that there is an edge in
G between every two vertices of V ′ is called a clique.

A drawing of an undirected graph G = (V, E) in the plane consists of two functions
that map V and E to subsets of the plane. The function φV : V → R

2 maps each
vertex v ∈ V to a point φV (v) ∈ R

2. Then for each edge e = {u, v} ∈ E, the
continuous function φe : [0, 1] → R

2 maps e to a continuous arc in R
2 connecting

the images of u and v, i.e., connecting φe (0) = φV (u) to φe (1) = φV (v). We will
assume that φV is injective (φV (x) = φV (y) if and only if x = y) and that no arc
φe [0, 1] passes through the image of any vertex apart from the endpoints of e. A
drawing of G = (V, E) is called an embedding or a plane graph if (the images of)
no two edges share an interior point (of course, they may share an endpoint). G
is called planar if it has an embedding in R

2. A planar graph on n vertices has at
most 3n − 6 edges and at most 2n − 4 faces in any embedding.

Given a set P of n points in the plane, the Delaunay graph of P has an edge between
two points p, q ∈ P if and only if there is a closed disk containing p and q and no
other point of P . The Delaunay graph is planar, and so has at most 3n − 6 edges.

Probability. Pr [A] denotes the probability of an event A. The expectation of a
random variable X is denoted by E [X]. An indicator random variable is a random
variable which can have a value of 0 or 1. For an indicator random variable X,
we have E [X] = Pr [X = 1]. Linearity of expectation states that for two random
variables X and Y , we have E [X + Y ] = E [X] + E [Y ]; the usefulness of this
statement comes from the fact that it holds regardless of any dependency between
X and Y .
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BACKGROUND xv

Equations and inequalities. Here are some inequalities that will be useful.

Pascal’s rule:

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
, n, k ∈ Z

+.

Geometric-arithmetic
mean inequality:

n∏
i=1

ai ≤
(∑n

i=1 ai

n

)n

, a1, . . . , an ∈ R
+.

Exponential: 1 + x ≤ ex, for x ∈ R.

1− x ≥ e−2x, for x ∈ [0, 0.79] .

Binomial theorem: (x + y)n =
n∑

i=0

(
n

i

)
xi yn−i, n ∈ Z

+, x, y ∈ R.
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CHAPTER 1

A Probabilistic Averaging Technique

This chapter presents a powerful probabilistic proof technique which will be used,
in combination with additional ideas, throughout this book. For a simple first
application, consider the following problem.

Let P = {p1, . . . , pn} be a set of n points in the plane and let k ≥ 0 be an integer.
The k-Delaunay graph of P , denoted by Gk (P ) = (P, Ek), is defined as follows:

{pi, pj} ∈ Ek if and only if there exists a closed disk in the plane con-
taining {pi, pj} and at most k points of P \ {pi, pj}.
For each {pi, pj} ∈ Ek fix any one such disk and denote it by Dij .

Note that E0 ⊆ E1 ⊆ · · · ⊆ En−2 =
(
P
2

)
.

Our goal is to upper bound the number of edges in the k-Delaunay graph of P as
a function of n and k. We will prove that |Ek| = O (n (k + 1))1.

First, observe that the 0-Delaunay graph of P is simply the Delaunay graph, which
is planar and thus E0 has size at most 3n. Next, we upper bound |Ek|, for any
integer k ≥ 1, by the following argument.

Let S be a random sample constructed by picking each point of P in-
dependently with probability p = 1

k+1 and let G0 (S) be the 0-Delaunay

graph of S. We count the expected number of edges in G0 (S) in two
ways.

Upper bound: As any 0-Delaunay graph on t vertices has at most 3t
edges, the expected number of edges in G0 (S) is

E
[
3|S|

]
= 3E

[
|S|
]
= 3np =

3n

k + 1
.

Lower bound: For any {pi, pj} ∈ Ek, if both pi and pj are picked in S
and none of the at most k other points of P lying in Dij are picked in
S, then {pi, pj} is an edge in G0 (S). As each point of P was picked
independently, the probability that {pi, pj} is an edge in G0 (S) is at
least

p2 · (1− p)
k
=

1

(k + 1)2
·
(
1− 1

k + 1

)k

≥ 1

(k + 1)2
· 1
e
,(1.1)

where the last step uses the fact that
(
1 + 1

k

)k ≤ e, and thus 1
e ≤(

k
k+1

)k
=
(
1− 1

k+1

)k
.

1The ‘+1’ term is there just to take care of the case k = 0.

1
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2 1. A PROBABILISTIC AVERAGING TECHNIQUE

Using linearity of expectation, Equation (1.1) implies that the expected
number of edges of Ek that are present in G0 (S) is at least |Ek|· 1

(k+1)2 e
.

Combining the upper and lower bounds, we get

|Ek| ·
1

(k + 1)2 e
≤ expected number of edges in G0 (S) =

3n

k + 1
,

implying that |Ek| = O (n (k + 1)).

Before we move on to other applications of this technique, we make a few remarks.

• The use of random sampling in the above proof is a way to ‘implement’ a
double-counting argument. Essentially we are summing up, over all edges
e in Gk (P ), the number of subsets S ⊆ P of size n

k+1 for which e is an

edge in G0 (S)
2. We counted this sum in two ways: iterating over edges

of Gk (P ) gave a lower bound while iterating over subsets of P gave an
upper bound. More precisely, define the set of pairs

I =
{
(e, S) : e ∈ Ek, |S| = �n/(k + 1)�, e is in G0 (S)

}
.

Then the above double-counting argument gives

|Ek| ·
(

n − 2− k

�n/(k + 1)� − 2

)
≤ |I| ≤

(
n

�n/(k + 1)�

)
· 3�n/(k + 1)�.

Solving this for |Ek| gives |Ek| = O (n (k + 1)), as before.
• The utility of framing the argument probabilistically is that it beautifully
captures the intuition behind the key idea: if there are ‘too many’ edges
in Gk (P ), then in expectation more than 3|S| of these edges will ‘filter
through’ to G0 (S), for a random sample S. This contradicts the fact that
for any S, G0 (S) has at most 3|S| edges.

• The lower bound follows by considering, for each edge {pi, pj} of Gk (P ),
a specific event whose occurrence implies that {pi, pj} appears as an edge
in G0 (S). This need not be the only event that could cause {pi, pj} to be
an edge in G0 (S)—e.g., there could be a disk other than Dij containing
pi and pj that happens to not contain any other point of S. Thus our
lower bound is not necessarily tight.

In fact, what we actually want to compute is a lower bound on the
probability that there exists some disk containing {pi, pj} and no other
point of S. However the events for all possible disks containing {pi, pj}
are not independent, which makes computing this probability difficult.
Fortunately, we do not lose much by considering any one such disk, and
in fact the lower bound is optimal up to constant factors for certain point
sets. In particular, the bound |Ek| = O (n (k + 1)) is tight for the instance
of n points lying on a line.

• The calculation, when carried out with probability p ∈ (0, 1) as a parame-

ter, gives |Ek| = O
(

n
p (1−p)k

)
. The value of p is then set to maximize the

denominator. Roughly speaking, as the term (1− p)k = e−Θ(pk) decreases
exponentially with p, it is best to set p so that e−Θ(pk) is a constant—that
is, p = Θ

(
1
k

)
.

2A minor technical difference is that in the probabilistic version, the expected size is n
k+1

.
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1. A PROBABILISTIC AVERAGING TECHNIQUE 3

As for the precise value of p that maximizes the denominator, since

the derivative of p (1− p)
k with respect to p is (1− kp − p) (1− p)k−1, it

can be verified that p (1− p)
k
is maximized at p = 1

k+1 .

This also makes sense intuitively: for each edge {pi, pj} ∈ Ek, the disk
Dij contains at most k other points of P and so picking each point with
probability less than 1

k implies that, in expectation, Dij will not contain
any of these points.

• Other applications of this technique follow the same ‘template’—pick a
random sample and calculate the probability of some event due to it in
two ways. The main technical work consists in finding good estimates for
certain events; this is typically where a variety of other combinatorial and
geometric ideas come into play.
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4 1. A PROBABILISTIC AVERAGING TECHNIQUE

1. Level Sets

Counting pairs is the oldest trick in combinatorics . . . every time we
count pairs, we learn something from it.

Gil Kalai

Our first application is a variant of the k-Delaunay graph problem. Given a finite
set P of points in R

d and an integer k ≥ 1, the objective is to upper bound the
number of subsets of P of size at most k that are ‘realizable’ by geometric objects
in R

d. We first explain the problem for the case of disks in R
2.

For a set P of n points in R
2, define the set system

R (P ) =
{
D ∩ P : D is a disk in R

2
}
.

We call R (P ) the primal set system induced on P by disks. For any integer k ≥ 1,
let R=k (P ) be the sets of R (P ) of size exactly k and let R≤k (P ) be the sets of
R (P ) of size at most k. That is,

R=k (P ) =
{
R ∈ R (P ) : |R| = k

}
and R≤k (P ) =

{
R ∈ R (P ) : |R| ≤ k

}
.

The sets of R≤k (P ) are called the (≤k)-level sets, or simply (≤k)-sets, of R (P ).

Observe that R≤2 (P )—the subsets of P of size at most two that are
induced by disks—consists of O(n) sets: the sets of size 1 in R≤2 (P )
are the points of P and the sets of size 2 are precisely the edges of the
Delaunay graph of P . At the other end, R≤n (P ) is just R (P ), with size
O
(
n3
)
.

Our first main result of this section implies both of the above two cases.

Lemma 1.2. Let P be a set of n points in R
2 and let R (P ) be the primal set system

induced on P by disks in the plane. Then for any integer k ≥ 1,

|R≤k (P )| = O
(
nk2

)
.

To simplify the presentation, we will assume that |P | ≥ 3, and that P is in general
position; in particular, no three points lie on a line and no four points lie on a circle.

To prove Lemma 1.2, we will first count a slightly different structure called canonical
disks, which are disks that are ‘fixed’ by points of P on their boundary.

Definition 1.3. A canonical disk spanned by Q ⊆ R
2 is a disk whose boundary

contains three points of Q.

Furthermore, a canonical disk D spanned by Q is called an empty canonical disk if
the interior of D contains no point of Q.

Let T (P ) be the set of all
(
n
3

)
unordered triples of points of P . For a triple {p, q, r} ∈

T (P ), let Dpqr be the unique open disk whose boundary contains {p, q, r}; we say
that Dpqr is spanned by {p, q, r}. For an integer k ≥ 0, define the level sets

T≤k (P ) =
{
{p, q, r} ∈ T (P ) : |Dpqr ∩ P | ≤ k

}
.
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1. LEVEL SETS 5

We first observe that the size of R≤k (P ) is bounded, within a constant factor, by
that of T≤k (P ).

Claim 1.4. For any integer k ≥ 1, |R≤k (P ) | ≤ 8 · |T≤(k−1) (P ) |.

Proof. Take any R ∈ R≤k (P ) and let D be a disk realizing R; that is,
R = D ∩ P .

Now D can be scaled and translated—without any point of P ‘crossing’ the bound-
ary of D—such that it contains three points of P , say {p, q, r}, on its boundary.
Furthermore at least one of p, q or r belongs to R. See figure.

The interior of Dpqr contains at most k−1 points of P and so {p, q, r} ∈ T≤(k−1) (P ).
By slightly shifting and scaling Dpqr, for each of the 8 possible subsets of {p, q, r},
one can get a disk containing precisely that subset and all the points of P in the
interior of Dpqr. One of these subsets is R, implying the claim.

D

p

q

rDpqr

�

We remark here that the constant 8 can be improved with a more careful argument
(see discussion).

Now the proof of Lemma 1.2 follows from Claim 1.4 and the following statement.

Lemma 1.5. Let P be a set of n points in R
2 and let k ≥ 0 be an integer. Then

|T≤k (P ) | = O
(
n (k + 1)

2
)

.

Proof. First we establish the case k = 0.

Claim 1.6. For any S ⊆ P , |T≤0 (S) | ≤ 2 |S|.

Proof. T≤0 (S) consists of unordered triples of S whose corresponding open
disks do not contain any point of S in their interior. If the disk Dpqr, spanned by
p, q, r ∈ S, contains no point of S in its interior, then by slightly shifting Dpqr, it
follows that each of the three edges {p, q}, {q, r} and {p, r} belong to the Delaunay
graph of S. In particular, the triangle with vertices {p, q, r} is a face of the Delaunay
graph of S. Thus |T≤0 (S) | is upper bounded by the number of faces in a planar
graph on |S| vertices, which is 2|S| − 4. �

Now consider the case k ≥ 1. Construct a random sample S by picking each point
of P independently with probability p = 1

k+1 .

We count the expected size of T≤0 (S) in two ways.
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6 1. A PROBABILISTIC AVERAGING TECHNIQUE

Upper bound: From Claim 1.6,

E
[
|T≤0 (S)|

]
≤ E

[
2 |S|

]
= 2np.

Lower bound: The key is the following observation:

a triple {p, q, r} ∈ T (P ) is present in T≤0 (S) if and only if {p, q, r} ⊆ S
and none of the points in Dpqr ∩ P are picked in S.

As each point of P was picked independently, for any {p, q, r} ∈ T (P ), we have

Pr
[
{p, q, r} ∈ T≤0 (S)

]
= p3 · (1− p)

|Dpqr∩P |
.

Therefore, by linearity of expectation,

E
[
|T≤0 (S)|

]
=

∑
{p,q,r}∈T (P )

Pr
[
{p, q, r} ∈ T≤0 (S)

]
≥

∑
{p,q,r}∈T≤k(P )

Pr
[
{p, q, r} ∈ T≤0 (S)

]
=

∑
{p,q,r}∈T≤k(P )

p3 · (1− p)
|Dpqr∩P |

≥
∑

{p,q,r}∈T≤k(P )

p3 · (1− p)k = |T≤k (P )| · p3 · (1− p)k .

Combining the upper and lower bounds,

|T≤k (P )| · p3 · (1− p)k ≤ E
[
|T≤0 (S)|

]
≤ 2np,

and hence |T≤k (P )| ≤ 2n

p2 · (1− p)k
=

2n (k + 1)
2(

1− 1
k+1

)k ≤ 2e n (k + 1)2 ,

where the last step follows from the fact that
(
1− 1

k+1

)k
≥ 1

e . �

We next prove a similar statement for set systems where the elements are geometric
objects in R

d and the sets are induced by points in R
d. We consider the case of

disks in the plane.

Given a set D = {D1, . . . , Dn} of n distinct closed disks in R
2, define the set system

R (D) =
{
Dp : p ∈ R

2
}
, where Dp =

{
D ∈ D : D � p

}
.

We call R (D) the dual set system induced on D by R
2. Visually, each cell in

the arrangement of D corresponds to a set in R (D) (note that different cells may
correspond to the same subset).

For simplicity we will assume that D is in general position—in particular, the
intersection of the boundaries of every pair of disks of D is either empty or consists
of two distinct points and the intersection of the boundaries of any three disks of
D is empty.

Our goal is to upper bound, for any integer k ≥ 1, the size of R≤k (D). Our main
result is the following.
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1. LEVEL SETS 7

Lemma 1.7. Let D be a set of n closed disks in R
2 and let R (D) be the dual set

system induced on D. Then for any integer k ≥ 1,

|R≤k (D) | = O (nk) .

As earlier, it suffices to consider canonical sets, defined as follows. Let V (D) be
the set of at most 2

(
n
2

)
points in R

2 that are the intersections of boundaries of the
disks of D. For any integer k ≥ 0, define

V≤k (D) =
{
v ∈ V (D) : v is contained in the interior of at most k disks of D

}
.

Similarly one can define V=k (D). See figure.

V=0(D)

V=1(D)

V=2(D)

D

The proof of the following claim is easy and left to the reader.

Claim 1.8. For any integer k ≥ 1, |R≤k (D) | ≤ 4 · |V≤(k−1) (D) |+ |D|.

Now the proof of Lemma 1.7 follows from Claim 1.8 and the following statement.

Lemma 1.9. For any integer k ≥ 0, |V≤k (D) | = O (n (k + 1)).

Proof. As before, we first upper bound the size of V≤0 (D) and then use the
averaging technique to upper bound the size of V≤k (D) for k ≥ 1.

Claim 1.10. For any S ⊆ D, |V≤0 (S)| ≤ 6 |S|.

Proof. Any v ∈ V≤0 (S) is an intersection point between the boundary of two
disks of S and is not contained in the interior of any disk of S. Let G = (S, E)
be a graph where there is an edge between two disks of S if and only if a common
intersection point of their boundaries belongs to V≤0 (S). We now show that G is
planar, and so |V≤0 (S) | ≤ 2|E| ≤ 2 (3|S| − 6) ≤ 6|S|.
We claim that the following is a plane drawing of G: draw each edge {Di, Dj} ∈ E
as a line segment between the centers of Di and Dj . Consider any two edges
{Di, Dj}, {Dk, Dl} and let qij , qkl be the two corresponding points in V≤0 (S). Let
l be the bisector of qij and qkl. As both Di, Dj contain qij and do not contain
qkl, their centers lie on the side of l containing qij . Similarly the centers of Dk and
Dl lie on the side of l containing qkl. Thus the line segments corresponding to the
edges {Di, Dj} and {Dk, Dl} cannot intersect. �
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8 1. A PROBABILISTIC AVERAGING TECHNIQUE

Now consider the case k ≥ 1. Construct a random sample S by picking each disk
of D independently with probability p = 1

k+1 .

We will count the expected size of V≤0 (S) in two ways.

Upper bound: From Claim 1.10,

E
[
|V≤0 (S) |

]
≤ E [6 |S|] = 6E [|S|] = 6np.

Lower bound: This follows by considering the probability of each vertex in
V≤k (D) ending up as a vertex of V≤0 (S). Let v ∈ V≤k (D) and let Di, Dj ∈ D
be the two disks such that v is an intersection point of the boundaries of Di and
Dj . Then

v ∈ V≤0 (S) if and only if {Di, Dj} ⊆ S and every disk of D containing
v in its interior is not present in S.

As there are at most k such disks and each disk of D was picked independently,

Pr
[
v ∈ V≤0 (S)

]
≥ p2 (1− p)

k
.

Therefore,

E
[
|V≤0 (S) |

]
=

∑
v∈V(D)

Pr
[
v ∈ V≤0 (S)

]
≥

∑
v∈V≤k(D)

Pr
[
v ∈ V≤0 (S)

]
≥ |V≤k (D) | · p2 (1− p)k .

Combining the upper and lower bounds,

|V≤k (D) | · p2 (1− p)
k ≤ E

[
|V≤0 (S) |

]
≤ 6np,

and hence |V≤k (D) | ≤ 6n

p (1− p)k
=

6n (k + 1)(
1− 1

k+1

)k ≤ 6e n (k + 1) ,

where the last step used the fact that
(
1− 1

k+1

)k
≥ 1

e . �

Primal and dual set systems can be defined more generally:

Definition 1.11. Given a set P of points in R
d and a (possibly infinite) family R

of geometric objects in R
d, the primal set system induced on P by R is{

O ∩ P : O ∈ R
}
.

Definition 1.12. Given a set R of geometric objects in R
d, the dual set system

induced on R by R
d is defined as{
Rp : p ∈ R

d
}
, where Rp =

{
R ∈ R : R � p

}
.

We now conclude with the case of primal and dual set systems induced by half-
spaces in R

d.

Let P be a set of n points in general position in R
d and R (P ) the primal set system

induced on P by downward-facing half-spaces—that is, considering the xd-axis as
vertical, the half-spaces which contain the point that is the ‘minus infinity’ of the xd
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1. LEVEL SETS 9

axis. It can be shown that |R (P ) | = O
(
nd
)
. In fact for points in general position

there is a precise bound independent of the structure of P (stated without proof):

(1.13) |R (P ) | =
d∑

i=0

(
n

i

)
.

Now let T (P ) be all the
(
n
d

)
subsets of P of size d. For each e ∈ T (P ), let h+

e be
the unique downward-facing open half-space whose bounding hyperplane contains
e. For an integer k ≥ 0, define the level sets

T≤k (P ) =
{
e ∈ T (P ) :

∣∣h+
e ∩ P

∣∣ ≤ k
}
.

As earlier, the size ofR≤k (P ) can be upper bounded, within a multiplicative factor,
by that of T≤k (P ).

To bound |T≤k (P ) | we again first need a bound on |T≤0 (P ) |. Observe that
|T≤0 (P ) | is simply the number of facets on the lower convex-hull of P . It is well-
known, to those who know it, that the Upper Bound Theorem for convex polytopes

implies that this is at most 2
∑� d

2 	
i=0

(
n
i

)
(see discussion). Now the probabilistic av-

eraging technique of this chapter together with this 0-th level bound implies the
following (stated without proof).

Theorem 1.14. Given a set P of n points in R
d and an integer k ≥ 0,

|T≤k (P ) | ≤ 2

(
e

�d/2�

)� d
2 �( n⌊

d
2

⌋)(k +

⌈
d

2

⌉)� d
2 �

.

The above is O
(
n�d/2	 (k + 1)
d/2�

)
when the dimension d is considered a constant.

For d = 3, Theorem 1.14 gives a bound of O
(
nk2
)
—the same bound, within

a multiplicative constant, as the one of Lemma 1.5. This is not a coincidence:

there exists a mapping of points in R
2 to R

3, the so-called ‘paraboloid lift’,

with the property that subsets realized by intersection with disks in R
2 can be

realized by intersection with half-spaces in R
3. Thus Theorem 1.14 for d = 3

implies Lemma 1.5.

For later use, it will be convenient to state Theorem 1.14 in the dual setting.

Definition 1.15. The level of a point q ∈ R
d with respect to a set H of hyperplanes

in R
d is the number of hyperplanes of H lying strictly below q in the negative xd

direction; that is, the number of hyperplanes intersecting the ray{
q + λ (0, . . . , 0,−1) : λ > 0

}
.

Given a set H of hyperplanes in R
d in general position, a vertex in the arrangement

of H is a point lying in the intersection of some d hyperplanes of H. Let V≤k (H)
be the set of vertices of H of level at most k. Then by duality, Theorem 1.14 is
equivalent to the following statement.

Theorem 1.16. Given a set H of n hyperplanes in R
d and an integer k ≥ 0,

|V≤k (H)| ≤ 2

(
e

�d/2�

)� d
2 �( n⌊

d
2

⌋)(k +

⌈
d

2

⌉)� d
2 �

.
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2. CONCENTRATION BOUNDS FOR SUMS OF BERNOULLI VARIABLES 11

2. Concentration Bounds for Sums of Bernoulli Variables

I thought it was a rather trivial lemma, but many things are only trivial
once you know them.

Herman Chernoff

We present an application of the probabilistic technique to computing tail bounds
of some common probability distributions. That is, we would like to upper bound
the probability that a random variable gets a value far from its expectation. This
is a basic technical ingredient in nearly all the constructions and methods that will
be seen later.

The setting is the following.

Let I = {1, 2, . . . , n} be a set of n elements from which we will pick a
random sample. We aim to pick np elements of I, for a given parameter
p ∈ [0, 1].

The 0-1 valued random variable Xi will be used to indicate whether i ∈ I is picked
in our random sample. Our goal is to estimate the probability that the sum of these
n variables, X =

∑n
i=1 Xi, falls far from its expectation E [X]. More precisely, for

any δ ≥ 0, we are interested in bounding Pr
[
X ≥ (1 + δ) E [X]

]
and Pr

[
X ≤

(1− δ) E [X]
]
.

In fact, we consider the more general case where for a fixed set J ⊆ I with XJ =∑
j∈J Xj , we are interested in upper bounds on

Pr
[
XJ ≥ (1 + δ) · E [XJ ]

]
and Pr

[
XJ ≤ (1− δ) · E [XJ ]

]
.

There are several natural ways to pick a random sample from I. Two basic ones,
given a parameter p, are the following.

Binomial distribution: Pick each element of I independently with probability p.
That is, let X1, . . . , Xn be n independent 0-1 random variables where

Xi =

{
1 with probability p,

0 otherwise.

For any J ⊆ I, we have

E [XJ ] = E

⎡
⎣∑
j∈J

Xj

⎤
⎦ =

∑
j∈J

E [Xj ] =
∑
j∈J

Pr [Xj = 1] = |J | p.

One can write the exact equation for the tail bounds using the fact that the value
of each Xi was set independently:

Pr
[
XJ ≥ (1 + δ) · |J | p

]
=

|J|∑
i=
(1+δ)·|J|p�

Pr [XJ = i](1.17)

=

|J|∑
i=
(1+δ)·|J|p�

(
|J |
i

)
pi (1− p)

|J|−i
.

As there is no closed-form formula for this, several methods have been proposed
to estimate the right-hand side of the above expression (see discussion).
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12 1. A PROBABILISTIC AVERAGING TECHNIQUE

The fact that {X1, . . . , Xn} are independent has two advantages: first it makes
calculations easier and second, for any J ⊆ I the induced probability distribution
on XJ remains the same (that is, each element of J is picked independently with
probability p). On the other hand, the number of elements X is not fixed and is
a random variable with expectation np.

Sampling without replacement: A second natural way to sample is to choose,
out of all

(
n
np

)
np-sized subsets of I, one uniformly at random (assume that np

is an integer). This then sets the values of X1, . . . , Xn, with
∑

i Xi being equal
to np. Note that for any J ⊆ I, E [XJ ] = |J | p since for any i,

Pr [Xi = 1] =

(
n−1
np−1

)(
n
np

) =
(n − 1)!

(np − 1)!(n − np)!
· (np)!(n− np)!

n!
=

np

n
= p.

More generally, for any J ⊆ I, letting t = |J |, the probability that Xj = 1 for all
j ∈ J , can be upper bounded as

Pr

⎡
⎣
⎛
⎝∏

j∈J

Xj

⎞
⎠ = 1

⎤
⎦ =

(
n−t
np−t

)(
n
np

) =
(n − t)!

(np − t)!
· (np)!

n!
(1.18)

=
np

n

np − 1

n − 1
· · · np − t + 1

n − t + 1
≤ pt,

since each term np−i
n−i ≤ p for p ≤ 1. Similarly, the probability that Xj = 0 for all

j ∈ J , can be upper bounded as

Pr

⎡
⎣
⎛
⎝∏

j∈J

(1− Xj)

⎞
⎠ = 1

⎤
⎦ =

(
n−t
np

)(
n
np

) =
(n − t)!

(n − t − np)!
· (n − np)!

n!

(1.19)

=
n − np

n

n − np − 1

n − 1
· · · n − np − t + 1

n − t + 1
≤ (1− p)t ,

since each term n−np−i
n−i ≤ (1− p) for i ≥ 0.

We can again write the precise equation for the tail bounds for any J ⊆ I:

Pr
[
XJ ≥ (1 + δ) · |J | p

]
=

|J|∑
i=
(1+δ)·|J|p�

Pr [XJ = i]

=

|J|∑
i=
(1+δ)·|J|p�

(|J|
i

)
·
(
n−|J|
np−i

)(
n
np

) .

The advantage of this distribution is that X = np always; however the variables
{X1, . . . , Xn} are no longer independent. Consequently, for a J ⊆ I, the induced
probability distribution on XJ is not the one where a (|J |p)-sized subset of J is
chosen uniformly at random from the set of all (|J |p)-sized subsets of J .

The variables X1, . . . , Xn are an example of negatively associated random
variables. We note that in this case the tail bounds are even better—that
is, more sharply concentrated around the expectation—than for binomial
distribution. Intuitively, for any i, j ∈ I, the fact that Xi = 1 makes it less
likely that Xj = 1 and the fact that Xi = 0 makes it more likely that Xj = 1.
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2. CONCENTRATION BOUNDS FOR SUMS OF BERNOULLI VARIABLES 13

Formally, if p ∈ (0, 1),

Pr
[
Xj = 1 | Xi = 1

]
=

(
n−2
np−2

)(
n−1
np−1

) =
np− 1

n− 1
< p, and

Pr
[
Xj = 1 | Xi = 0

]
=

(
n−2
np−1

)(
n−1
np

) =
np

n− 1
> p.

Our main theorem, a multiplicative version of a tail bound for negatively associated
random variables, is the following.

Theorem 1.20. Let X1, . . . , Xn be n indicator random variables and let δ > 0 be
a given parameter. Set X =

∑n
i=1 Xi.

(1) Let p1, . . . , pn be reals in [0, 1], 0 <
∑n

i=1 pi < n, such that

for any I ′ ⊆ [n] Pr

[(∏
i∈I′

Xi

)
= 1

]
≤
∏
i∈I′

pi.

Let p̃ =
∑

i pi

n . Then

Pr
[
X ≥ (1 + δ)np̃

]
≤

⎛
⎜⎝
(
1− p̃δ

1−p̃

)(1+δ)p̃−1

(1 + δ)(1+δ)p̃

⎞
⎟⎠

n

.(1.21)

The above expression can be simplified to give

Pr [X ≥ (1 + δ)np̃] ≤ e−
δ2

2+δnp̃.

(2) Let r1, . . . , rn be reals in [0, 1], 0 <
∑n

i=1 ri < n, such that

for any I ′ ⊆ [n] Pr

[(∏
i∈I′

(1− Xi)

)
= 1

]
≤
∏
i∈I′

(1− ri) .

Let r̃ =
∑

i ri
n . Then

Pr
[
X ≤ (1− δ)nr̃

]
≤

⎛
⎜⎝
(
1 + δr̃

1−r̃

)−1+r̃−δr̃

(1− δ)
r̃(1−δ)

⎞
⎟⎠

n

.(1.22)

The above expression can be simplified to give

Pr [X ≤ (1− δ)nr̃] ≤ e−
δ2

2 nr̃.

We remark that the two preconditions of the above theorem imply that for any
variable Xi, we have

Pr [Xi = 1] ≤ pi, and

Pr [(1− Xi) = 1] ≤ 1− ri or equivalently, Pr [Xi = 1] ≥ ri.

Thus the variables pi and ri are upper and lower bounds on the probability that
Xi = 1, and therefore nr̃ ≤ E

[∑
i Xi

]
≤ np̃.

The above theorem applies to both the two earlier distributions—binomial and
sampling without replacement—as it avoids using independence of the Xi’s and
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14 1. A PROBABILISTIC AVERAGING TECHNIQUE

instead uses an upper bound on Pr
[(∏

i∈J Xi

)
= 1
]
and Pr

[(∏
i∈J (1− Xi)

)
= 1
]

for every J ⊆ I.

Binomial distribution: Theorem 1.20 and independence implies the following.

Corollary 1.23. Let I = {1, . . . , n} and p1, . . . , pn ∈ [0, 1] be given parameters.
Let R ⊆ I be a random sample constructed by picking each i ∈ I independently
with probability pi. Then for a fixed J ⊆ I and δ > 0,

Pr
[
|J ∩ R| ≥ (1 + δ) E [|J ∩ R|]

]
= Pr

[
|J ∩ R| ≥ (1 + δ)

∑
j∈J

pj

]

≤ e−
δ2

2+δ

∑
j∈J pj ,

Pr
[
|J ∩ R| ≤ (1− δ) E [|J ∩ R|]

]
= Pr

[
|J ∩ R| ≤ (1− δ)

∑
j∈J

pj

]

≤ e−
δ2

2

∑
j∈J pj .

In particular,

Pr

[
|J ∩ R| ≥ (1 + δ)

∑
j∈J

pj
⋃

|J ∩ R| ≤ (1− δ)
∑
j∈J

pj

]
≤ 2 e−

δ2

2+δ

∑
j∈J pj .

Sampling without replacement: Theorem 1.20 together with Equations (1.18)
and (1.19) implies the following.

Corollary 1.24. Let I = {1, . . . , n} and t ∈ [n] be a given parameter. Let R ⊆ I
be a random sample of size t chosen uniformly from all

(
n
t

)
t-sized subsets of I.

Then for any fixed J ⊆ I and δ > 0,

Pr

[
|J ∩ R| ≥ (1 + δ) |J | t

n

]
≤ e−

δ2

2+δ |J|
t
n ,

Pr

[
|J ∩ R| ≤ (1− δ) |J | t

n

]
≤ e−

δ2

2 |J| t
n .

In particular,

Pr

[
|J ∩ R| ≥ (1 + δ) |J | t

n

⋃
|J ∩ R| ≤ (1− δ) |J | t

n

]
≤ 2 e−

δ2

2+δ |J|
t
n .

We remark here that these bounds are tight within constant factors in the
exponent for certain ranges of δ. Here is one lower bound (stated without
proof; see discussion).

Theorem 1.25. Let I = {1, . . . , n} and p ∈
(
0, 1

2

]
. Let R ⊆ I be a random

sample constructed by picking each i ∈ I independently with probability p. Then

for δ ∈
[√

3
np

, 1
2

]
,

Pr
[
|R| ≥ (1 + δ)np

]
≥ e−9δ2np,

Pr
[
|R| ≤ (1− δ)np

]
≥ e−9δ2np.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



2. CONCENTRATION BOUNDS FOR SUMS OF BERNOULLI VARIABLES 15

Overview of ideas. The proof of Theorem 1.20 will use our probabilistic averaging
technique. That is, we will take a random sample of {1, 2, . . . , n} and calculate the
probability of a carefully chosen event due to it in two ways.

At first glance, it might seem odd to estimate the probability of a random event—in
our case the tail bounds on X—by taking another random sample! However it is a
mistake to confuse these two separate probability distributions, with very different
purposes—one is part of the input problem and the other is part of the averaging
proof technique.

Perhaps a more modular way to think about this is to consider the quantity we
are bounding—Pr [X ≥ (1 + δ)np̃]—combinatorially : the support of the probabil-
ity distribution consists of 2n binary strings corresponding to all possible assign-
ments of the 0-1 variables X1, . . . , Xn. Each string s ∈ {0, 1}n has some probability,
say w(s), of being chosen.

Let |s| denote the number of 1’s in s. The precise value of w (s) depends

on the probability distribution. For example, when p1 = · · · = pn = p and

where np is an integer, w (s) = p|s| (1− p)n−|s| for the binomial distribution.

Similarly w (s) = 1/
(

n
np

)
if |s| = np, and 0 otherwise, for the sampling without

replacement distribution.

Then our goal is to upper bound the combinatorial quantity∑
s∈{0,1}n

|s|≥(1+δ)np̃

w (s) .

Seen this way, it is similar to the earlier use of the probabilistic averaging technique
to upper bound the sizes of level sets, with one difference being that earlier we were
bounding the cardinality instead of a weighted sum.

As a warm-up, we first prove the following weaker bound, calledMarkov’s inequality,
under the conditions of Theorem 1.20:

(1.26) Pr
[
X ≥ (1 + δ)np̃

]
≤ 1

1 + δ
.

While Markov’s inequality has an even simpler direct proof (furthermore, Markov’s
inequality holds for any positive random variable X for which E [X] exists, with
E [X] replacing np̃ in the stated bound. That is, X need not be the sum of n indica-
tor variables), the following proof is an easy natural application of the probabilistic
averaging technique and gives insight into the proof of Theorem 1.20.

Let S be a random sample of the index set I = {1, 2, . . . , n} where
each index is picked independently with probability q. Note that S is
independent of the Xi variables.

We count the following quantity in two ways:

E
[
|S1|

]
, where S1 = {i ∈ S : Xi = 1} .

That is, the expected number of indices i ∈ S for which Xi = 1.
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16 1. A PROBABILISTIC AVERAGING TECHNIQUE

Upper bound: Using linearity of expectation and the fact that we have
Pr [Xi = 1] ≤ pi,

E [|S1|] =
n∑

i=1

Pr [i ∈ S and Xi = 1] ≤
n∑

i=1

piq = np̃ q.

The last step used the fact that S and X are independent.

Lower bound: Consider the elements of the event space for the variable
X = X1+ · · ·+Xn for which X ≥ (1 + δ)np̃. Note that for each event
{X1, . . . , Xn} with X = k, the expected number of indices i ∈ S with
Xi = 1 is precisely kq. Thus we have

E
[
|S1|

∣∣ X ≥ (1 + δ)np̃
]
≥ (1 + δ)np̃ q.

Summing up over all events,

E [|S1|] =E
[
|S1|

∣∣ X ≥ (1 + δ)np̃
]
· Pr[X ≥ (1 + δ)np̃] +

E
[
|S1|

∣∣ X < (1 + δ)np̃
]
· Pr[X < (1 + δ)np̃]

≥E
[
|S1|

∣∣ X ≥ (1 + δ)np̃
]
· Pr[X ≥ (1 + δ)np̃]

≥ (1 + δ)np̃ q · Pr [X ≥ (1 + δ)np̃] .

Putting the upper and lower bounds together,

(1 + δ)np̃ q · Pr [X ≥ (1 + δ)np̃] ≤ E [|S1|] ≤ np̃ q,

and hence Pr [X ≥ (1 + δ)np̃] ≤ 1

1 + δ
.

An astute reader will notice that the proof above is needlessly complicated, as

the parameter q does not play any role: the dependence on q is linear in both

the upper and lower bounds and thus cancels out. Setting S = I (i.e., q = 1)

gives the standard proof of Markov’s inequality. This will not remain the case

for the proof of the main theorem, to which we turn to next.

We now prove our main theorem.

Proof of Theorem 1.20. As before, let S be a random sample where each
element in {1, 2, . . . , n} is picked independently with probability q.

We count the following quantity in two ways:

Pr
[∏

i∈S Xi = 1
]
.

That is, the probability that for each index i ∈ S, Xi = 1.

Note that this probability is over both the choice of S and the choice of X. Fur-
thermore S and X are independent.

Upper bound. It will be instructive to consider it in three, progressively more
general, scenarios:
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2. CONCENTRATION BOUNDS FOR SUMS OF BERNOULLI VARIABLES 17

• each Xi = 1 independently with probability pi: Then we have

Pr

[∏
i∈S

Xi = 1

]
=

n∏
i=1

(
1− Pr [i ∈ S and Xi = 0]

)

=

n∏
i=1

(1− q (1− pi)) ≤
(∑n

i=1 (1− q (1− pi))

n

)n

=

(
n − nq + q

∑n
i=1 pi

n

)n

= (qp̃ + 1− q)
n

,

where the third step uses the inequality of arithmetic and geometric means, that∏n
i=1 ai ≤

(∑n
i=1 ai

n

)n
for any non-negative reals a1, . . . , an.

• p1 = · · · = pn = p: Then p̃ = p and so

Pr

[∏
i∈S

Xi = 1

]
=
∑

Q⊆[n]

Pr
[
S = Q and

∏
i∈Q

Xi = 1
]

=
∑

Q⊆[n]

Pr [S = Q] · Pr

⎡
⎣∏
i∈Q

Xi = 1

⎤
⎦ (

S, X are independent
)

≤
n∑

i=0

(
n

i

)
qi(1− q)n−i · pi

(
by input assumption

)
= (qp + 1− q)

n
(
by the binomial theorem

)
.

• the general case:

Pr

[∏
i∈S

Xi = 1

]
=
∑

Q⊆[n]

Pr [S = Q] · Pr

⎡
⎣∏
i∈Q

Xi = 1

⎤
⎦

≤
∑

Q⊆[n]

q|Q|(1− q)n−|Q| ·
∏
i∈Q

pi

(
by input assumption

)

= (1− q)
n
∑

Q⊆[n]

∏
i∈Q

qpi
1− q

= (1− q)
n

n∏
i=1

(
1 +

qpi
1− q

)
,

where the last step uses the fact that
∏n

i=1(1+ ai) =
∑

Q⊆[n]

∏
i∈Q ai (each term

in the L.H.S. of this expression, when opened up, corresponds to a choice of either
1 or a from each of the n product terms). Continuing,

= (1− q)n
n∏

i=1

(
qpi + 1− q

1− q

)
=

n∏
i=1

(qpi + 1− q)

≤ (qp̃ + 1− q)
n

(
as earlier

)
.

Lower bound. Consider the elements of the event space of X = X1+ · · ·+Xn for
which X ≥ (1 + δ)np̃ . Note that for each instance of {X1, . . . , Xn} with X = k,

the probability that for each index i ∈ S we have Xi = 1 is exactly (1− q)n−k. In
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18 1. A PROBABILISTIC AVERAGING TECHNIQUE

our case k ≥ (1 + δ)np̃ and since (1− q)n−k is mononotically increasing with k, we
have

Pr

[∏
i∈S

Xi = 1
∣∣ X ≥ (1 + δ)np̃

]
≥ (1− q)

n−(1+δ)np̃
.

Summing up over all events,

Pr

[∏
i∈S

Xi = 1

]
=Pr

[∏
i∈S

Xi = 1
∣∣ X ≥ (1 + δ)np̃

]
· Pr[X ≥ (1 + δ)np̃] +

Pr

[∏
i∈S

Xi = 1
∣∣ X < (1 + δ)np̃

]
· Pr[X < (1 + δ)np̃]

≥Pr

[∏
i∈S

Xi = 1
∣∣ X ≥ (1 + δ)np̃

]
· Pr[X ≥ (1 + δ)np̃]

≥ (1− q)n−(1+δ)np̃ · Pr [X ≥ (1 + δ)np̃] .

Combining the upper and lower bounds,

(1− q)
n−(1+δ)np̃ ·Pr [X ≥ (1 + δ)np̃] ≤ Pr

[∏
i∈S

Xi = 1

]
≤ (1− q (1− p̃))

n

=⇒ Pr [X ≥ (1 + δ)np̃] ≤
(

1− q (1− p̃)

(1− q)
1−(1+δ)p̃

)n

.

To minimize the R.H.S. of the above expression3, we set q = δ
(1−p̃)(1+δ) . Then

Pr [X ≥ (1 + δ)np̃] ≤

⎛
⎜⎝ 1− δ

(1−p̃)(1+δ) (1− p̃)(
1− δ

(1−p̃)(1+δ)

)1−(1+δ)p̃

⎞
⎟⎠

n

=

⎛
⎜⎝ 1

1+δ(
1−p̃−p̃δ

(1−p̃)(1+δ)

)1−(1+δ)p̃

⎞
⎟⎠

n

=

⎛
⎜⎝
(

1−p̃−p̃δ
1−p̃

)(1+δ)p̃−1

(1 + δ)(1+δ)p̃

⎞
⎟⎠

n

=

⎛
⎜⎝
(
1− p̃δ

1−p̃

)(1+δ)p̃−1

(1 + δ)(1+δ)p̃

⎞
⎟⎠

n

,

getting the required bound.

The other direction—an upper bound on the probability that the number of 1’s in
X is at most (1 − δ)nr̃—is equivalent to upper bounding the probability that the
number of 0’s in X is at least

n − (1− δ)nr̃ =

(
1− (1− δ) r̃

(1− r̃)

)
n (1− r̃) =

(
1 +

δr̃

1− r̃

)
n (1− r̃) .

3The partial derivative w.r.t. q is

(
np̃

)(
(1+δ)(p̃−1)q+δ

)(
((p̃−1)q+1)(1−q)δp̃+p̃−1

)n

(q−1)((p̃−1)q+1)
.
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2. CONCENTRATION BOUNDS FOR SUMS OF BERNOULLI VARIABLES 19

Set Yi = 1 − Xi for i = 1, . . . , n, and let Y =
∑

i Yi. That is, Y = n − X is a
random variable denoting the number of 0’s in X. Then

Pr [X ≤ (1− δ)nr̃] = Pr

[
Y ≥

(
1 +

δr̃

1− r̃

)
n (1− r̃)

]
.

Thus we can apply the previous bound on the variable Yi’s, now with probabilities

(1 − ri) instead of pi. We have
∑n

i=1(1−ri)

n = (1− r̃) and so from Equation (1.21)

with δ′ = δr̃
1−r̃ ,

Pr [Y ≥ (1 + δ′)n (1− r̃)] ≤

⎛
⎜⎝
(
1− (1−r̃)δ′

1−(1−r̃)

)(1+δ′)(1−r̃)−1

(1 + δ′)(1+δ′)(1−r̃)

⎞
⎟⎠

n

=

⎛
⎜⎝(1− δr̃

r̃

)(1+ δr̃
1−r̃ )(1−r̃)−1

(
1 + δr̃

1−r̃

)(1+ δr̃
1−r̃ )(1−r̃)

⎞
⎟⎠

n

=

⎛
⎜⎝ (1− δ)−r̃(1−δ)(

1 + δr̃
1−r̃

)1−r̃+δr̃

⎞
⎟⎠

n

=

⎛
⎜⎝
(
1 + δr̃

1−r̃

)−1+r̃−δr̃

(1− δ)
r̃(1−δ)

⎞
⎟⎠

n

,

getting the required bound.

The simplifications of these expressions are covered in many places and we refer
the reader to existing literature on this (see discussion). �
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CHAPTER 2

First Constructions of Epsilon-Nets

Consider the minimum hitting set problem for disks:

Let P be a set of n points in R
2 and R a collection of m subsets of P

induced by disks in the plane. Call a set Q ⊆ P a hitting set of R if
Q contains at least one point from each set of R. Then our goal is to
compute a hitting set of R of minimum cardinality.

Let OPT be the size of a minimum hitting set of R. As computing such a set is
NP-hard, we present a polynomial-time algorithm that computes a hitting set of
size at most c · OPT, where c > 1 is a constant independent of n. We will do so
by choosing a random sample from P . However a set R ∈ R of small cardinality is
unlikely to be hit by a uniform random sample—unless one samples many points of
P , possibly much larger than OPT. To circumvent this problem, our plan will be
to sample non-uniformly, so that points in small sets have a higher probability of
being picked. This will be done by assigning weights to points of P using a linear
program, as follows.

We formulate the minimum hitting set problem as an integer program, with a
boolean variable for each point of P and one constraint for each set of R. Relaxing
this integer program gives a linear program (LP) on n variables, with a variable
xp ∈ [0, 1] for each p ∈ P . This LP, shown below, can be solved in polynomial time.

Minimize
∑
p∈P

xp

subject to

(C1) for each R ∈ R :
∑
p∈R

xp ≥ 1,

(C2) for each p ∈ P : 0 ≤ xp ≤ 1.

Fix values of {xp : p ∈ P} that realize the optimal solution, and set

W ∗ =
∑
p∈P

xp.

Note that W ∗ ≤ OPT, since the more constrained integer program—when each
variable xp is either 0 or 1—has value OPT. Call xp the weight of the point p, and
define the weight of a set to be the sum of the weights of its elements.

The LP constraint (C1) forces the sum of the variables in each set R ∈ R to be
least 1. In other words,

the weights {xp : p ∈ P} are set such that each set of R has weight at
least 1

W∗ -th of the total weight.

21
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22 2. FIRST CONSTRUCTIONS OF EPSILON-NETS

The LP-assigned xp can be viewed as quantifying the ‘importance’ of p—points
lying in sets of small cardinality will generally get assigned higher values. Here the
role of the LP ends and we will now use the weights xp to guide us in constructing
our hitting set.

The key is that our earlier problem—that sets of R with small cardinality were
unlikely to be hit by a uniform random sample—is now resolved if we sample
according to weights, as each set of R is now guaranteed to have weight at least
1

W∗ -th of the total weight. In particular, say we construct a random sample N by
picking each p ∈ P independently with probability xp. Then we have

E [|N |] =
∑
p∈P

xp = W ∗,

and further, for each R ∈ R, LP constraint (C1) implies that

E [|N ∩ R|] =
∑
p∈R

xp ≥ 1.

So far we have not used the fact that R is induced by disks in the plane. That now
comes into play due to the following theorem (proof presented later in this chapter)
that “implements” our probabilistic intuition.

Theorem. There exists an absolute constant c ≥ 1 such that the following is true.
Let P be a set of n points in R

2 and let w : P → [0, 1] be a weight function on P .
Then for any ε > 0, there exists a set N ⊆ P of cardinality at most c

ε such that N
hits any disk containing points of weight at least an ε-th fraction of the total weight.

We apply the above theorem to P , with w (p) = xp and ε = 1
W∗ , to get a set N

with
|N | ≤ c

ε
= c · W ∗ ≤ c ·OPT .

Finally, N is a hitting set of R since each set of R has weight 1
W∗ -th of the total

weight. This concludes the proof.

The general task of converting the solution of a linear program into an integer

solution is called rounding in optimisation and algorithms.

We now turn to the main object of study—the set N of the above theorem. This
notion is defined for general set systems as follows.

Definition 2.1. Given a set system (X,F) and a parameter ε > 0, a set N ⊆ X
is an ε-net of (X,F) if for each F ∈ F with |F | ≥ ε · |X|, we have N ∩ F 
= ∅.

Note that in the definition above, one seeks to hit sets whose cardinality
is at least an ε-th fraction of the total number of points, while for the
hitting set problem we wanted to hit all sets with weight an ε-th fraction
of the total weight. But they are essentially equivalent: due to the fact
that the coefficients of our LP are all rational numbers, each weight xp

is a rational number and so by scaling up the weights to be integers and
replacing each p ∈ P with correspondingly many distinct new elements,
the weighted statement can be reduced to the cardinality one (this will
be formally presented later, in Theorem 8.20).

Our goal in this chapter is to show the existence of ε-nets of small size when the
set system is derived from configurations of geometric objects.
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1. Deterministic

Many people have an impression that mathematics is an austere and
formal subject concerned with complicated and ultimately confusing rules
for the manipulation of numbers, symbols, and equations, rather like the
preparation of a complicated income tax return. Good mathematics is
quite opposite to this. Mathematics is an art of human understanding.

William Thurston

Given a set P of n points in the plane, let R be the primal set system induced on
P by disks. That is,

R =
{
D ∩ P : D is a disk in R

2
}

.

What is the size of the smallest ε-net N of R?

See the figure (a) for an example with n = 16 and a 1
4 -net N consisting of 6 points

(shaded). In this case, any disk containing at least 1
4 · 16 = 4 points must contain

at least one of the six points of N .

It is easy to see that there are point sets where every ε-net must have size at least⌊
1
ε

⌋
. For example, arrange n points in groups of size εn, place the points in each

group inside a small disk and place these disks disjoint from each other. See figure
(b). Clearly, N must contain at least one point from each such disk and there are⌊
1
ε

⌋
of them.

(a) (b)

On the other hand, in the above example, constructing N by arbitrarily picking
one point from each disk is not sufficient, as there could exist a disk containing εn
points of P but not containing any point of N .

Surprisingly, as we will see in Chapter 3, for any point set P in R
2 and ε > 0, there

does exist an ε-net of size O
(
1
ε

)
of the primal set system induced on P by disks.

In this section we deal with some simpler set systems, showing O
(
1
ε

)
-sized ε-nets

via ad-hoc geometric constructions.

Intervals in R. Given a set P of n points in R, our goal is to pick a set N ⊆ P
such that any interval that contains at least εn points of P contains some point
of N . This is easy: sort the points of P in increasing order and simply pick every
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24 2. FIRST CONSTRUCTIONS OF EPSILON-NETS

�εn�-th point in this order. As any interval contains a contiguous subset of P with
respect to this ordering, every interval containing at least εn points of P will be hit
by N . The size of N is n


εn� ≤ n
εn ≤ 1

ε .

Anchored rectangles in R
2. Let P be a set of n ≥ 3 points in R

2, each with
positive y-coordinate. We seek an ε-net N of the primal set system induced on
P by axis-aligned rectangles ‘anchored’ at the x-axis—that is, rectangles with one
horizontal edge lying on the x-axis. To construct N , assume the points of P =
{p1, . . . , pn} are sorted by increasing x-coordinates. Partition P into sets P1, . . . , Pt

of contiguous points, with each Pi containing
⌈
εn
2

⌉
points of P (except the last set Pt

which could contain fewer points). For each i = 1, . . . , t add a point with the lowest
y-coordinate in Pi—denote this point by qi—to N . Note that |N | = t ≤ 2

ε +1. See
the figure.

x-axis

P1 P2 P3 P4 P5

q1

q2

q3 q4
q5

To see why N is an ε-net, consider any anchored rectangle R containing at least εn
points of P . If R contains points from two sets of our partition, then it must contain
one of those sets completely1 and will be hit by N . Otherwise R must contain points
from at least 3 sets in our partition, say the sets Pi, Pj and Pk where i < j < k.
Then R must contain the point qj ∈ N with the lowest y-coordinate in Pj .

Half-spaces in R
2. Our final result of this section is the following.

Theorem 2.2. Given a set P of n points in the plane and a parameter ε > 0, there
exists an ε-net of size at most 2

⌈
1
ε

⌉
+ 1 of the primal set system induced on P by

half-spaces in R
2.

Proof. We assume that P is in general position: no three points of P lie on
a common line.

First consider the easier case where P is in convex position. Then any half-space
must contain a contiguous subset, with respect to the cyclic order in which the
points appear on the convex-hull, of P . Thus picking every �εn�-th point along the
convex-hull gives an ε-net of size

⌈
1
ε

⌉
(this is essentially the interval case).

1This was the reason for setting the cardinalities of the Pi’s as we did.
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Otherwise, if P is not in convex position, we will first map the points in P to a set
P ′ which is in convex position, construct an ε-net N ′ of P ′, and from N ′ reconstruct
an ε-net N of P .

Pick any point lying in the interior of the convex-hull conv (P ) of P , say o ∈ P . For
each pi ∈ P \{o}, trace a ray from o through pi till this ray intersects the boundary
of conv(P ) at some point, say denoted by p′i. Map pi to p′i (note that if pi was on
conv (P ), then p′i = pi).

Let P ′ be the resulting set of n − 1 points in convex position. Pick an ε-net N ′ of
P ′ of size at most

⌈
1
ε

⌉
.

O OO

Now we show how to construct an ε-net N from N ′. For each p′i ∈ N ′ there are
two possibilities:

p′i = pi: That is, pi was already on conv (P ). Add pi to N .

p′i 
= pi: Then p′i lies on some edge of conv(P ) that is spanned by some two points
of P . Add both these points to N .

See the figure. Finally, add the point o to N . Clearly,

|N | ≤ 2 · |N ′|+ 1 = 2

⌈
1

ε

⌉
+ 1.

We claim that N is an ε-net. Consider any half-space h containing at least εn points
of P . If h contains o, we are done as o ∈ N . Otherwise, we have the property that
if a point pi lies in h then the point p′i also lies in h. Thus h contains at least εn
points of P ′, and so it must contain a point p′ ∈ N ′. This implies that h must also
contain at least one of the endpoints of the edge of conv(P ) on which p′ lies, both
of which were added to N . �

Bibliography and discussion. The proof for half-spaces that we
presented was invented here for didactic purposes; the original proof
in [KPW922a] is by an extremal configuration argument.

[KPW922a] J. Komlós, J. Pach, and G. Woeginger, Almost tight bounds for ε-nets, Discrete Com-
put. Geom. 7 (1992), no. 2, 163–173, DOI 10.1007/BF02187833. MR1139078
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2. Probabilistic

A modern mathematical proof is not very different from a modern
machine—the simple fundamental principles are hidden and almost in-
visible under a mass of technical details.

Hermann Weyl

Our first theorem gives an upper bound on the size of ε-nets for general set systems.

Theorem 2.3. Let (X,F) be a set system with |X| = n and |F| = m. Then given

a parameter ε > 0, there exists an ε-net N of F of size at most ln(m+1)
ε . Such a set

can be computed by a greedy deterministic algorithm in time O (nm).

Furthermore, given a parameter γ ∈
(
0, 1

2

]
, a uniform random sample N ⊆ X of

size 1
ε ln

m
γ is an ε-net of F with probability at least 1− γ. The same holds if N is

constructed by picking each point of X independently with probability 1
εn ln m

γ .

If the set system F is arbitrary, then the above bound is tight within constant
factors.

Theorem 2.3 does not assume anything about the structure of F . Obviously set
systems derived from geometry have additional properties and hence one can expect
to get better bounds in many cases. Consider next the following case of a basic
geometric set system where this bound can be improved.

Let P be a set of n points in R
d andR the primal set system induced by axis-aligned

boxes. That is,

R =
{
B ∩ P : B is an axis-aligned box in R

d
}
.

First observe that |R| = O
(
n2d
)
:

take any set R ∈ R, and let B be an axis-aligned box such that R = B∩P .
Now let B′ be another axis-aligned box constructed by translating each
of the 2d axis-parallel bounding hyperplanes of B ‘inwards’ till they each
contain a point of P . Then clearly B′ contains precisely the points of R,
and further, each of its 2d axis-parallel bounding hyperplanes contains
a point of P . As there are n choices for each such hyperplane, there are
at most n2d possible B′’s, implying the same bound for the size of R.

Theorem 2.3 now implies the existence of an ε-net of size 1
ε log (|R|+ 1)=O

(
d
ε log n

)
of R. Our second main result of this section shows that this bound can improved
by a simple geometric observation.

Theorem 2.4. Let P be a set of n points in R
d and let ε ∈

(
0, 1

2

]
be a given

parameter. Then, with probability at least 1
2 , a uniform random sample of X of

size Θ
(
d
ε log

d
ε

)
is an ε-net of the primal set system induced by axis-aligned boxes

in R
d.

The fact that the above bound of Θ
(
d
ε log

d
ε

)
is independent of

the size of X and the size of R is the key in many applications
of ε-nets.
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Proof of Theorem 2.3. Note that for our purposes we can assume that each
set in F has size at least εn. Let F = {F1, . . . , Fm}.
There are several, essentially equivalent, ways of viewing the proof.

Iterative view: We construct N by a greedy algorithm. Set F1 = F . Pick an
element of X that hits the maximum number of sets of F1, say p1 ∈ X. Add p1
to N , remove the sets hit by p1 from F1 and denote this smaller collection by F2.
Now re-iterate this procedure on F2; we continue these iterations until there are
no remaining unhit sets.
Let pi ∈ X be the point added to N in the i-th iteration, and let Fi+1 be the
unhit sets after i iterations. By the pigeonhole principle, at the i-th iteration
there exists an element of X hitting at least∑

F∈Fi
|F |

n
≥
∑

F∈Fi
εn

n
= ε · |Fi|

sets of Fi. Thus for any i ≥ 1, we have

|Fi+1| ≤ (1− ε) |Fi| ≤ (1− ε)
2 |Fi−1| ≤ · · · ≤ (1− ε)

i · |F|.

After the t-th iteration, we have in total added t elements to N and the number

of unhit sets remaining is at most (1− ε)
t

m. Setting t = ln(m+1)
ε , we get

|Ft+1| ≤ (1− ε)
t · m ≤ m e−ε t ≤ m e− ln(m+1) =

m

m + 1
< 1.

In other words, Ft+1 is empty and so N is a hitting set of F , of size at most
ln(m+1)

ε .
This algorithm can be implemented in deterministic O (nm) time:

Let A be an array of size n, such that A[j] is the number of sets of
F containing the j-th element of X; A can be constructed in O (nm)
time simply by iterating over all sets of F .
In each iteration i = 1, . . ., we can compute pi in O (n) time by scanning
A to find a maximum value. Next we iterate over all sets of F , and for
each F ∈ F that is hit by pi, we
a) remove F from F , and
b) update A by decrementing each A[j] if F contains the j-th ele-

ment.
If ti sets are hit by pi, then the total time taken is O (m + nti).
As the total number of iterations is at most min {n, m}, the total time
is

O (mn) +

min{n,m}∑
i=1

O (n + m + nti) = O (nm) +O (n)
∑
i

ti = O (nm) .

Combinatorial view: Note that the pigeonholing in the above proof essentially
states that, on average, each element of X hits εm sets of F . Of course, this
average goes down with the number of iterations, which is what results in the
multiplicative logarithmic term. This argument can be viewed succinctly combi-
natorially, as follows. Let t be a positive integer whose value will be fixed later.
Then, we

count the number of subsets of X of size t that are not ε-nets of F .
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For each F ∈ F , there are
(
n−|F |

t

)
≤
(
n−εn

t

)
subsets of X of size t that do not hit

F . Hence the number of subsets of X that do not hit at least one set of F can
be upper bounded as∑

F∈F

(
# of t-sized subsets of X that do not hit F

)
≤ m ·

(
n − εn

t

)
.

If this is less than the total number of subsets of size t, then clearly there exists a

set of size t that hits all sets of F . A calculation now shows that for t = ln(m+1)
ε ,

this is indeed the case:

m ·
(
n−εn

t

)(
n
t

) = m · (n − t)!

(n − εn − t)!
· (n − εn)!

n!

= m · (n − t)

n

(n − t − 1)

(n − 1)
· · · (n − εn − t + 1)

(n − εn + 1)

= m ·
(
1− t

n

)(
1− t

n − 1

)
· · ·
(
1− t

n − εn + 1

)

≤ m ·
(
1− t

n

)εn

≤ m · e−ε t = m · e− ln(m+1) < 1.

Probabilistic view: Perhaps the simplest view is the probabilistic one. Take a
random sample N in the following way.

N : choose an element uniformly at random from X t times (with replacement).

Then

Pr
[
a fixed set F ∈ F is not hit by N

]
=

(
1− |F |

n

)t

≤ (1− ε)t ≤ e−ε t.(2.5)

By the union bound over all sets in F ,

Pr
[
N fails to be an ε-net of F

]
≤ m e−ε t.(2.6)

For t = ln(m+1)
ε , this is less than 1. In particular there is a non-zero probability

that N will hit all sets and so there has to exist at least one such set. Furthermore,
setting t = 1

ε ln
m
γ implies that N is an ε-net of F with probability at least 1− γ.

If N is constructed by picking each point of X independently with probability
1
εn ln m

γ , the probability that N fails to be an ε-net of F can be upper bounded
as ∑

F∈F

(
1− 1

εn
ln

m

γ

)|F |
≤ m

(
1− 1

εn
ln

m

γ

)εn

≤ m exp

(
− ln

m

γ

)
= γ,

as desired.

�

Observe that in the probabilistic view of the proof of Theorem 2.3, to get a constant
probability of hitting any fixed set of size at least εn, we only need to take a random
sample of size Θ

(
1
ε

)
(Equation (2.5)). The additional multiplicative lnm factor

arose due to the requirement of hitting all m sets of F simultaneously, and for which
we used the union bound to upper bound the failure probability (Equation (2.6)).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



2. PROBABILISTIC 29

Our second main result improves this lnm factor when the set system is induced by
axis-aligned boxes in R

d, by showing that the number of sets over which to apply
the union bound can be made much smaller.

Theorem 2.4. Let P be a set of n points in R
d and let ε ∈

(
0, 1

2

]
be a given

parameter. Then, with probability at least 1
2 , a uniform random sample of X of size

Θ
(
d
ε log

d
ε

)
is an ε-net of the primal set system induced by axis-aligned boxes in R

d.

Proof. Given P and ε > 0, we will show the existence of a small set of boxes—

in fact O
((

4d
ε

)2d)
, independent of n—such that it suffices to construct an ε

2 -net

for these boxes. The next lemma proves their existence.

Lemma 2.7. Given a set P of n points in R
d and a parameter ε > 0, there exists a

set B = {B1, . . . , Bt} of t = O
((

4d
ε

)2d)
axis-aligned boxes such that

• each box of B contains at least εn
2 points of P , and

• for any axis-aligned box B containing at least εn points of P , there exists
an index j ∈ {1, . . . , t} such that Bj ⊆ B.

Proof. For each i ∈ [d], let Hi be a set of hyperplanes orthogonal to the i-th
axis such that there are at most εn

4d points of P between two consecutive, as ordered
along the i-th axis, hyperplanes of Hi. The same also holds for the two half-infinite
slabs bounded by the first and last hyperplane of Hi. Note that

|Hi| ≤
⌈

n

(εn/4d)

⌉
=

⌈
4d

ε

⌉
.

Set H = H1 ∪ · · · ∪ Hd. Note that the hyperplanes of H induce a non-uniform grid
in R

d. See the figure for an illustration in R
2.

H1

H2

B

B

Now for any box B containing εn points of P , one can move each of B’s 2d bound-
ing hyperplanes ‘inwards’ till each coincides with a hyperplane of H; let B′ be
the resulting smaller box. As there are at most εn

4d points of P between any two
consecutive hyperplanes of Hi, we have

|B′ ∩ P | ≥ |B ∩ P | − 2d · εn

4d
≥ εn − εn

2
=

εn

2
.

Thus our required set B is simply the set of all possible boxes formed by picking
2d hyperplanes from H, where exactly two hyperplanes are picked from each Hi,
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i = 1, . . . , d. We only keep those boxes which contain at least εn
2 points of P . We

have

|B| ≤
(
|H1|
2

)
·
(
|H2|
2

)
· · ·

(
|Hd−1|

2

)
·
(
|Hd|
2

)
= O

((
4d

ε

)2d
)

.

�

To compute an ε-net of the set system induced on P by axis-aligned boxes in R
d,

it suffices to compute an ε
2 -net N of the primal set system induced on P by the

boxes B = {B1, . . . , Bt} given by Lemma 2.7. Now the bound follows by applying
Theorem 2.3:

|N | ≤ ln (|B|+ 1)

ε/2
=

ln
(
O
((

4d
ε

)2d))
ε/2

= O

(
d

ε
log

d

ε

)
.

�
Bibliography and discussion. The general set system proof is folk-
lore, though typically only the probabilistic or greedy view is presented;
see [Cha00] for the idea in a more general weighted setting, as well as for
deterministic algorithms to compute such nets. The proof for axis-aligned
rectangles given here was invented for didactic purposes, mainly to illus-
trate the surprising fact that the size of an ε-net need not depend on the
number of elements or sets of a given set system.

[Cha00] B. Chazelle, The discrepancy method, Cambridge University Press, Cambridge, 2000.
Randomness and complexity, DOI 10.1017/CBO9780511626371. MR1779341
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3. Improved Probabilistic Analysis

He [Lefschetz] liked to repeat, as an example of mathematical pedantry,
the story of one of E. H. Moore’s visits to Princeton, when Moore
started a lecture by saying, ‘Let a be a point and let b be a point.’ ‘But
why don’t you just say, Let a and b be points!’ asked Lefschetz. ‘Because
a may equal b,’ answered Moore.

Lefschetz got up and left the lecture room.

Gian-Carlo Rota

Theorem 2.4 stated the existence of ε-nets of size O
(
d
ε log

d
ε

)
of the primal set

system induced by axis-aligned boxes in R
d. We now incorporate the key idea

present in that proof into a general technique for proving ε-net bounds for a broader
category of geometric set systems. As a warm-up illustration of the technique, we
first re-prove the bound for axis-aligned rectangles in R

2.

Theorem 2.8. Let P be a set of n points in R
2 and ε ∈

(
0, 1

2

]
a given parameter.

Then there exists an ε-net of size O
(
1
ε log

1
ε

)
of the primal set system induced on

P by axis-aligned rectangles in R
2.

Then we present another application of this technique.

Theorem 2.9. Let P be a set of n points in R
2 and ε ∈

(
0, 1

2

]
a given parameter.

Then there exists an ε-net of size O
(
1
ε log

1
ε

)
of the primal set system induced on

P by disks in R
2.

The construction in Theorems 2.8 and 2.9 remains the same as that in
Theorem 2.4: given a set P of n points in R

2, we construct a random
sample S by choosing each point of P independently with probability p.
We show that for p = Θ

(
1
εn log 1

ε

)
, there is a constant probability that

S is an ε-net.

Proof of Theorem 2.8. We will assume that P is in general position. In
particular, that no two points of P have the same x or y coordinate.

The key notion is that of canonical rectangles, similar to Definition 1.3. Let U be
an axis-aligned square containing P in its interior.

Definition 2.10. An axis-aligned rectangle R is called a canonical rectangle
spanned by Q ⊂ U if each bounding edge of R contains a point of Q or lies on
∂U .
Furthermore, a canonical rectangle R spanned by Q is called an empty canonical
rectangle if the interior of R contains no point of Q.

Note that there are O
(
n4
)
canonical rectangles spanned by any set of n points in

the plane. Furthermore, there are four types of canonical rectangles, ‘fixed’ by 4,
3, 2 or 1 points of Q on the boundary. See the figure for some examples of empty
canonical rectangles.
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U

For the rest of the proof, we only consider canonical rectangles fixed by
4 points; the other cases are very similar and treated mutatis mutandis.

Let S be a random sample constructed by picking each point of P independently
with probability p, for a parameter p to be fixed later.

The following key claim shows the relevance of canonical rectangles to ε-nets.

Claim 2.11. If the interior of each empty canonical rectangle spanned by S has
less than εn points of P , then S is an ε-net.

Proof. We prove the contrapositive. Assume that S is not an ε-net and let
R be an axis-aligned rectangle containing at least εn points of P and no point of
S. Then expand R by translating its left, right, top and bottom edges ‘outwards’
to transform it to an empty canonical rectangle R′ spanned by S. As R ⊆ int (R′),
the interior of R′ contains at least εn points of P . �

Thus it suffices to show that for an appropriate value of p, with non-zero probability,
the interior of each empty canonical rectangle spanned by the random sample S
contains less than εn points of P .

We first sketch a rough calculation that, while technically incorrect, conveys the
right idea.

There are O
(
E [|S|]4

)
possible canonical rectangles spanned by the points of

S. Let R be an empty canonical rectangle spanned by S. If R contains at least
εn points of P in its interior, then the probability that R contains no point of
S is at most (1− p)εn (circular reasoning, as we already assumed that R was
empty!). Thus by the union bound, the probability that there exists an empty
canonical rectangle spanned by S and containing at least εn points of P is at
most

O
(
E [|S|]4

)
· (1− p)εn = O

(
(np)4 · e−pεn) < 1

2
,

by setting p = c
εn

ln 1
ε
for a sufficiently large constant c.

The correct way of doing the probability calculations will use the following obser-
vation, stated without proof.

Claim 2.12. A canonical rectangle R spanned by four points of P ends up as an
empty canonical rectangle in S if and only if

(1) the four points spanning R are picked into S, and
(2) none of the points contained in the interior of R are picked into S.
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Let Rcan be the set of all canonical rectangles spanned by 4 points of P .
We have |Rcan| = O

(
n4
)
.

For each R ∈ Rcan let ER be the event that R ends up as an empty canonical
rectangle spanned by S. As each point of P was picked independently into S with
probability p, Claim 2.12 implies that

Pr
[
ER
]
= p4 · (1− p)

|int(R)∩P |
.

Setting p = c
εn ln 1

ε for a constant c, and using the union bound over all rectangles
in Rcan, the probability that a rectangle of Rcan containing at least εn points of P
in its interior ends up as an empty canonical rectangle spanned by S, is

Pr

⎡
⎢⎢⎣ ⋃

R∈Rcan

|int(R)∩P |≥εn

ER

⎤
⎥⎥⎦ ≤

∑
R∈Rcan

|int(R)∩P |≥εn

Pr
[
ER
]
=

∑
R∈Rcan

|int(R)∩P |≥εn

p4 · (1− p)|int(R)∩P |

= O
(
n4
)
· O
(
p4 · e−p εn

)
= O

(
n4 ·

(
c

εn
ln

1

ε

)4

· e−c ln 1
ε

)

= O

((
c ln

1

ε

)4

· εc−4

)
≤ 1

16
,

for a sufficiently large constant c (e.g., as ε ≤ 1/2, taking c = 25 gives (25 ln 2)4 ·
1

221 ≤ 1
22 ).

Similarly, consider the set of all canonical rectangles containing at least εn points
of P and fixed by 3 points of P . The probability that one of them ends up as an
empty canonical rectangle spanned by S is at most

O
(
n3
)
· O
(
p3e−pεn

)
= O

((
c ln

1

ε

)3

· εc−3

)
≤ 1

16
.

Likewise for the canonical rectangles fixed by 2 and 1 points of P . Therefore, with
probability at least 1 − 4

16 = 3
4 , the interior of each empty canonical rectangle

spanned by S has less than εn points of P and so by Claim 2.11, S is an ε-net.

Finally we have

E
[
|S|
]
= np =

c

ε
ln

1

ε
.

By Markov’s inequality (Equation (1.26)), the probability that |S| ≥ 4E [|S|] is at
most 1

4 . Thus by the union bound,

Pr [S is not an ε-net or |S| ≥ 4np] ≤ Pr [S is not an ε-net ] + Pr [|S| ≥ 4np]

≤ 1

4
+

1

4
=

1

2
.

and so with probability at least 1
2 , S is an ε-net and has size at most 4np =

O
(
1
ε log

1
ε

)
, completing the proof. �

To avoid having to use Markov’s inequality, sometimes the sampling is done

with a different distribution, either by letting S be a uniform random subset of

size t = Θ
(
1
ε
log 1

ε

)
or by picking t elements from P with replacement. Then
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the size of S is fixed, though the probability calculations become slightly more

involved. The final result is the same within constant factors.

The reader will notice that the only property of axis-aligned rectangles used in
the proof of Theorem 2.8 is that a canonical rectangle R is ‘fixed’ by a constant
number of points of P and that R is an empty canonical rectangle spanned by S if
and only if these points are picked into S and none of the points in the interior of
R are picked into S. This is a very general idea and we now outline how a similar
method of analysis shows the existence of an ε-net of size O

(
1
ε log

1
ε

)
of the primal

set system induced by disks.

Proof of Theorem 2.9. We will assume that P is in general position. In
particular, that no three points of P lie on a common line and no four points of P
lie on a common circle.

As before, let S be a random sample constructed by picking each point of P inde-
pendently with probability p, with the parameter p to be fixed later.

Consider the notion of canonical halfplanes and canonical disks.

Definition 2.13. A canonical halfplane spanned by Q ⊆ R
2 is a half-

plane whose boundary line contains two points of Q.

Furthermore, a canonical halfplane H spanned by Q is called an empty
canonical halfplane if the interior of H contains no point of Q.

Definition 1.3. A canonical disk spanned by Q ⊆ R
2 is a disk whose

boundary contains three points of Q.

Furthermore, a canonical disk D spanned by Q is called an empty canon-
ical disk if the interior of D contains no point of Q.

We will need the following independent geometric fact, an analog of Claim 2.11.

Claim 2.14. Let Q ⊂ R
2, |Q| ≥ 3, be a finite set of points and let D be a closed

disk not containing any point of Q. Then D lies in the interior of the union of at
most two empty canonical objects—disks/halfplanes—spanned by Q.

Proof. Let c be the center of D. Keeping c fixed, increase the radius of D
until it becomes tangent to some point of Q, say q1. Denote this new disk by D1;
clearly D ⊂ D1. Next, move the center c of D1 along the direction �q1c, while
keeping D1 tangent to q1, until it becomes tangent to another point of Q2, say q2.
Denote this disk by D2 and its center by c2. Again we have D1 ⊂ D2. See the
figure.

Note that c2 lies on the perpendicular bisector of the segment q1q2. Transform
D2, while keeping it tangent to both q1 and q2, by moving its center c2 along this
bisector in each of the two directions till it becomes tangent to a third point of Q.
This gives two empty canonical disks or halfplanes whose union contains D2 in its
interior, completing the proof. �

2It could happen that D1 becomes a halfplane, in which case we can rotate it clockwise
and anti-clockwise around q1 to get two empty canonical halfplanes spanned by Q such that the
interior of their union contains D1.
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D

q1 q1

q2

q1

q2

D1

D1

D2

D2
c

c2

Claim 2.14 implies that

if the interior of each empty canonical disk and each empty canonical
halfplane spanned by S contains less than εn

2 points of P , then any
closed disk containing no point of S contains less than εn points of P ,
and thus S is an ε-net.

A canonical disk D spanned by three points of P is an empty canonical disk spanned
by S if and only if the three points spanning D are present in S and no point of P
lying in the interior of D is picked into S. The probability that this happens for a
fixed canonical disk D is precisely

p3 · (1− p)
|int(D)∩P |

.

There are O
(
n3
)
canonical disks spanned by P . Thus by the union bound, the

probability that some canonical disk spanned by P and containing at least εn
2

points of P in its interior ends up as an empty canonical disk spanned by S can be
upper bounded by

O
(
n3
)
· p3 · (1− p)

εn
2 = O

(
n3 · p3 · e−

p εn
2

)
= O

(
n3 ·

(
2c

εn
ln

1

ε

)3

· e−c ln 1
ε

)

= O

((
c ln

1

ε

)3

· εc−3

)
≤ 1

8
,

by setting p = 2c
εn ln 1

ε for a sufficiently large constant c.

A similar analysis shows that the probability that there exists an empty canoni-
cal halfplane spanned by Q and containing at least εn

2 points of P is at most 1
8 .

Markov’s inequality implies that with probability at least 3
4 , we have |S| ≤ 8c

ε ln 1
ε .

Thus one can conclude that with probability at least 1
2 , S is an ε-net of size

O
(
1
ε log

1
ε

)
. �
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CHAPTER 3

Refining Random Samples

Let R be the primal set system induced by disks on a set P of n points in the plane.
An earlier probabilistic construction—Theorem 2.3—of an ε-net N of R consisted
of taking a uniform random sample N ⊆ P . For N to be an ε-net with non-zero
probability, calculations using the union bound required that

|N | = Ω

(
1

ε
log |R|

)
= Ω

(
1

ε
log n

)
.

We were able to improve this bound by showing, using geometric properties of
disks, that the number of ‘bad’ events that cause a N ⊆ P to not be an ε-net can
be upper bounded by a polynomial function of 1

ε . This implied that a uniform

random sample N of size Θ
(
1
ε log

1
ε

)
is an ε-net of R with probability at least 1

2 .

If one is limited to taking a single uniform random sample, trivial considerations
show that this cannot be improved; that is, for a uniform random sample to be
an ε-net with probability at least 1

2 (or any absolute constant), we must sample

Ω
(
1
ε ln

1
ε

)
points.

Consider the case when R consists of 1
ε
disjoint sets of εn points each. Let N

be a uniform random sample of P of size 1
2ε

ln 1
ε
, constructed by repeatedly

choosing a point of P uniformly at random (with replacement). Then for each
S ∈ R,

Pr [S is not hit by N ] = (1− ε)|N| ≥ e−2 ε|N| ≥ ε,

where the second step uses the fact that 1− x ≥ e−2x for x ∈ [0, 0.79]. As the
sets of R are disjoint,

Pr [N is an ε-net of R] =
∏
S∈R

(1− Pr [S is not hit by N ]) ≤ (1− ε)
1
ε ≤ 1

e
.

If we are interested in the existence of small ε-nets, we need not restrict ourselves
to only taking random samples. The goal of this chapter is to improve the bounds
on ε-nets to o

(
1
ε log

1
ε

)
by the following general idea.

To improve upon the log t factor that is needed to take care of t bad
events using the union bound, we allow some bad events to happen and
then ‘fix’ these bad events with additional work. This involves a trade-
off: we pick a smaller initial random sample, but pay an additional price
to fix the problems caused by the failed events.

This idea is captured, in the parlance of our times, by the quote ‘the biggest risk
is to not take any risk’. It is also called the alterations technique in the study of
probabilistic methods. We illustrate the idea in our context by slightly improving
the upper bound of Theorem 2.3, which we first recall.

37
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Theorem 2.3. Let (X,F) be a set system with |X| = n and |F| = m. Then

given a parameter ε > 0, there exists an ε-net N of F of size at most ln(m+1)
ε

.
Such a set can be computed by a greedy deterministic algorithm in time O (nm).

Furthermore, given a parameter γ ∈
(
0, 1

2

]
, a uniform random sample N ⊆ X

of size 1
ε
ln m

γ
is an ε-net of F with probability at least 1− γ. The same holds

if N is constructed by picking each point of X independently with probability
1
εn

ln m
γ
.

Here is the improved statement.

Theorem 3.1. Let (X,F) be a set system with |X| = n and |F| = m. Then given

a parameter ε > 0, there exists an ε-net N of F of size at most ln(εm)
ε + 1

ε .

Proof. Let N0 be constructed by choosing an element, uniformly at random
from X, t times (with replacement). Let F ! be the sets of F not hit by N0. Add
an arbitrary point from each set of F ! to N0 to get an ε-net N . Then

E
[
|N |
]
≤ |N0|+ E

[
|F !|

]
≤ t +

∑
S∈F ,
|S|≥εn

Pr
[
S ∩ N0 = ∅

]

= t +
∑
S∈F ,
|S|≥εn

(
1− |S|

n

)t

≤ t + m (1− ε)
t ≤ t + me−ε t.

Setting t = ln(εm)
ε gives the required bound. �

While this improvement is modest in general, it is useful in cases where |F| can be
related to 1

ε . Here is an example.

Lemma 3.2. Let (X,F) be a set system where each set in F has size at least
ε|X|, and let D ≥ 2 be an integer such that each element of X belongs to at
most D sets of F . That is, degF (p) ≤ D for all p ∈ X. Then there exists an
ε-net of F of size O

(
1
ε
lnD
)
.

Proof. We first upper bound |F| by a double-counting argument:

|F| · ε|X| ≤
∑
F∈F

|F | =
∑
p∈X

degF (p) ≤ |X| ·D,

=⇒ |F| ≤ D

ε
.

The proof now follows by applying Theorem 3.1. �
The rest of this chapter is essentially variations on this theme. When combined
with properties of geometric set systems, this is sufficient to deduce optimal bounds
for ε-nets of several geometric set systems in R

2.
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1. Linear-sized Nets for Disks in R
2

If you understand something, you understand that it is obvious.

Israel Gelfand

The main theorem of this chapter is the following.

Theorem 3.3. Let P be a set of n points in R
2 and ε > 0 a given parameter. Then

there exists an ε-net N of size O
(
1
ε

)
for the primal set system induced on P by

disks in R
2.

Overview of ideas. We first recall the probabilistic argument of Theorem 2.9 for
the existence of an ε-net of size O

(
1
ε log

1
ε

)
of the primal set system induced by

disks.
Let S ⊆ P be a uniform random sample constructed by choosing each point
of P independently with probability p = 2 c

εn
ln 1

ε
, for a constant c ≥ 1. The

analysis used the following geometric fact:

if the interior of every empty canonical disk and empty canonical
halfplane spanned by S contains fewer than εn

2
points of P , then S

is an ε-net of the primal set system induced on P by disks.

From now onwards we only consider the case of empty canonical disks; the
analysis for empty canonical halfplanes is similar.

The total number of canonical disks spanned by P is O
(
n3
)
and the probability

that a canonical disk with at least εn
2

points of P in its interior ends up as

an empty canonical disk spanned by S is at most p3 · (1− p)
εn
2 . Thus the

expected number of empty canonical disks spanned by S and whose interior
contains at least εn

2
points of P can be upper bounded by

O
(
n3) ·p3 ·(1− p)

εn
2 = O

(
n3 ·
(
2c

εn
ln

1

ε

)3

· e−c ln 1
ε

)
= O

((
c

ε
ln

1

ε

)3

· εc
)
.

The above is less than 1 for c sufficiently large, implying that S is an ε-net

with constant probability, with E [|S|] = np = Θ
(
1
ε
log 1

ε

)
.

Now consider a uniform random sample S constructed by picking each point of P
independently with the smaller probability p = 1

εn .

At first glance, the above argument prohibits setting p = c
εn for any

constant c, as then we only get an upper bound of

(3.4) O

(
n3 ·

( c

εn

)3
·
(
1−

( c

εn

)) εn
2

)
= O

(
c3

ε3
e−

c
2

)
= O

(
1

ε3

)
for the expected number of empty canonical disks spanned by S and
containing at least εn

2 points of P . This is not less than 1 for small-
enough ε, and so S need not be an ε-net.

To further improve this analysis will require the following two new ideas.

First idea: The probability of a canonical disk D spanned by P ending up as an
empty canonical disk spanned by S is exactly

p3 (1− p)|int(D)∩P | .

Earlier we upper bounded this by p3 (1− p)
εn
2 , as we are only interested in canon-

ical disks containing at least εn
2 points of P . However if |int (D) ∩ P | is much
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larger than εn
2 , this probability becomes considerably smaller, decreasing expo-

nentially with |int (D) ∩ P |. Thus the ‘hard case’ is when |int (D) ∩ P | is around
εn
2 . However, the total number of such canonical disks—say those containing at
least εn

2 and less than εn points of P—is much smaller than the naive bound of

O
(
n3
)
we used earlier:

Lemma 1.5 states that the number of canonical disks spanned by P
and containing at most k points of P in their interior is O

(
nk2

)
.

Thus for any t ≥ 1, we have

E
[
# of empty canonical disks D spanned

by S, with |int(D)∩P | ∈ [t εn
2 , tεn)

]
≤ O

(
n (tεn)

2
)
· p3 · (1− p)

tεn
2

= O

(
n
(
t2ε2n2

)
· 1

ε3n3
· e− t

2

)

= O

(
1

ε
· t2e− t

2

)
.(3.5)

For t = 1, we get O
(
1
ε

)
, improving the earlier estimate of O

(
1
ε3

)
of Equation (3.4).

In particular, the key thing to note here is that the expected number of empty
canonical disks spanned by S, and containing between t εn2 and tεn points of P ,
decreases exponentially with t.

Second idea: If S fails to be an ε-net, there exists a disk D′ that contains at least
εn points of P and is not hit by S. By Claim 2.14, D′ must contain at least εn

2
points from the interior of some empty canonical disk D spanned by S. See the
figure, where the points of the random sample S are drawn in solid.

D

D′

For simplicity, assume that all empty canonical disks spanned by S contain be-
tween εn

2 and εn points of P . Then D′ contains at least εn
2 points out of the (at

most) εn points of P lying in the interior of D—that is, D′ contains at least half
of the points of int (D) ∩ P . Thus

a 1
2 -net SD of the primal set system induced by disks on int (D) ∩ P

hits D′.

Using the sub-optimal O( 1ε log
1
ε ) bound of Theorem 2.9, |SD| = O (2 log 2).

Therefore, the set S together with the additional sets SD constructed for all such
empty canonical disks D spanned by S, forms an ε-net. Using Equation (3.5), its
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expected size can be upper bounded by

E
[
|S|
]
+ E

[
# of empty canonical disks D spanned by S,

with |int(D)∩P | ∈ [ εn2 , εn)

]
· O(2 log 2) = O

(
1

ε

)
,

as desired.

We’re almost done—it just remains to complete this analysis for all empty canonical
disks spanned by S whose interior contains at least εn points of P . As the expected
number of empty canonical disks spanned by S, and that contain between t · εn2 and
t · εn points of P decreases exponentially with t, the worst case is the one shown
above.

Proof of Theorem 3.3. Let S be a random sample constructed by picking
each point of P independently with probability p = 1

εn .

Let Dcan be the set of all canonical disks spanned by the points of P . For each
i = 0, . . . ,

⌈
log 1

ε

⌉
, let

Di
can =

{
D ∈ Dcan : |int(D) ∩ P | ∈

[
2i−1 · εn, 2i · εn

)}
.

Lemma 1.5 implies that |Di
can| = O

(
n
(
2iεn

)2)
.

Set εi =
1

2i+1 . For each i ≥ 0 and each D ∈ Di
can,

let SD be an εi-net, given by Theorem 2.9, of the primal set system
induced on int(D) ∩ P by disks.

Note that

(3.6) |SD| = O

(
1

εi
log

1

εi

)
= O

(
2i+1 log 2i+1

)
.

We return N = S ∪ M as our ε-net, where

M =

�log 1
ε �⋃

i=0

⋃
D∈Di

can : D is an empty
canonical disk spanned by S

SD.

Claim 3.7. N is an ε-net of the primal set system induced on P by disks.

Proof. Let D′ be any disk in the plane containing at least εn points of P .
Then either D′ contains a point of S or, by Claim 2.14, there a D ∈ Di

can for some
i such that D′ contains at least εn

2 points from int (D) ∩ P , and D is an empty
canonical disk spanned by S. Thus we have

|D′ ∩ (int (D) ∩ P )| ≥ εn

2
>

|int (D) ∩ P | /2i
2

=
|int (D) ∩ P |

2i+1
= εi · |int (D) ∩ P | ,

and so the εi-net SD of the set system induced by disks on int (D) ∩ P must hit
D′. �
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Claim 3.8.

E [|M |] = O

(
1

ε

)
.

Proof. For each D ∈ Dcan, let ID be the indicator random variable which is
1 if D ends up as an empty canonical disk spanned by S and 0 otherwise. Then

E [|M |] = E

⎡
⎢⎣�log

1
ε �∑

i=0

∑
D∈Di

can

ID · |SD|

⎤
⎥⎦ =

�log 1
ε�∑

i=0

∑
D∈Di

can

E [ID] · |SD|

=

�log 1
ε�∑

i=0

∑
D∈Di

can

Pr
[
D is an empty canonical

disk spanned by S

]
· |SD|

≤
�log 1

ε�∑
i=0

|Di
can| · p3 · (1− p)

2i−1εn · O
(
2i+1 log 2i+1

)

=

�log 1
ε�∑

i=0

O

(
n
(
22iε2n2

)
· 1

ε3n3
· e−2i−1

)
· O
(
2i+1 (i + 1)

)

=
1

ε

�log 1
ε�∑

i=0

O

(
(i + 1) 23i

e2i−1

)
= O

(
1

ε

)
,

since the last summation can be upper bounded by a decreasing geometric series.
That is, there exists a sufficiently large constant c such that for all i ≥ 0 we have
(i+1) 23i

e2i−1 ≤ c
2i . �

Finally we have E [|N |] = E [|S|] + E [|M |] = O
(
1
ε

)
.

A similar analysis shows that the expected number of points added due to empty
canonical halfplanes is O

(
1
ε

)
, concluding the proof. �
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2. Partitioning Segments in R
2

The price of metaphor is eternal vigilance.

Norbert Wiener

The following main theorem of this section illustrates an important spatial aspect
of ε-nets.

Theorem 3.9. Let S be a set of n line segments in general position in R
2 and let

m be the number of pairs of intersecting segments of S. Let 1 ≤ r ≤ n be a given

parameter. Then there exists a decomposition of R
2 into O

(
r + mr2

n2

)
interior-

disjoint triangles (some of which are unbounded) such that the interior of each
triangle in this decomposition intersects at most n

r segments of S.

Such a decomposition is called a 1
r -cutting of S.

Before we present the proof of Theorem 3.9, we make two remarks.

Optimality: The bound of Theorem 3.9 is optimal up to constant factors.
Given S, assume that there exists a decomposition Ξ of R2 with t triangles
such that the interior of each triangle intersects at most n

r
segments of S.

First, the boundary of each triangle of Ξ can contain at most 3 segments of
S by the general position assumption on S. The remaining n− 3t segments
of S must intersect the interior of at least one triangle of Ξ and thus we have

t ≥ n− 3t

(n/r)
=⇒ tn

r
≥ n− 3t

=⇒ t ≥ n

(n/r) + 3
=

n

n+ 3r
· r = Ω(r) .

Next, the interior of each triangle of Ξ can contain at most
(
n/r
2

)
= O

(
n2

r2

)
intersection points between segments of S. As S is in general position, there
can be at most 6t intersection points lying on the boundary (edges and
vertices) of the triangles of Ξ and so

m = O

(
t · n

2

r2
+ 6t

)
=⇒ t = Ω

(
mr2

n2

)
.

General position: For simplicity of exposition we have assumed that S is
in general position, though Theorem 3.9 is true even if that is not the case.
The fact that S need not be in general position is the reason for requiring
that the interior of each triangle of the decomposition intersect at most n

r

segments of S. The statement is not true if we also require the boundary of
each triangle to intersect at most n

r
segments of S—this happens, e.g., when

all the segments of S have a non-empty intersection.

For the rest of this section, S will denote a set of n line segments in the plane in
general position. Let U be a large-enough rectangle containing all the segments of
S in its interior. It will suffice to construct a 1

r -cutting of S inside U .
For any set R of segments in the plane in general position, let I (R) denote the set
of intersection points between segments of R and set mR = |I (R) |.

Overview of ideas. Given S, let (S,F) be the set system induced on S by inter-
section with open triangles in the plane. That is,

F =
{{

s ∈ S : s ∩ int (Δ) 
= ∅
}

: Δ is a triangle in R
2
}

.
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The key observation is that a 1
r -net R of F can be used to construct a 1

r -cutting of
size O (|R|+ mR), as follows.

Given R, decompose U into a set T of O (|R|+ mR) interior-disjoint triangles such
that no triangle Δ ∈ T intersects any segment of R in its interior. This can be
done by ‘cutting up’ the segments of R into O (|R|+ mR) interior-disjoint segments
which then serve as edges of the triangles in T . See the figure.

Now for any Δ ∈ T , int (Δ) must intersect less than n
r segments of S—otherwise

the segments of S intersecting int (Δ) form a set in F of size at least n
r that is not

hit by the 1
r -net R, a contradiction.

Note that we view ε-nets contrapositively here: if R is an ε-net of F , then the

interior of any triangle Δ in the plane that does not intersect any segment of

R must intersect less than εn segments of S.

Construct a random sample R by picking each segment of S independently with
probability p = c · r

n log r, for a sufficiently large constant c. Let T be the triangu-
lation of R as above.

It can be shown, with a proof similar to that of Theorem 2.8, that with constant
probability R is a 1

r -net of F . It then follows from the above discussion that T is

a 1
r -cutting for S. We have |T | = O (|R|+ mR), where

E
[
|R|
]
= np = c r log r and E

[
mR

]
= mp2 = m

c2r2 log2 r

n2
,(3.10)

where the bound on E [mR] uses the fact that each segment of S was picked inde-
pendently. By applying Markov’s inequality to the random variables |R| and mR,
we have Pr [|R| ≥ 10np] ≤ 1

10 and Pr
[
mR ≥ 10mp2

]
≤ 1

10 . Thus with probability

at least 8
10 ,

(3.11) |T | ≤ 10
(
np + mp2

)
= O

(
r log r +

mr2 log2 r

n2

)
.

This already gets us to the upper bound of Theorem 3.9 within logarithmic factors.
As in the previous section, the optimal bound will follow by taking a smaller initial
sample R and ‘fixing’ any triangles whose interior intersect more than n

r segments
of S. The proof is quite similar to the one seen for disks and we encourage the
reader to keep this correspondence in mind when reading the proof.

There is one subtlety here—unlike the case of disks, improving upon the size

of a 1
r
-net R ⊆ S of F from O (r log r) to O (r) is not possible, as there is a
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lower bound of Ω

(
r
(

log r
log log r

) 1
2

)
(see Chapter 16)! However, the refinement

ideas that we saw for the case of disks do go through, as the goal is to compute

a 1
r
-cutting of S and not a 1

r
-net of F . In particular, we do not need a R ⊆ S

hitting every open triangle that intersects at least n
r
segments of S—only that

this property holds for all open triangles in the specific triangulation T that

we will construct using R. This will lead to a proof similar to the one seen for

disks.

Trapezoidal decompositions. We first briefly review a spatial decomposition
technique called trapezoidal decompositions. Given any set R ⊆ S, decompose U
with respect to R as follows.

From each of the 2|R| endpoints of segments in R and each of the mR intersection
points between two segments of R, trace a vertical ray upwards and downwards
until it hits another segment of R or the bounding rectangle U . The union of all
these vertical segments, together with R, decomposes U into a set of regions. Each
such region is called a trapezoidal region (or a trapezoid) and the decomposition is
called a trapezoidal decomposition. See the figure.

Denote by T (R) this set of trapezoids for R and let |T (R) | denote its size. As each
trapezoid can be decomposed into two triangles, it suffices to show the existence of
a 1

r -cutting of the desired size consisting of triangles and trapezoids.

Each of the 2|R| + mR points, consisting of endpoints and intersections, produce
two additional points from the vertical and horizontal rays traced from them. The
trapezoidal decomposition can be seen as a planar graph on these 3 (2|R|+ mR)
points. Then |T (R) | is simply the number of faces of this graph and so

(3.12) |T (R) | ≤ 2 · 3 (2|R|+ mR) = O (|R|+ mR) .

The trapezoids in
⋃

R⊆S T (R) form the set of canonical trapezoids.

Definition 3.13. Given S, the set of trapezoids present in the trapezoidal decom-
positions of all possible R ⊆ S are called the canonical trapezoids of S and denoted
by Ξ (S).

Furthermore, let Ξ≤k (S) ⊆ Ξ (S) be the set of canonical trapezoids of S whose
interior intersects at most k segments of S.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



2. PARTITIONING SEGMENTS IN R
2 47

For a canonical trapezoid Δ, let SΔ denote the set of segments of S intersecting the
interior of Δ, and let nΔ = |SΔ|. The crucial fact that will be needed later is that
each trapezoid Δ ∈ Ξ (S) is ‘determined’ by a constant—1, 2, 3 or 4—number of
segments of S (recall that we assume S to be in general position). These are called
the determining segments of Δ and have the following property (stated without
proof).

Fact 3.14. A canonical trapezoid Δ ∈ Ξ (S) belongs to T (R) if and only if its
determining segments are present in R and R does not contain any of the segments
of SΔ.

See the figure where the determining segments of two canonical trapezoids are
indicated.

We will need the following level-set bound, whose proof is a routine application of
the technique of Chapter 1 together with Fact 3.14 (we defer its proof to the end).

Lemma 3.15. For any integer k ≥ 1, we have |Ξ≤k (S) | = O
(
nk3 + mk2

)
.

For the rest of the proof, we only work with canonical trapezoids determined by
4 segments. The case for canonical trapezoids determined by 3, 2 or 1 segments is
similar.

The reader will notice that all of this pretty much mirrors the notion of canon-

ical disks; indeed we are following, in a different setting, the ideas in the proof

for the case of disks.

We now restate and prove our main theorem.

Theorem 3.9. Let S be a set of n line segments in general position in R
2 and let

m be the number of pairs of intersecting segments of S. Let 1 ≤ r ≤ n be a given

parameter. Then there exists a decomposition of R
2 into O

(
r + mr2

n2

)
interior-

disjoint triangles (some of which are unbounded) such that the interior of each
triangle in this decomposition intersects at most n

r segments of S.

Such a decomposition is called a 1
r -cutting of S.

Proof. The set of triangles in the required 1
r -cutting will be denoted by T .

Set p = cr
n for a sufficiently large constant c to be fixed later and construct

R by picking each segment of S independently with probability p.

Construct the trapezoidal decomposition T (R) and for each Δ ∈ T (R), define

S′
Δ =

{
s ∩ int (Δ) : s ∈ SΔ

}
.

Now we iterate over each trapezoid in T (R) and construct our final cutting T . Set
T = ∅ and for each Δ ∈ T (R), do the following:

Case nΔ ≤ n
r : Add Δ to T .

Case nΔ > n
r : Let tΔ > 1 be such that nΔ = tΔ · n

r . Applying Equation (3.11) to
the set system induced on S′

Δ by intersection with open triangles, there exists a
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1
tΔ

-cutting TΔ inside Δ of size

(3.16) O

(
tΔ log tΔ +

m′
Δ · t2Δ log2 tΔ

n2
Δ

)
= O

(
t2Δ log2 tΔ

)
,

where m′
Δ ≤

(
nΔ

2

)
is the number of intersections between segments of S′

Δ.
By construction, the interior of each triangle in TΔ intersects at most nΔ

tΔ
= n

r

segments of S′
Δ and hence of S.

Add all the triangles in TΔ to T .

Claim 3.17.

E
[
|T |
]
= O

(
r +

mr2

n2

)
.

Proof. We have

E
[
|T |
]
≤ E

[∣∣T (R)
∣∣]+ ∑

Δ∈Ξ(S)
nΔ>n

r

Pr
[
Δ ∈ T (R)

]
· |TΔ|.

The first term can be upper bounded using Equation (3.12) by

E
[∣∣T (R)

∣∣] = O
(
E
[
|R|
]
+ E

[
mR

])
= O

(
np + mp2

)
= O

(
r +

mr2

n2

)
.

The second term can be upper bounded using Fact 3.14 by∑
Δ∈Ξ(S)
nΔ>n

r

Pr
[
Δ ∈ T (R)

]
· |TΔ| =

∑
Δ∈Ξ(S)
nΔ>n

r

p4 (1− p)nΔ · |TΔ|

Using the fact that nΔ = tΔ
n
r and using Equation (3.16),

≤

log r�∑
i=0

∑
Δ∈Ξ(S)

tΔ∈(2i,2i+1]

p4 (1− p)
2in
r · O

(
t2Δ log2 tΔ

)

=


log r�∑
i=0

∣∣Ξ≤ 2i+1n
r

(S)
∣∣ · (cr

n

)4
e−c 2i · O

(
22(i+1) log2 2i+1

)
Using Lemma 3.15,

=


log r�∑
i=0

O

(
n

(
2i+1n

r

)3

+ m

(
2i+1n

r

)2
)(cr

n

)4
e−c 2iO

(
22i (i + 1)2

)

= r


log r�∑
i=0

O
(
25i c4 e−c 2i (i + 1)2

)
+

mr2

n2


log r�∑
i=0

O
(
24i c4 e−c 2i (i + 1)2

)

= O

(
r +

mr2

n2

)
,

where the last step follows from the fact that both the summations can be up-
per bounded by a geometric series. In particular, for c sufficiently large, we have
25i c4 (i+1)2

ec2i
≤ 1

2i for all i ≥ 0. �
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T is a 1
r -cutting of S by construction, and so the above claim completes the proof

of Theorem 3.9. �

The last remaining step is the proof of the level-set bound, which is a routine
application of the technique of Chapter 1.

Lemma 3.15. For any integer k ≥ 1, we have |Ξ≤k (S) | = O
(
nk3 + mk2

)
.

Proof. We give the proof for the case of trapezoids in Ξ≤k (S) determined by
4 segments of S; the other cases are similar.

Construct a random sample T by picking each segment of S independently with
probability p0, where p0 will be fixed later.

We will count the expected size of T (T ) in two ways.

Upper bound: Using Equation (3.12),

E
[
|T (T ) |

]
= E [O (|T |+ mT )] = O

(
np0 + mp20

)
.

Lower bound: By Fact 3.14, any fixed canonical trapezoid Δ ∈ Ξ (S) is present
in T (T ) with probability p40 · (1− p0)

nΔ . Therefore

E
[
|T (T ) |

]
=

∑
Δ∈Ξ(S)

p40 · (1− p0)
nΔ ≥

∑
Δ∈Ξ≤k(S)

p40 · (1− p0)
nΔ

≥
∑

Δ∈Ξ≤k(S)

p40 · (1− p0)
k
= |Ξ≤k (S) | · p40 · (1− p0)

k
.

Combining the upper and lower bounds,

|Ξ≤k (S) | · p40 · (1− p0)
k ≤ E [|T (T )|] = O

(
np0 + mp20

)
,

and hence |Ξ≤k (S) | = O

(
np0 + mp20

p40 (1− p0)
k

)
= O

(
nk3 + mk2

)
,

by setting p0 = 1
k+1 . �

We had to refine our original random sample R ⊆ S to guarantee that the interior
of each triangle in our decomposition intersected at most n

r segments of S. In
particular,

(1) To ensure that the interior of each trapezoid in the trapezoidal decompo-
sition intersected, in expectation, at most n

r segments of S, we pick each

segment into R with probability Ω
(
r
n

)
.

(2) The resulting size of the spatial decomposition was a function of the com-
plexity of arrangement induced by the random sample. It was linear in
both |R| and the number of intersections between segments of R, with

expected size O
(
n
(
r
n

)
+ m

(
r2

n2

))
= O

(
r + mr2

n2

)
.

These ideas work in a number of related settings, some of which we list below; we
omit the proofs which are similar to that of Theorem 3.9.
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Higher dimensions: Given a set S of (d − 1)-dimensional simplices in R
d and a

parameter r, the goal is to decompose Rd into regions of constant complexity such
that the interior of each region intersects at most n

r elements of S. Here the ‘com-
plexity’ of S is captured by the number of d-tuples of S which have a non-empty
intersection; assume there are m such d-tuples. Then the expected complexity
of the spatial decomposition induced by a random sample R ⊆ S, where each

element is picked with probability r
n , is O

(
rd−1+δ + m ·

(
r
n

)d)
, where δ > 0 is

any small constant and the constant in the asymptotic notation depends on δ.
This spatial decomposition method is a generalization of trapezoidal decomposi-
tions to R

d. However unlike the two-dimensional case, precise exponents are not
known and hence the additional δ in the exponent. The second term is the ex-
pected number of vertices in the arrangement induced by R, while the first term
bounds the number of all higher-dimensional faces of the arrangement induced
by R. Thus we get the following theorem [Pel97] (stated without proof).

Theorem 3.18. Let S be an n-element set of (d − 1)-dimensional simplices in
R

d, d ≥ 3, and let m denote the number of d-tuples of simplices in S having a
point in common. Then for any δ > 0 and any r ≤ n, there is a 1

r -cutting with
respect to S of size at most

Cd,δ ·
(

rd−1+δ + m
rd

nd

)
.

Here the constant Cd,δ depends only on d and δ.

Cuttings inside a simplex: Given a set H of n hyperplanes in R
d and a simplex

Δ, we have the following bound for a 1
r -cutting inside Δ [Cha12] (stated without

proof).

Theorem 3.19. Let H be a set of n hyperplanes in R
d and let Δ be a simplex

containing X vertices of the arrangement induced by H. Then there exists a
1
r -cutting inside Δ of size O

(
rd−1 + X rd

nd

)
.

When Δ is large-enough to contain all vertices of the arrangement of H, we get
the bound of O

(
rd
)
for the size of 1

r -cuttings for a set of n hyperplanes in R
d.

Shallow cuttings: The notion of the level of a point with respect to a set of
hyperplanes (recall Definition 1.15) leads naturally to the following definition.

Definition 3.20. Given a set H of n hyperplanes in R
d, a real parameter r > 0

and an integer k ≥ 0, a
(
1
r , k
)
-shallow cutting is a set Ξ of interior-disjoint

simplices (some of which are unbounded) such that
• the union of the simplices in Ξ covers all points in R

d of level at most k with
respect to H, and

• the interior of each simplex in Ξ intersects at most n
r hyperplanes of H.

The number of vertices of level at most k in the arrangement induced by H is

O
(
n� d

2 �k� d
2 �
)
(see Theorem 1.16) where the constant in the asymptotic notation

depends on d. Thus the arrangement of a random sample of H of size r has an ex-

pected O
(
n� d

2 �k� d
2 � · rd

nd

)
vertices, which leads to the following theorem [Mat92]

(stated without proof).
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Theorem 3.21. Let H be a set of n hyperplanes in R
d, r > 0 a real and k ≥ 0

an integer. Then there exists a
(
1
r , k
)
-shallow cutting of H of size

O

(
r� d

2 �
(

kr

n
+ 1

)� d
2 �
)

.

Given a set H of n hyperplanes in R
3 and ε > 0, apply Theorem 3.21 with

k = 2εn and r = 2
ε
, to get a set T of O

(
1
ε

)
simplices whose union covers

all points in R
3 of level at most 2εn with respect to H. For each Δ ∈ T ,

choose a hyperplane of H that lies below Δ (in the xd direction), if such a
hyperplane exists. Let N be the set of these O

(
1
ε

)
hyperplanes.

Consider any point p ∈ R
3 with level εn, and let Δ ∈ T be the simplex

containing p. As the interior of Δ intersects at most n
r
= εn

2
hyperplanes

of H, there are at least εn
2

hyperplanes of H lying below Δ, at least one of

which was picked in N . Thus for every p ∈ R
3 with level εn, there exists a

hyperplane in N lying below p. In the dual, this leads to the existence of

O
(
1
ε

)
sized ε-net of the primal set system induced by half-spaces in R

3.
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d. The proof of the main theorem is
from [BS95]. While we only considered the existence of cuttings, there has
been extensive work on algorithms (e.g., [Cha93,Mat91]) which can be
read from [Cha00]. The use of shallow cuttings to construct an ε-net of
the primal set system induced by half-spaces in R

3 was shown in [Mat92].
For details on partitioning R

d with respect to geometric objects, we refer
the reader to the nice survey of Agarwal and Sharir [AS00].

[AS00] P. K. Agarwal and M. Sharir, Arrangements and their applications, Handbook of com-
putational geometry, North-Holland, Amsterdam, 2000, pp. 49–119, DOI 10.1016/B978-
044482537-7/50003-6. MR1746675

[BS95] M. de Berg and O. Schwarzkopf, Cuttings and applications, Internat. J. Comput. Geom.
Appl. 5 (1995), no. 4, 343–355, DOI 10.1142/S0218195995000210. MR1359425

[CF90] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use
in geometry, Combinatorica 10 (1990), no. 3, 229–249, DOI 10.1007/BF02122778.
MR1092541

[Cha00] B. Chazelle, The discrepancy method, Cambridge University Press, Cambridge, 2000.
Randomness and complexity, DOI 10.1017/CBO9780511626371. MR1779341

[Cha12] T. M. Chan, Optimal partition trees, Discrete Comput. Geom. 47 (2012), no. 4, 661–690,

DOI 10.1007/s00454-012-9410-z. MR2901245
[Cha93] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom. 9

(1993), no. 2, 145–158, DOI 10.1007/BF02189314. MR1194032
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3. Application: Forbidden Subgraphs

The real satisfaction from mathematics is in learning from others and
sharing with others.

William Thurston

A classic problem in extremal graph theory is bounding the number of edges in
graphs and hypergraphs not containing certain forbidden subgraphs. The following
is a special case of the Zarankiewicz problem.

Let G = (V, E) be a graph on n vertices, and t ≥ 1 be a given integer.
What is the maximum size of E if G does not contain Kt,t as a subgraph?

Note that this is different from the forbidden induced subgraph problem—the
Zarankiewicz problem is more restrictive as it forbids the presence of Kt,t as a
subgraph of G, and not just as an induced subgraph.

In this section we consider a geometric instance of this problem, when G is the
intersection graph of a set S of n line segments in the plane in general position.
Denote by GI = (S, EI) the intersection graph of S. That is,

EI =
{
{s, s′} : s, s′ ∈ S and s ∩ s′ 
= ∅

}
.

Note that |EI | is simply the number of intersections between the segments of S.

The main result of this section, an application of 1
r -cuttings, is the following.

Theorem 3.22. Let S be a set of n line segments in general position in the plane
and let t ≥ 2 be an integer. If the intersection graph GI = (S, EI) of S does not
contain Kt,t as a subgraph, then |EI | = O (n), where the constant in the asymptotic
notation depends exponentially on t.

An early bound—and still the best known for general graphs—is given by the
Kövári-Sós-Turán theorem, which implies the following.

Theorem 3.23. Let G = (V, E) be a simple graph on n vertices and let t ≥ 2 be an

integer such that G does not contain Kt,t as a subgraph. Then |E| ≤ n2− 1
t .

Proof. For any v ∈ V , let NG (v) denote the set of neighbors of v in G.

We will count, in two ways, the size of the following set:

I =
{
(v, U) : v ∈ V, |U | = t, and U ⊆ NG (v)

}
.

Upper bound: Each fixed subset U ⊆ V with |U | = t can be present in at most
(t − 1) tuples of I, as otherwise a Kt,t would exist in G. So we have

|I| ≤
(

n

t

)
· (t − 1) .

Lower bound: Counting |I| vertex by vertex,

|I| =
∑
v∈V

(
|NG (v) |

t

)
≥ n

(⌊2|E|
n

⌋
t

)
,

where the last step follows from the fact that, as
∑

v |NG (v) | = 2 |E|, the above
summation is minimized when the terms |NG (v) | are as equal as possible.
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This fact is true more generally for convex functions and is called Jensen’s
inequality. In our case it follows immediately from the fact that for any two
integers a1 and a2 with a1 ≥ a2 + 1,(

a1

t

)
+

(
a2

t

)
≥
(
a1 − 1

t

)
+

(
a2 + 1

t

)
(
a1

t

)
−
(
a1 − 1

t

)
≥
(
a2 + 1

t

)
−
(
a2

t

)
(
a1 − 1

t− 1

)
≥
(

a2

t− 1

)
, which holds if a1 ≥ a2 + 1.

The last step used Pascal’s identity, that
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

Combining the upper and lower bounds,

n

(⌊2|E|
n

⌋
t

)
≤
(

n

t

)
· (t − 1) .

Re-arranging the terms and simplifying,⌊
2|E|
n

⌋
n

·

⌊
2|E|
n

⌋
− 1

n − 1
· · ·

⌊
2|E|
n

⌋
− t + 1

n − t + 1
≤ t − 1

n

=⇒
(

2|E|
n − t

n − t + 1

)t

≤ t − 1

n
,

since 2|E|
n ≤ n. This gives the required upper bound:

|E| ≤ n

2

(
(t − 1)

1
t (n − t + 1)

n
1
t

+ t

)
≤ n2− 1

t .

�
The above proof is perhaps more natural when seen inductively—we give a

sketch for the case t = 2. Let T (n) denote the maximum number of edges in

any n-vertex graph with no K2,2 subgraph. If every vertex of V has degree less

than
√
n, then already |E| ≤ n

3
2 . Otherwise let v be a vertex with |NG (v) | ≥√

n. Now any vertex w ∈ V \ {v} can have at most one neighbor in NG (v), as

otherwise {v, w} together with any two of their common neighbors in NG (v)

contains a K2,2. Therefore there are at most |NG (v) |+(n−1) ≤ 2n edges of E

that are incident to the vertices of NG (v). Removing the vertices {v}∪NG (v)

from G and recursively upper bounding the edges in the remaining graph, we

get T (n) ≤ 2n+ T (n−
√
n), which solves to T (n) = O

(
n3/2
)
.

Theorem 3.22 shows that the above bound can be significantly improved if G is the
intersection graph of segments in the plane.

Proof of Theorem 3.22. We will need the following consequences of S be-
ing in general position.

• the intersection of every two segments of S is either empty or is a point
lying in the interior of both segments, and
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• the three supporting lines of any three segments of S do not have a non-
empty intersection.

Let m = |EI | be the number of intersections between the segments of S. Ap-
ply Theorem 3.9 to S, with parameter r to be fixed later, to get a decomposition of

the plane into s ≤ c ·
(
r + mr2

n2

)
triangles, where c is an absolute constant. Denote

the triangles in this decomposition by

T (S) =
{
Δ1, . . . ,Δs

}
.

By increasing it if necessary, we can assume that c ≥ 2.

For each i = 1, . . . , s, let Si ⊆ S be the set of segments that either intersect the
interior of Δi, or which contain a vertex of Δi, or which lie on an edge of Δi. Note
that for each i,

• at most n
r segments intersect the interior of Δi by Theorem 3.9, and

• there are at most 6 segments passing through the vertices of Δi by general
position assumption, and

• at most one segment can coincide with any edge of Δi by general position
assumption, and thus there are at most 3 segments containing an edge of
Δi.

Thus for each i = 1, . . . , s,

|Si| ≤
n

r
+ 9 ≤ 2n

r
,

assuming that 9 ≤ n
r (our value of r will satisfy this).

Now consider any intersection point q between two segments of S. Then there must
exist an index i ∈ {1, . . . , s} such that q lies in the interior or on the boundary of
Δi. As q lies in the interior of both segments defining it, both of these segments
must be present in Si. Upper bounding the number of intersections within each
triangle of T (S) by Theorem 3.23, we get

m ≤
s∑

i=1

(
# of intersections of S lying in the interior or boundary of Δi

)

≤
s∑

i=1

|Si|2−
1
t ≤

s∑
i=1

(
2n

r

)2− 1
t

≤ 4 c

(
r +

mr2

n2

)
·
(n

r

)2− 1
t

.

Note that if n
(8c)t ≤ 2, then trivially m ≤ n2

2 ≤ (8c)t ·n. Otherwise setting r = n
(8c)t ,

m ≤ 4c

⎛
⎜⎝ n

(8c)t
+

m
(

n
(8c)t

)2
n2

⎞
⎟⎠ ·

(
(8c)t

)2− 1
t = 4c

(
n

(8c)t
+

m

(8c)2t

)
·
(
(8c)t

)2− 1
t

= 4c

(
n

(8c)t
·
(
(8c)t

)2− 1
t +

m

8c

)
≤ 4 · 8tct+1n +

m

2
.

Thus m ≤ 4 · 8tct+1n + m
2 , implying that m ≤ (8c)

t+1
n. This completes the

proof. �

We remark here that the proof we presented gives an upper bound with an expo-
nential dependence on t, but with the advantage that it generalizes immediately to
higher dimensions using Theorem 3.18.
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CHAPTER 4

Complexity of Set Systems

The goal of this chapter is to build the technical foundations that will enable us
to generalize the constructions of Chapters 2 and 3 to combinatorial set systems.
We now briefly revisit the key ideas behind two earlier constructions—that of The-
orem 2.9 and Theorem 3.3—to see the precise properties that are needed and their
possible generalizations to combinatorial set systems.

Let P be a set of n points in R
2 and let R be the primal set system induced on P

by disks.

The first key idea forms the basis of the following theorem.

Theorem 2.9: A uniform random sample of P of size Ω
(
1
ε log

1
ε

)
is an ε-net of

R with constant probability.
An important fact used in this proof is that |R| = O

((
n
3

))
= O

(
n3
)
, and that

this is true in an ‘hereditary’ or ‘local’ manner:

for any set P ′ ⊆ P ,(4.1)

the number of distinct subsets of P ′ induced by disks is O
(
|P ′|3

)
.

It is important to note here that this bound depends polynomially and only on
|P ′|. The proof of this follows from the fact that disks are ‘fixed’ by three points
(see Claim 1.4). The same idea shows that there are O

(
n4
)
sets induced on P by

axis-aligned rectangles in R
2, O

(
nd
)
sets induced on n points in R

d by half-spaces
and so on.
The number of sets induced on any subset of P ′ ⊆ P by intersection with disks
corresponds, when dealing with an abstract set system (X,F), to the number of
subsets of Y ⊆ X that can be obtained by intersection with sets of F . Formally,
define the projection of F onto any Y ⊆ X as the set system

F|Y =
{
S ∩ Y : S ∈ F

}
.

Note that the set system induced on P ′ ⊆ P by disks is precisely R|P ′ . Further-

more, just as the bound in Equation (4.1) of O
(
|P ′|3

)
on the number of subsets

of P ′ ⊆ P induced by disks follows from the fact that a disk is ‘fixed’ by three
points, one can derive a bound on the size of the projection F|Y for any Y ⊆ X
by assuming a similar property for general set systems. It is not immediately
clear how to generalize the property of a disk being fixed by three points to com-
binatorial set systems (see the remark after the proof of Lemma 4.3). The key,

57
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58 4. COMPLEXITY OF SET SYSTEMS

however, is to note that

if a disk D is fixed by the set Y = {p, q, r} of three points on its bound-
ary, then by slightly shifting and scaling D, one can obtain all subsets
of Y —∅, {p}, {q}, {r}, {p, q}, {p, r}, {q, r}, {p, q, r}—by intersection
with disks.

This property, stated abstractly, is the notion of the Vapnik-Chervonenkis dimen-
sion (VC-dimension for short) of a set system1.

Definition 4.2. The VC-dimension of a set system (X,F), denoted by VC-dim(F),
is the size of the largest Y ⊆ X for which |F|Y | = 2|Y |. We say that such a Y is
shattered by F .

For a family R of geometric objects in R
d—e.g., the family of all half-spaces in

R
d—the VC-dimension of R is defined to be the VC-dimension of the primal set

system
(
R

d,R
)
.

The following key lemma confirms that a statement analogous to Equation (4.1)
holds for any set system (X,F) of VC-dimension d.

Lemma 4.3 (Primal shatter lemma). Given a set system (X,F) with VC-dim(F) ≤
d and any Y ⊆ X, we have

∣∣F|Y
∣∣ ≤ d∑

i=0

(
|Y |
i

)
.

When |Y | ≥ d, the above summation can be upper bounded by
(

e|Y |
d

)d
= O

(
|Y |d

)
.

It is not hard to see that the set system R induced by disks has VC-
dimension three; in other words, it is not possible to find four points in
the plane such that one can get all subsets of these four points by inter-
section with disks. This together with Lemma 4.3 allows us to recover
Equation (4.1) for disks, but in an abstract way!

The first goal of this chapter is to study the VC-dimension of set systems.

We now turn to the second key idea which was already used in the following theorem.

Theorem 3.3: There exists an ε-net of size O
(
1
ε

)
of R.

The improvement of Theorem 3.3 is due to an additional property of R: the num-
ber of sets of size at most k induced by disks is bounded by O

(
nk2

)
(Lemma 1.2);

for small values of k this is much smaller than the total number O
(
n3
)
of sets

induced by disks. This difference turns out to be important for sampling purposes.

Unfortunately VC-dimension alone gives us no information about this growth in
the number of sets as a function of the set size k. To this end, we will use a finer
complexity measure of a set system, called the shallow-cell complexity.

Definition 4.4. A set system (X,F) has shallow-cell complexity ϕF(·, ·) if for any
positive integer k and any finite Y ⊆ X, the number of sets in F|Y of size at most
k is upper bounded by |Y | · ϕF

(
|Y |, k

)
.

1There are several other related notions of complexity, e.g., compression complexity, Little-
stone dimension, teaching dimension.
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For a family R of geometric objects in R
d—e.g., the family of all half-spaces—the

shallow-cell complexity of R is defined to be the shallow-cell complexity of the
primal set system

(
R

d,R
)
.

Throughout the rest of the text we will assume that the function bounding the
shallow-cell complexity of a set system is well-behaved . Roughly, we want ϕF (m, k)
to not increase exponentially with m and k. There are many ways this can be
specified; for our purposes the following will suffice.

Definition 4.5. A function ϕ (·, ·) is (a, b)-well-behaved, for a ∈ (1, 2) and b ∈ R
+,

if it is non-decreasing in both arguments and for all positive integers m ≥ k ≥ b ≥ 2,

ϕ (m, k) ≤
(

ϕ

(
m

2
,
k

2

))a

.

The constant b in Definition 4.5 can be seen as analogous to the VC-dimension,

in the sense that m · ϕ (m, k) can be
(
m
k

)
for k < b.

The second goal is to study the shallow-cell complexity of set systems.

The first part of this chapter studies the VC-dimension of geometric set systems,
and the second part is devoted to the study of shallow-cell complexity.
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60 4. COMPLEXITY OF SET SYSTEMS

1. VC-dimension

Very little [of mathematics] is easily accessible. But I think a lot more
of it can be explained so that a lot more people understand it . . . I like
to try to make mathematics easy, not to make it hard. I think there
is a tendency among mathematicians to try to make it hard. I try to
combat that when I see people wrap up their mathematics in formal fancy
theories that make it less accessible.

William Thurston

A set system (X,F) with VC-dimension d behaves in many respects like a set
system induced by hyperplanes or half-spaces in R

d. For example, consider the fact
that the number of subsets induced by hyperplanes on a set P ⊂ R

d of n points in

general position is
∑d

i=0

(
n
i

)
2. The first of the two main theorems of this section

shows that the same is true for set systems with VC-dimension d, and illustrates
why VC-dimension is such a nice way to abstractly model a geometric phenomenon.

Lemma 4.3 (Primal shatter lemma). Given a set system (X,F) with VC-dim(F) ≤
d and any Y ⊆ X, we have

∣∣F|Y
∣∣ ≤ d∑

i=0

(
|Y |
i

)
.

When |Y | ≥ d, the above summation can be upper bounded by
(

e|Y |
d

)d
= O

(
|Y |d

)
.

Lemma 4.3 is what makes VC-dimension a useful parameter of set system complex-
ity and justifies the analogy of such set systems with those induced by geometric
objects. We make three remarks.

Optimality: The above bound is optimal, in the sense that for every positive
integers n and d, there exists a set system (X,F) with |X| = n, VC-dim (F) = d

and for which any Y ⊆ X has
∣∣F|Y

∣∣ =∑d
i=0

(|Y |
i

)
. This is the case, for example,

when F is the primal set system induced by hyperplanes on a set X of n points
in general position in R

d.

The precise bound in Lemma 4.3: It might strike the reader a little odd that

we state the upper bound first as
(

e|Y |
d

)d
instead of just O

(
|Y |d

)
. As we will

see, this precision allows us to derive optimal bounds, as a function of d, on sizes
of ε-nets and ε-approximations. Just using O

(
|Y |d

)
as an upper bound on |F|Y |

would give slightly worse bounds, with an additional factor of d in the logarithmic
terms.

From |F|Y | to VC-dimension: The other direction is true as well—if for each
Y ⊆ X we have |F|Y | = O

(
|Y |d

)
, then the VC-dimension of F cannot be too

large.

2A similar bound holds for the primal set system induced by half-spaces; see Equation (1.13).
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Lemma 4.6. Given a set system (X,F), if there exist constants c, d with
c ≤ d

2
, such that

for any Y ⊆ X with |Y | ≥ d, we have |F|Y | ≤
(
|Y |
c

)d

,

then VC-dim(F) ≤ (1 + o (1)) d log d
c
.

Proof. Let t = VC-dim(F) and Y ⊆ X be any set realizing the VC-
dimension of F . If t ≤ d, there is nothing to prove. So assume that t > d,
and |F|Y | = 2|Y |. Then we have

(4.7) 2t = |F|Y | ≤
(
t

c

)d

=⇒ t ≤ d log
t

c
.

There does not exist a closed-form solution for t in the above expression.
However, one can simply verify that any value of t larger than the stated
one contradicts Equation (4.7). Alternatively, one can use a common trick,
that of applying Equation (4.7) repeatedly, to derive an approximate upper
bound:

t ≤ d · log t

c
≤ d · log

(
d log t

c

c

)
= d log

d

c
+ d log log

t

c

≤ · · · ≤ d log
d

c
+ d

(
log log

d

c
+ log log log

d

c
+ · · ·

)
.

Upper bounding the second term by a geometric series gives the desired
bound. �

To state our second main result we need the notion of the unit distance graph of a
set system.

Define the symmetric difference of two sets S, S′ to be

Δ (S, S′) = (S \ S′)∪ (S′ \ S) .

Definition 4.8. Given a set system F = {S1, . . . , Sm} on X, the unit distance
graph GU (F) = (F , EF ) is a graph on the vertex set F such that {Si, Sj} ∈ EF if
and only if |Δ(Si, Sj)| = 1.

Our second main result of this section is the following.

Lemma 4.9. Given a set system F = {S1, . . . , Sm} on X, let GU (F) = (F , EF) be
its unit distance graph. If VC-dim(F) ≤ d, then |EF | ≤ d · |F|.

We now present the proof of Lemma 4.3. It uses an operation called shifting , whose
application to a set system (X,F) consists of applying it to each set of F . The
goal is to get a ‘simpler’ set system without changing the number of sets or the
VC-dimension.

Given a set system F = {S1, . . . , Sm} on the set X and an element
a ∈ X, let Fa be the set system formed by removing the element a from
each set of F as long as it does not create duplicate sets.
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62 4. COMPLEXITY OF SET SYSTEMS

Formally, for each Si ∈ F define the set S′
i as

S′
i =

{
Si if Si \ {a} ∈ F ,

Si \ {a} otherwise.

We say that S′
i is derived by shifting Si with a (and Si is shifted with

a) and let Fa = {S′
1, . . . , S

′
m} be the set system derived by shifting each

set of F with a. Note that the order in which we shift the sets of F does
not matter—the resulting set system is the same.

Let F = {S1, . . . , Sm} be the original set system and Fa = {S′
1, . . . , S

′
m} the set

system shifted with a ∈ X. There are two key features of this operation. First,
that |F| = |Fa|; this follows directly from the definition of shifting. Second, that
shifting does not increase the VC-dimension of the set system, as we now prove.

Lemma 4.10. For any a ∈ X, we have VC-dim(Fa) ≤ VC-dim(F).

Proof. Fix a set Y ⊆ X that is shattered by Fa. We show that it is also
shattered by F . If a /∈ Y , then the intersections Si ∩ Y and S′

i ∩ Y are identical for
all i ∈ {1, . . . , m} and the statement follows. Thus assume that a ∈ Y .

Fix any set B ⊆ Y and let S′
i ∈ Fa be such that B = Y ∩S′

i. We now exhibit a set
Sk ∈ F such that B = Y ∩ Sk. We distinguish two cases:

a ∈ B: As B = Y ∩ S′
i, a ∈ S′

i and so the set Si must not have been shifted. Then
Si = S′

i and B = Y ∩ Si.

a

Y

S ′
i

S ′
j

Sk

B

a /∈ B: Then a /∈ S′
i. See the figure. Now Si need not be equal to S′

i, as a could
have been in Si, in which case Y ∩ Si would contain the additional element a.
However, as Y is shattered by Fa, there exists some other set S′

j ∈ Fa such that
B∪{a} = Y ∩S′

j . Furthermore, the set Sk = S′
j \{a} must be in F—otherwise Sj

would have been shifted to remove the element a and then S′
j would not contain

a. And so B = Y ∩ Sk.

�
We remark here that to show that any fixed B ⊆ Y that can be realized using

a set of Fa can also be realized using a set of F , we needed to use the fact that

Y was shattered by Fa. Simply the fact that an individual B can be realized

by a set of Fa is not sufficient.
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Proof of Lemma 4.3. Repeatedly apply shifting on F|Y with each element
of Y . Let F ′|Y be the resulting set system where shifting with any element of
Y does not change any set of F ′|Y . This process must terminate as each shifting
operation that changes the set system decreases the sum of cardinalities of the sets.

First observe that F ′|Y is downward closed—that is, if A ∈ F ′|Y , then all subsets of
A must be present in F ′|Y . Next, by Lemma 4.10, we have that VC-dim (F ′|Y ) ≤
VC-dim (F|Y ) ≤ d. Together they imply that the size of the largest set in F ′|Y is
at most d. Now the proof follows by summing up the number of sets in F ′|Y by
their sizes:

|F|Y | = |F ′|Y | ≤
d∑

i=0

(
|Y |
i

)
.

There is no closed-form expression for the above sum but a useful approximation,
when |Y | ≥ d, is

d∑
i=0

(
|Y |
i

)
=

d∑
i=0

|Y |!
i! (|Y | − i)!

≤
d∑

i=0

|Y |i
i!

=

d∑
i=0

di
( |Y |

d

)i
i!

(4.11)

≤
(
|Y |
d

)d

·
∞∑
i=0

di

i!
=

(
|Y |
d

)d

ed,

where the last step follows from the Taylor expansion of ed. �

Given F = {S1, . . . , Sm} with VC-dimension at most d, the above proof shows

that by repeatedly shifting F with elements of X, one can get a set system

F ′ = {S′
1, . . . , S

′
m} such that S′

i ⊆ Si and |S′
i| ≤ d for i = 1, . . . ,m. Thus one

can think of the set Si being ‘fixed’ or ‘uniquely identified’ by the set S′
i of size

at most d. This justifies our earlier statement that the VC-dimension of a set

system is intuitively analogous to the fact that three points ‘fix’ a disk in R
2,

or d points ‘fix’ a hyperplane in R
d and so on.

The proof of our second result also uses the shifting technique.

Lemma 4.9. Given a set system F = {S1, . . . , Sm} on X, let GU (F) = (F , EF) be
its unit distance graph. If VC-dim(F) ≤ d, then |EF | ≤ d · |F|.

Proof. Repeatedly shift F with elements of X (in any order) and let F ′ be
the resulting set system where shifting does not change any set. Let EF ′ be the
edges of the unit distance graph on F ′. We will need the following properties:

(1) F ′ is downward closed,
(2) |F| = |F ′|,
(3) VC-dim(F ′) ≤ VC-dim(F), and
(4) |EF ′ | ≥ |EF |.

The first three properties have already been shown. Assuming the fourth one to be
true as well, we first conclude the proof of Lemma 4.9.

Charge each edge e ∈ EF ′ to the larger of the two sets of F ′ correspond-
ing to the two vertices of e. As F ′ is downward closed, each S′ ∈ F ′ has
precisely |S′| edges in EF ′ charged to it—namely all the edges between S′
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64 4. COMPLEXITY OF SET SYSTEMS

and each subset of S′ of size |S′|−1. As VC-dim (F ′) ≤ VC-dim (F) ≤ d,
the largest set in F ′ has size at most d and so each set of F ′ gets charged
at most d edges of EF ′ . Thus

|EF | ≤ |EF ′ | ≤ d |F ′| = d |F|.
It remains to show that if Fa is the set system obtained by shifting F with any
a ∈ X, then |EFa

| ≥ |EF |.
Consider an edge {S, S1} ∈ EF , where S, S1 ∈ F and S1 = S∪{x}, for some x ∈ X.

How can this edge not be present in the unit distance graph of Fa? If a /∈ S and
x = a, then S1 will not be shifted and so the edge remains in EFa

. On the other
hand, if a /∈ S and x 
= a, then a /∈ S1 and again both S, S1 are unchanged by
shifting with a and the edge remains in EFa

.

Thus it remains to consider the case when a ∈ S. Then x 
= a and a ∈ S1. The
only way {S, S1} is not in EFa

is if precisely one of S, S1 gets shifted by a.

S gets shifted to S′ by a, S1 = S′
1 remains unchanged: This implies that the

set S2 = S1 \ {a} is already in F . See the figure.

S
S1 = S ∪ {x}

S′ = S \ {a}
S′

1 = S ∪ {x}

S2 = S ∪ {x} \ {a}

S′
2 = S ∪ {x} \ {a}

F

Fa

The edge between S′ and S′
1 is no longer present in EFa

; however there is now
an edge between S′ and S′

2. Since for each such pair S ∈ F and x ∈ X, the edge{
S, S ∪ {x}

}
in EF gets replaced with the edge

{
S \ {a} , S ∪ {x} \ {a}

}
in EFa

,
the replacements are all distinct. That is, there is a one-to-one correspondence
of replacements of edges of EF with those of EFa

.

S is unchanged, S ∪ {x} gets shifted: This case is similar to the previous one.
Then S \{a} already exists in F and thus in Fa. Therefore the edge

{
S, S ∪{x}

}
in EF gets replaced by the edge

{
S \ {a}, S ∪ {x} \ {a}

}
in EFa

.

This concludes the proof. �

It is not hard to see that most geometric set systems have small VC-dimension.
We conclude this section by presenting tight bounds on the VC-dimension of some
basic geometric set systems.

Lemma 4.12. Let H be the family of all hyperplanes in R
d. Then VC-dim (H) = d.

Proof. As any set of d points in general position is shattered by H, we have
VC-dim (H) ≥ d. For the upper bound, the case d = 2 is easy to see and so
inductively assume that the family of hyperplanes in R

d−1 has VC-dimension at
most d − 1.
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Assume that there exists a set P of d+1 points in R
d that is shattered by H. Then

P must lie on some hyperplane H in R
d; without loss of generality we can assume

that H = R
d−1. Let P ′ be any d points of P . For every Q ⊆ P ′, let HQ be a

hyperplane in R
d containing precisely the points of Q. As HQ does not contain the

point in P \P ′, HQ must be distinct from H and so HQ∩H is a hyperplane in R
d−1.

But then P ′ (consisting of d points in R
d−1) is shattered by the set of hyperplanes

{HQ ∩ H : Q ⊆ P ′} in R
d−1, a contradiction to the inductive hypothesis. �

Lemma 4.13. Let H+ be the family of all half-spaces in R
d. Then VC-dim (H+) =

d + 1.

Proof. Clearly VC-dim (H+) ≥ d + 1, as any set of d + 1 points in general
position is shattered by H+. For the upper bound, the case d = 1 or d = 2 is
easy to see and so inductively assume that the family of half-spaces in R

d−1 has
VC-dimension at most d.

Let P be any set of d+2 points in R
d. If conv (P ) contains a point of P , then clearly

the interior point cannot be separated from the remaining points by a half-space.
Otherwise P is in convex position, and let H be a hyperplane spanned by a set
P ′ ⊂ P of size d, with the two remaining points in P \ P ′ lying on different sides
of H3. Let q be the intersection point of the line segment spanned by P \ P ′ with
H. By induction on the dimension, the set P ′ ∪ {q} in R

d−1 of size d + 1 cannot
be shattered by half-spaces; that is, P ′ can be partitioned into two disjoint subsets
that cannot be separated by a hyperplane lying in H. Replacing q by P \P ′ in the
appropriate set of this partition gives us two disjoint subsets of P that cannot be
separated by a hyperplane in R

d and thus P cannot be shattered by half-spaces. �

Lemma 4.14. Let B be the family of all balls in R
d. Then VC-dim (B) = d + 1.

Proof. Assume that a set of points P in R
d is shattered by the primal set

system induced by balls. That is, for any Q ⊆ P there exists a ball B with Q = B∩P
and a ball B′ with P \Q = B′∩P . Then the hyperplane passing through ∂B∩∂B′

(or simply separating B and B′ if the two balls are disjoint) separates Q from P \Q.
Thus if a set of points is shattered by the primal set system induced by balls in
R

d, then it is shattered by the primal set system induced by half-spaces in R
d. The

proof now follows from Lemma 4.13. �

More generally, primal set systems induced by polynomial inequalities can be
realized, using the so-called Veronese maps, by primal set systems induced
by half-spaces in some higher dimensional space (see the discussion). For-

mally, each d-variate polynomial f (x1, . . . , xd) defines the set Sf on R
d, where

Sf =
{
p ∈ R

d : f(p) ≥ 0
}
. Veronese maps imply the following (stated without

proof).

Lemma 4.15. Let Rd,D be a primal set system induced on R
d by the sets defined

by all d-variable polynomials of degree at most D. Then VC-dim (Rd,D) ≤(
d+D
d

)
.

3Such a hyperplane H always exists: let Δ be a simplex spanned by any d + 1 points of
P . The remaining point lies outside Δ, and so there is a hyperplane through a facet of Δ that
separates this point from the other remaining vertex of Δ.
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2. Shallow-cell Complexity

Indeed, probabilities are merely ratios of sizes of sets, and so probabilis-
tic analysis is merely combinatorics. Yet, as is often the case in mathe-
matics and science, using certain definitions and notations (rather than
others) may simplify the analysis tremendously. Specifically, in many
cases, the analysis is much simpler to carry out in terms of probabilities
than in terms of set sizes.

Oded Goldreich

Recall the definition of the shallow-cell complexity of a set system.

Definition 4.4. A set system (X,F) has shallow-cell complexity ϕF (·, ·) if for
any positive integer k and any finite Y ⊆ X, the number of sets in F|Y of size
at most k is upper bounded by |Y | · ϕF

(
|Y |, k

)
.

For a family R of geometric objects in R
d—e.g., the family of all half-spaces—

the shallow-cell complexity of R is defined to be the shallow-cell complexity of
the primal set system

(
R

d,R
)
.

Determining the shallow-cell complexity of a given set system (X,F) seems difficult,
as one is asking for a lot of information about the set system: to upper bound, for
every integer k ≥ 1 and every Y ⊆ X, the number of sets in F|Y of size at most
k (recall that these sets were called the (≤k)-level-sets of F|Y and denoted by
(F|Y )≤k). However, the probabilistic averaging technique of Chapter 1 illustrates
that for most geometric set systems one only needs an upper bound when k is a
constant to derive an upper bound for every k. We have already seen two examples
of this.

Primal set system induced by disks: ϕ (n, k) = O
(
k2
)

(Lemma 1.2).

Dual set system induced by disks : ϕ (n, k) = O (k) (Lemma 1.9).

In this section we study the shallow-cell complexity of two geometric set systems,
one primal and one dual.

Dual set systems. Let O = {O1, . . . , On} be a set of geometric objects in R
2,

each bounded by a Jordan curve in the plane. Recall that the dual set system
induced on O by R

2 is defined as

R (O) =
{
Op : p ∈ R

2
}

, where Op =
{
O ∈ O : O � p

}
.

We will assume that the boundaries of every pair of objects of O intersect in at
most a constant number of points and that no point of R2 lies on the boundary of
more than two objects of O. For any O′ ⊆ O, let V (O′) denote the finite set of
points that lie on the intersection of the boundaries of any two objects of O′.

Our goal is to upper bound |R≤k (O′) |, for any O′ ⊆ O and any integer k. As
before, this can be upper bounded, within constant factors, by |V≤k (O′) | + |O′|,
where

V≤k (O′) =
{
v ∈ V (O′) : v is contained in the interior of ≤ k objects of O′

}
.
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The case k = 0 is related to the union complexity of O. Denote the union of O by

U (O) =
⋃

O∈O
O.

That is, p ∈ U (O) if and only if p lies in at least one object of O. Note that
the set of vertices lying on the boundary of the union is precisely the set V≤0 (O).
The complexity of the union U (O) is the total number of faces on the boundary of
U (O)—in our case it consists of the vertices of V≤0 (O) as well as the induced arcs
between the vertices of V≤0 (O). See the figure.

We say that O has union complexity f : Z+ → R if the complexity of the union
of any O′ ⊆ O is at most f (|O′|). The following lemma uses the probabilistic
averaging technique of Chapter 1.

Lemma 4.16. Given a set O of n objects in the plane with union complexity f (·),
where f (m) ≥ m, and an integer k ∈

[
0, n

2

]
,

|V≤k (O) | = O

(
(k + 1)

2 · f
(

n

k + 1

))
.

This implies that the dual set system R (O) induced on O by R
2 has shallow-cell

complexity

ϕR(O) (m, k) = O

(
(k + 1)

2

m
· f
(

m

k + 1

))
.

Proof. Let S be a subset of O of size t = n
k+1 chosen uniformly at random

from all t-sized subsets of O (for simplicity assume that n is a multiple of k + 1).

This is different from our usual sampling distribution which is to pick each

point independently with probability p. The reason is that we will need to

prove E [f (|S|)] ≤ f (np). There are two technical ways to calculate this:

compute E [f (|S|)] by conditioning on |S| and summing up an exponential

series over all sizes of S or sampling a set of a fixed size. We have chosen the

second way, but the first method also works.

We bound the expected size of V≤0 (S) in two ways.

Upper bound: From the definition of union complexity,

|V≤0 (S) | ≤ f (|S|) = f (t) .
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2. SHALLOW-CELL COMPLEXITY 69

Lower bound: A vertex v ∈ V≤k (O) ends up as a vertex of V≤0 (S) if and only
if both of the two defining objects of v are present in S and none of the at most
k objects containing v in their interior are present in S. The probability of this

happening is at least
(n−2−k

t−2 )
(nt)

and so by linearity of expectation,

E
[
|V≤0 (S) |

]
≥ |V≤k (O) | ·

(
n−2−k
t−2

)(
n
t

) .

Combining the upper and lower bounds,

|V≤k (O) | ·
(
n−2−k
t−2

)(
n
t

) ≤ E
[
|V≤0 (S) |

]
≤ f (t) .

Simplifying the above, we get

|V≤k (O)| ≤ f (t) ·
(
n
t

)(
n−2−k
t−2

) = f (t) · n!

(n − t)! t!

(t − 2)! (n − k − t)!

(n − k − 2)!

= f (t) · n(n − 1)

t(t − 1)
· (n − 2)

(n − k − 2)

(n − 3)

(n − k − 3)
· · · (n − t + 1)

(n − k − t + 1)

= f (t) · n(n − 1)

t(t − 1)
· 1

1− k
n−2

1

1− k
n−3

· · · 1

1− k
n−t+1

= f (t) · n(n − 1)

t(t − 1)
·
t−3∏
i=0

1

1− k
n−i−2

≤ f (t) · n(n − 1)

t(t − 1)
·
(
e

2k
n−t+1

)t−2

= O

(
n2

t2
· f
(

n

k + 1

))
= O

(
(k + 1)2 · f

(
n

k + 1

))
.

The third-to-last step used the fact that 1 − x ≥ e−2x for x ∈ [0, 0.79]; this holds

in our case since t = n
k+1 and so k

n−t+1 = k(k+1)
n(k+1)−n+(k+1) = k(k+1)

nk+k+1 ≤ k+1
n+1 ≤ 3

4

for k ∈
[
0, n

2

]
. The second-to-last step follows as 2k(t−2)

n−t+1 ≤ 2kn
n(k+1)−n+(k+1) =

2kn
nk+k+1 ≤ 2. This completes the first part of the proof.

Let O′ ⊆ O. By the definition of union complexity we have |V≤0 (O′) | ≤ f (|O′|)
and thus the above calculation holds for any O′. This implies that |V≤k (O′) | =
O
(
(k + 1)

2 · f
(

|O′|
k+1

))
. Thus∣∣∣(R (O) |O′)≤k

∣∣∣ = |R≤k (O′)| = O (|V≤k (O′) |+ |O′|)

= O

(
(k + 1)

2 · f
(

|O′|
k + 1

))
,

and we get the stated bound for the shallow-cell complexity of R (O). �

For disks in the plane we have f(t) = O (t) (see Claim 1.10) and we recover the
O (nk) bound of Lemma 1.9.

When T is a set of axis-aligned rectangles in the plane, we have f (t) = O
(
t2
)
and

so Lemma 4.16 implies an upper bound of O
(
n2
)
for the size of V≤k (T ). This is

just the trivial bound, as we assumed that the boundaries of every pair of objects
intersect in a constant number of points. Furthermore this is tight—even for k = 0,
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70 4. COMPLEXITY OF SET SYSTEMS

a ‘grid’ of axis-aligned rectangles shows that there can be Ω
(
n2
)
vertices on the

boundary of the union of the rectangles. See the figure.

Primal set systems. In this section we consider an interesting example of a
primal set system that is ‘approximable’ by a set system with smaller shallow-cell
complexity. This is the primal set system R induced on a set P of n points in R

2

by axis-aligned rectangles in the plane.

It is not hard to show that for any integer k ≥ 2, the number of subsets of P of
size at most k induced by axis-aligned rectangles is O

(
n2k2

)
. That is, ϕR (m, k) =

O
(
mk2

)
. Furthermore, the quadratic dependence on n cannot be improved. See

the figure for an example, consisting of 2n points {p1, . . . , pn, q1, . . . , qn}, such that
the number of subsets of size at most k induced on these points by axis-aligned
rectangles is Ω

(
n2k

)
. In particular, for each i ≥ j, there is an axis-aligned rectangle

containing precisely the set {pi, qj}, and so even for k = 2, there are Ω
(
n2
)
sets

induced on this set by rectangles.

p1

p2

pn

q1
q2

qn

pi

qj

We now turn to the proof of the main theorem of this section.

Theorem 4.17. Let P be a set of n points in R
2 and ε > 0 a given parameter. Let

R be the primal set system induced on P by axis-aligned rectangles in the plane.
Then there exists a set system R′ on P such that

(1) for any integer k ≥ 1 and Y ⊆ P ,
∣∣ (R′|Y )≤k

∣∣ = O
(
|Y | k2 log 1

ε

)
, implying

that ϕR′ (m, k) = O
(
k2 log 1

ε

)
, and

(2) for any R ∈ R with |R| ≥ εn, there exists a R′ ∈ R′ such R′ ⊆ R and

|R′| ≥ |R|
2 .

Proof. For simplicity assume that n is a power of 2.

We construct the set system R′ on P using a hierarchical spatial decomposition of
P .
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Set P0 = P and let l0 be a vertical line, said to be at level 0, that divides P0 into
two sets P1 and P2 of size n

2 each. Let R0 be a set system on P0 consisting of all
subsets of P0 induced by rectangles ‘anchored’ at l0—that is, rectangles with one
vertical edge lying on l0. See the figure.

P1 P2

l0

Now recurse independently on P1 and P2: divide P1 into two equal-sized subsets of
size n

4 each by a vertical line l1 (of level 1) and let R1 consist of all sets induced
on P1 by rectangles anchored on l1. Similarly divide P2 with the line l2 (of level 1)
and add subsets of P2 induced by rectangles anchored on l2 to R2.

At the i-th level, equipartition the 2i disjoint subsets P2i−1, . . . , P2i+1−2 of P by
vertical lines and for each j = 2i − 1, . . . , 2i+1 − 2, let Rj be the subsets of Pj

induced by rectangles anchored on lj . Finally set

R′ =

�log 1
ε �⋃

i=0

2i+1−2⋃
j=2i−1

Rj .

Note that we only go until level
⌈
log 1

ε

⌉
, since we only care about those rectangles

containing at least εn points of P .

Claim 4.18. For any integer k and Y ⊆ P ,
∣∣∣(R′|Y )≤k

∣∣∣ = O
(
|Y | k2 log 1

ε

)
.

Proof. The key fact is that for any Pj and the corresponding line lj , the set
system Rj induced on Pj by rectangles anchored on lj has the property that for
any Y ⊆ Pj ,

∣∣(Rj |Y )≤k

∣∣ = O
(
|Y | k2

)
. We present the proof of this (Lemma 4.19)

at the end.

Given any integer k and Y ⊆ P , we upper bound
∣∣∣(R′|Y )≤k

∣∣∣ level-by-level. As P

is partitioned into disjoint subsets at each level,

∣∣∣(R′|Y )≤k

∣∣∣ = �log 1
ε�∑

i=0

2i+1−2∑
j=2i−1

O
(
|Y ∩ Pj | · k2

)
=

�log 1
ε �∑

i=0

O
(
|Y | · k2

)

= O

(
|Y | k2 log

1

ε

)
.

�

To see 2., consider any rectangle R ∈ R with |R| ≥ εn. Then the line l intersected

by R with the minimum level is unique and so R contains at least |R|
2 points from
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one of the two sides of l and the intersection of R with this side is an anchored
rectangle present in R′.

We remark that the point here is to continue the recursive construction for log 1
ε

steps instead of log n steps, as this suffices to prove the statement for rectangles
containing at least εn points of P . �

Lemma 4.19. Let Q be a set of n points in R
2 and let l be a vertical line in R

2.
Let F be the primal set system induced on Q by axis-aligned rectangles with a

vertical edge lying on l. Then for any Y ⊆ Q,
∣∣∣(F|Y )≤k

∣∣∣ = O
(
|Y | k2

)
. That is,

ϕF (m, k) = O
(
k2
)
.

Proof. See the figure for an illustration. It suffices to upper bound the number
of sets due to anchored rectangles all lying on the same side of l.

As before, within constant factors, it suffices to restrict ourselves to sets induced
by canonical rectangles on Q—that is, axis-aligned rectangles containing a point of
Q on each of their three bounding edges.

For each q ∈ Q, there can be only O
(
k2
)
canonical rectangles containing at most k

points of Q in their interior and whose right vertical edge contains q: we can only
move the top and bottom edges of each such rectangle and these can only induce
O
(
k2
)
distinct subsets of Q of size at most k.

Thus the number of canonical rectangles containing at most k points of Q in
their interior is O

(
nk2

)
. The same bound applies to any Y ⊆ Q, implying that∣∣∣(F|Y )≤k

∣∣∣ = O
(
|Y | k2

)
. �

We note that another proof of Lemma 4.19 follows using the averaging technique
of Chapter 1.
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CHAPTER 5

Packings of Set Systems

The ε-net constructions so far have crucially used the fact that the given set systems
are induced by configurations of objects in Euclidean space. For example, the con-
structions of ε-nets for the set system induced by disks in the plane—in Chapters 2
and 3—are based on the idea of maximal empty disks avoiding a random sample
S ⊆ P (the empty canonical disks spanned by S; see Claim 2.14). While this lead
to optimal bounds for ε-nets for this and some other set systems, it also limited the
use of these techniques to set systems induced by geometric objects. We now start
to build the machinery required to generalize the earlier constructions to purely
abstract settings.

In this chapter we focus on a specific aspect of Euclidean space: packings.

A basic instance of geometric packing is the following:

Let C be the cube [0, n]d in R
d and P ⊆ C be a set of points such that

dist (pi, pj) ≥ δ for every pi, pj ∈ P . What is an upper bound on |P |?
The observation is that the |P | balls of radius δ

2 centered at each p ∈ P ,

denoted by Ball
(
p, δ

2

)
, must be pairwise disjoint. As these |P | balls, each

with volume at least
(
δ
2

)d
, are contained in the cube

[
− δ

2 , n + δ
2

]d
, we

get

|P | ·
(

δ

2

)d

≤
∑
p∈P

vol

(
Ball

(
p,

δ

2

))
≤ vol

([
−δ

2
, n +

δ

2

]d)
= (n + δ)d ,

and thus |P | = O
((

n
δ

)d)
.

The geometric notion of packing relies, among other things, on the notion of dis-
tance; the packing question then concerns the number of geometric objects that
can exist while being pair-wise distant from each other.

In moving to abstract set systems the notion of distance between points is replaced,
in a natural way, by the cardinality of the symmetric difference between sets.

Given two finite sets X and Y , the symmetric difference of X and Y is
denoted by

Δ (X, Y ) = (X \ Y ) ∪ (Y \ X) .

This chapter deals with the combinatorial analogs of packing statements where
the underlying distance measure is the symmetric difference between sets. The
main technical result will be the following important theorem which generalizes the
packing properties of geometric objects to abstract set systems.

Theorem 5.1. Let F = {S1, . . . , Sm} be a set system on a set X of n elements
and let d ≥ 1, δ ∈ [n] be given integer parameters such that VC-dim(F) ≤ d and for

75
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76 5. PACKINGS OF SET SYSTEMS

every 1 ≤ i < j ≤ m, we have |Δ(Si, Sj)| ≥ δ. Then

|F| ≤ 2 · E
[
|F|A|

]
,

where A is a subset of size s =
⌈
8dn
δ

⌉
− 1 picked uniformly at random from X

(without replacement).
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1. Packing Half-Spaces in R
d

In nearly every theory [in Physics] there exist steps that are omitted in
the theoretical papers and not treated in the textbooks. These steps are
obviously designed to keep the experimental physicists in their place.

Hans Frauenfelder

The main theorem for this section is an immediate consequence of ε-net construc-
tions of Chapter 3; it can be seen as a warm-up to the powerful packing statement
of the next section.

Theorem 5.2. Let k, d and δ ≥ 2 be positive integers and P a set of n points in R
d.

Let R be a primal set system on P where each set of R is induced by a half-space
in R

d, such that

(1) |R| ≤ k for all R ∈ R, and
(2) |Δ(R, R′)| ≥ δ for all distinct R, R′ ∈ R.

Then |R| = O

(
n� d

2 �k� d
2 �

δd

)
, where the constant in the asymptotic notation depends

on d.

Overview of ideas. The main idea is captured in the proof of the following simpler
problem in the dual setting (more later).

Let H be a set of n hyperplanes in R
d and P a set of points in R

d in general
position such that for any pair of points p, q ∈ P , the line segment pq intersects
at least δ ≥ 2 hyperplanes of H. What is the maximum cardinality of P?

The answer is |P | = O
((

n
δ

)d)
, derived as follows. Applying Theorem 3.18

to H with r = n
δ−1

, there exists a partition of Rd into a set Ξ of O
(
rd
)
=

O
((

n
δ

)d)
simplices such that the interior of each simplex of Ξ intersects at

most n
r
= δ − 1 hyperplanes of H. This implies that each simplex of Ξ can

contain at most one point of P in its interior. Furthermore, since P is in

general position, each simplex can contain at most d (d+ 1) points of P on its

boundary and thus there can be at most O
((

n
δ

)d) · d (d+ 1) such points.

Theorem 5.2 is a generalization of this statement.

Proof of Theorem 5.2. Let R = {R1, . . . , Rt}, where Ri is induced by the
half-space hi in R

d and let H = {h1, . . . , ht} be these t half-spaces. We are given
that each half-space in H contains at most k points of P and for any two indices
1 ≤ i < j ≤ t,

∣∣Δ(hi ∩ P, hj ∩ P )
∣∣ ≥ δ.

To simplify the exposition, we will assume that P and H are in general position; in
particular that no d+2 bounding hyperplanes of the half-spaces in H have a point
in common and that no point of P lies on the bounding hyperplane of any half-space
in H. By partitioning R into two sets and bounding them separately, we can also
assume without loss of generality that each half-space in H is downward-facing;
that is, it contains the point (0, . . . , 0,−λ), for any sufficiently large λ > 0.

Using point-hyperplane duality, let P ∗ = {p∗ : p ∈ P} be the set of n hyperplanes
dual to the points of P and let H∗ = {q∗i : hi ∈ H} be the set of n points dual to
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the bounding hyperplanes of the half-spaces in H. That is,

p = (p1, . . . , pd) → p∗ : p1x1 + · · ·+ pd−1xd−1 − xd = −pd,

∂hi : a1x1 + · · ·+ ad−1xd−1 + xd = b → q∗i = (a1, . . . , ad−1, b) .

See the figure for an example.

For each point q∗ ∈ H∗, let l (q∗) be the set of hyperplanes of P ∗ lying below
q∗ with respect to the xd axis; that is, |l (q∗) | is the level of q∗ with respect to
P ∗ (see Definition 1.15). By the properties of point-hyperplane duality1 and the
assumption that no point of P lies on the bounding hyperplane of any half-space
of H, we get the following correspondence:

hi ∈ H contains at most k points of P ⇐⇒ q∗i ∈ H∗ has |l(q∗i )| ≤ k,∣∣Δ(hi ∩ P, hj ∩ P )
∣∣ ≥ δ ⇐⇒

∣∣Δ (l (q∗i ) , l
(
q∗j
)) ∣∣ ≥ δ.

Recall the existence of shallow-cuttings for hyperplanes.

Definition 3.20. Given a set H of n hyperplanes in R
d, a real parameter r > 0

and an integer k ≥ 0, a
(
1
r
, k
)
-shallow cutting is a set Ξ of interior-disjoint

simplices (some of which are unbounded) such that

• the union of the simplices in Ξ covers all points in R
d of level at

most k with respect to H, and
• the interior of each simplex in Ξ intersects at most n

r
hyperplanes of

H.

Theorem 3.21. Let H be a set of n hyperplanes in R
d, r > 0 a real and k ≥ 0

an integer. Then there exists a
(
1
r
, k
)
-shallow cutting of H of size

O

(
r	

d
2 

(
kr

n
+ 1

)� d
2 �
)
.

1In particular, that it preserves sidedness—a point p ∈ R
d lies below a hyperplane h if and

only if the point dual to h lies above the hyperplane dual to p.
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Construct a
(
δ−1
n , k

)
-shallow cutting Ξ for the hyperplanes in P ∗. By Theorem 3.21

and the fact that k ≥
⌈
δ
2

⌉
, we have

(5.3) |Ξ| = O

⎛
⎜⎜⎝
(

n

δ − 1

)� d
2 �
⎛
⎝k

(
n

δ−1

)
n

+ 1

⎞
⎠
� d

2 �
⎞
⎟⎟⎠ = O

(
n� d

2 �k� d
2 �

δd

)
.

As each point in H∗ has level at most k with respect to P ∗, H∗ lies in the union of
the simplices of Ξ. Furthermore, no two points of H∗ lie in the interior of the same
simplex:

Assume that q∗i , q
∗
j ∈ H∗ lie in the interior of Δ ∈ Ξ. Then all hyper-

planes of P ∗ in the symmetric difference Δ
(
l (q∗i ) , l

(
q∗j
))

must intersect
the interior of Δ and so∣∣Δ (l (q∗i ) , l

(
q∗j
))∣∣ ≤ |P ∗|

n/ (δ − 1)
≤ δ − 1,

a contradiction.

By general position assumption, at most d (d + 1) points of H∗ can lie on the
boundary of any simplex of Ξ and thus there can be only d (d + 1) · |Ξ| such points.
Equation (5.3) now implies that

|R| = |H| = |H∗| = O (d (d + 1) |Ξ|) = O

(
n� d

2 �k� d
2 �

δd

)
.

�
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2. A Packing Theorem for Combinatorial Set Systems

When presented with the probabilistic method, the probabilist J. Doob
remarked: ‘Well, this is very nice, but it’s really just a counting argu-
ment’.

Joel Spencer

The main result of this section is the following beautiful statement.

Theorem 5.1. Let F = {S1, . . . , Sm} be a set system on a set X of n elements
and let d ≥ 1, δ ∈ [n] be given integer parameters such that VC-dim(F) ≤ d and for
every 1 ≤ i < j ≤ m, we have |Δ(Si, Sj)| ≥ δ. Then

|F| ≤ 2 · E
[
|F|A|

]
,

where A is a subset of size s =
⌈
8dn
δ

⌉
− 1 picked uniformly at random from X

(without replacement).

Overview of ideas. Let R ⊆ X be a uniform random sample of size at least n
δ

(without replacement) and consider the set system F|R. We would like to argue
that, on average, each set of F maps to a distinct set of F|R and so |F| = E [|F|R|].
However, it could be that S, S′ ∈ F map to the same set of F|R. This happens
precisely when no element in the symmetric difference Δ (S, S′) is picked in R. As
each element of X is picked into R with probability at least 1

δ and the symmetric
difference of every pair of sets is at least δ, in expectation we will pick at least one
element from the symmetric difference of these two sets and thus S and S′ will not
be ‘merged’ in F|R.
This intuition will be implemented in the proof using the averaging technique
of Chapter 1, as follows. Recall first the unit distance graph GU (F|R) on the
vertex set F|R: two sets of F|R are connected by an edge if and only if their
symmetric difference has size precisely one.

For a random sample R of size s = Θ
(
n
δ

)
, we will essentially (but not

quite!) double-count the expected number of pairs of sets in F that end
up at unit symmetric difference in F|R.
Upper bound: This follows from the fact (Lemma 4.9) that there are
at most d |F|R| pairs of sets at unit symmetric difference in F|R, for
any choice of R ⊆ X.

Lower bound: For every pair Si, Sj ∈ F , we will lower bound the prob-
ability that the symmetric difference of the two sets {Si ∩ R, Sj ∩ R}
is exactly one. This, together with linearity of expectation, implies a
lower bound on the expected number of pairs of sets of F that end up
at unit symmetric difference in F|R.

Putting these bounds together will give an upper bound on |F|!
However, there are two technical issues that must be overcome (the formulation
below is intentionally imprecise).

(1) We will count the expected number of pairs of sets of F that are at unit
symmetric difference in GU (F|R). However Lemma 4.9 only gives an
upper bound on the pairs of sets of F|R at unit distance in GU (F|R).
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These two are not the same, as each set of F|R potentially corresponds to
many sets of F . Therefore one has to look at the weighted unit distance
graph on the sets of F|R. Towards that, for each S′ ∈ F|R,

define the weight w (S′) to be the number of sets of F mapping
to S′.
In other words, w (S′) is the cardinality of the preimage of S′

under the projection F|R.
Thus instead of counting the number of edges in the unit distance graph
GU (F|R), we will sum up the weight of the edges in GU (F|R), where an
edge {S′

i, S
′
j} is assigned the weight w (S′

i) · w
(
S′
j

)
. In fact, to simplify

certain calculations, we will instead define the weight as

w
( {

S′
i, S

′
j

} )
= min

{
w (S′

i) , w
(
S′
j

)}
.

Note that for any a, b > 02,

min {a, b} · (a + b)

2
≤ ab ≤ min {a, b} · (a + b) .(5.4)

Thus if a+ b is a fixed constant, min
{
w (S′

i) , w
(
S′
j

)}
can be substituted

for w (S′
i) · w

(
S′
j

)
.3

(2) We need to lower bound, for any two sets Si, Sj ∈ F , the probability that{
Si ∩R, Sj ∩R

}
ends up as an edge in GU (F|R). This occurs if and only

if exactly one element of Δ (Si, Sj) is picked into R; the probability of this
occurring depends only on |Δ(Si, Sj) |.

Given that we are only interested in the sum of these
(|F|

2

)
probabil-

ities (that is, the expected number of pairs at unit distance in F|R), a
clever idea that simplifies calculations is to use double-counting to count
this sum in a uniform way. Rather than summation over pairs of sets in
F , we count, for the i-th element of R, the expected number of pairs at
unit distance due to that element. By symmetry, this value is the same for
all elements of R. So conditioned on the set A of the first |R|−1 elements
of R, we only have to compute the expected number of pairs of sets that
are put at unit distance by the |R|-th random element.

Putting these ideas together will give the formal proof, to which we turn to next.

Proof of Theorem 5.1. Let R be a uniform random sample of X of size
s =

⌈
8dn
δ

⌉
(that is, without replacement). We can think of constructing R by first

picking a uniform random sample A of size s − 1 from X, choosing an element a
uniformly at random from X \ A, and setting R = A ∪ {a}4.

2Assume a ≤ b. Then it is equivalent to the fact that a
2
+ b

2
≤ b ≤ a+ b.

3Essentially, for each edge {S′
i, S

′
j}, we are counting the normalized number of pairs at

unit distance; that is, the quantity
w(S′

i)·w(S′
j)

w(S′
i)+w(S′

j)
. This is equal, within a factor of two, to

min{w(S′
i), w(S′

j)}, which is the weight function we will use.
4These two distributions are equivalent: the probability that a fixed set of size t is chosen is

precisely t ·
(
1/

( n
t−1

))
· 1/(n− (t− 1)) = 1/

(n
t

)
.
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Let GU (F|R) = (F|R, ER) be the unit distance graph on F|R. For each S′ ∈ F|R,
define w (S′) to be the number of sets of F mapping to S′:

w (S′) =
∣∣ {S ∈ F : S ∩ R = S′}

∣∣.
Define the weight of an edge

{
S′
i, S

′
j

}
∈ ER as

w
({

S′
i, S

′
j

})
= min

{
w (S′

i) , w
(
S′
j

)}
.

Let W =
∑

e∈ER
w (e) be the total weight of the edges of GU (F|R).

We will count E [W ] in two ways.

First we present an upper bound on W and hence on E [W ] (recall that m = |F|
and VC-dim (F) ≤ d).

Claim 5.5.

W ≤ 2d · m.

Proof. By Lemma 4.9, |ER| ≤ d |F|R|. Thus∑
S′∈F|R

deg (S′) = 2 |ER| ≤ 2d |F|R|,

and so there exists a set S′ ∈ F|R with deg (S′) ≤ 2d |F|R|
|F|R| = 2d. By the definition

of edge weights, the weight of each edge incident to S′ is at most w (S′). Thus the
sum of the weight of all the edges incident to S′ is at most 2d · w (S′).

Remove S′ from GU (F|R). The remaining graph is still a unit distance graph on
|F|R| − 1 vertices and the weight of its edges can be bounded inductively. Thus we
get

W ≤ 2d
∑

S′∈F|R

w (S′) = 2d · m.

�

Next a lower bound on E [W ].

Claim 5.6.

E [W ] ≥ 4dm − 4dE [|F|A|] .

Proof. Let W1 be the weight of the edges in GU (F|R) where the element a
is the symmetric difference. By symmetry, we have

E [W ] = s · E [W1] ,

and so it suffices to give a lower bound on E [W1].

We first give a lower bound on E [W1] conditioned on the choice of the first s − 1
elements A.

Claim 5.7. For any fixed Y ⊆ X of size s − 1,

E
[
W1 | A = Y

]
≥ δ

2n

(
m − |F|Y |

)
.

Proof. The expectation here is only over the choice of a. Note that R =
Y ∪ {a}.
Consider a set Q ∈ F|Y and let FQ be the sets of F mapping to Q—namely the
sets whose projection onto Y is Q. Let b = |FQ|.
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Once a has been chosen, FQ will be split into two sets: those sets of FQ that
contain a, say there are b1 of these, and those that do not contain a, say b2 = b− b1
in number. These two sets are now at unit distance in F|R, with the element a
being their symmetric difference; the weight of the edge between these two sets is
min {b1, b2}. Then W1 is the total weight of such edges for all Q ∈ F|Y .
For each pair of sets in FQ, the probability that the randomly chosen last element a

will cause their symmetric difference in R to be 1 is at least δ
n−(s−1) ≥

δ
n . Therefore

the expected contribution of each pair of sets in FQ to the term b1b2 is at least δ
n .

Noting that b = b1 + b2 is independent of the choice of a, summation over all pairs
of sets in FQ yields the following lower bound on the expected contribution of the
sets in FQ to W1:

E [min{b1, b2}] ≥ E

[
b1b2

b1 + b2

] (
by Equation (5.4)

)
=

E [b1b2]

b1 + b2

(
as |FQ| = b = b1 + b2 is independent of choice of a

)
=

∑
S,S′∈FQ

Pr
[
a lies in the symmetric difference of S and S′]

b

≥
∑

S,S′∈FQ
δ/n

b
=

|FQ| (|FQ| − 1) · δ/n

2 |FQ|
=

δ

2n
· (|FQ| − 1) .

Summing up over all sets of F|Y ,

E
[
W1 | A = Y

]
≥

∑
Q∈F|Y

δ

2n

(
|FQ| − 1

)

=
δ

2n

⎛
⎝ ∑

Q∈F|Y

|FQ| −
∑

Q∈F|Y

1

⎞
⎠ =

δ

2n

(
m − |F|Y |

)
.

�

Finally we compute a lower bound for E [W ]:

E [W ] = s · E [W1] = s ·
∑
Y⊆X

|Y |=s−1

E
[
W1|A = Y

]
· Pr[A = Y ]

≥ s ·
∑
Y⊆X

|Y |=s−1

δ

2n

(
m − |F|Y |

)
· Pr

[
A = Y

]

=
sδ

2n

⎛
⎜⎜⎝m

∑
Y⊆X

|Y |=s−1

Pr [A = Y ]−
∑
Y ⊆X

|Y |=s−1

|F|Y | · Pr [A = Y ]

⎞
⎟⎟⎠

=
sδ

2n

(
m − E

[
|F|A|

])
≥ 4dm − 4dE

[
|F|A|

]
,

where the last step follows from substituting s =
⌈
8dn
δ

⌉
. �
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Combining the upper and lower bounds on E [W ],

4dm − 4dE
[
|F|A|

]
≤ E [W ] ≤ 2dm,

implying that m ≤ 2E
[
|F|A|

]
.

This completes the proof of Theorem 5.1. �
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3. Applications of the Packing Theorem

Different mathematicians study papers in different ways, but when I read
a mathematical paper in a field in which I’m conversant, I concentrate
on the thoughts that are between the lines. I might look over several
paragraphs or strings of equations and think to myself, ‘Oh yeah, they’re
putting in enough rigamarole to carry such-and-such an idea.’ When the
idea is clear, the formal setup is usually unnecessary and redundant. I
often feel that I could write it out myself more easily than figuring out
what the authors actually wrote. It’s like a new toaster that comes with
a 16-page manual. If you already understand toasters and if the new
toaster looks like previous toasters you’ve encountered, you might just
plug it in and see if it works, rather than first reading all the details in
the manual.

William Thurston

Given a set P of points in [0, n]d, if the distance between every pair of points of

P is at least δ, then |P | = O
((

n
δ

)d)
. Our first application of Theorem 5.1 is an

analogous statement for set systems of bounded VC-dimension.

Theorem 5.8. Let F =
{
S1, . . . , Sm

}
be a set system on a set X of n elements,

with VC-dim(F) ≤ d. Let δ ∈ [n] be an integer such that for every 1 ≤ i < j ≤ m,
we have

∣∣Δ(Si, Sj)
∣∣ ≥ δ (that is, the size of the symmetric difference between every

pair of sets of F is at least δ). Then |F| ≤ 2
(
8en
δ

)d
.

We remark that by applying Theorem 5.8 with δ = 1, one recovers the
statement of Lemma 4.3 with a slightly weaker bound.

Our second application is a packing lemma where we further assume that each set
of F has size at most k.

Definition 5.9. For positive integers k and δ, a set system (X,F) is called a
(k, δ)-packing if

(1) |S| ≤ k for all S ∈ F , and
(2) |Δ(S, S′)| ≥ δ for all S, S′ ∈ F .

Recall the notion of shallow-cell complexity of a set system.

Definition 4.4. A set system (X,F) has shallow-cell complexity ϕF (·, ·) if for
any positive integer k and any finite Y ⊆ X, the number of sets in F|Y of size
at most k is upper bounded by |Y | · ϕF

(
|Y |, k

)
.

For a family R of geometric objects in R
d—e.g., the family of all half-spaces—

the shallow-cell complexity of R is defined to be the shallow-cell complexity of
the primal set system

(
R

d,R
)
.

Theorem 5.10. Given positive integers k, d and δ ∈ [k], let F = {S1, . . . , Sm} be
a set system on a set X of n elements. Further assume that F is a (k, δ)-packing,
F has shallow-cell complexity ϕF (·, ·) and VC-dim(F) ≤ d. Then

|F| ≤ 48dn

δ
· ϕF

(
8dn

δ
,
24dk

δ

)
.
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Overview of ideas. We present the intuition behind the proof of Theorem 5.10.
Pick each element of X independently with probability p = 1

δ to get a random
sample R. We have E [|R|] = n

δ and for each Si ∈ F ,

E [|Si ∩ R|] = |Si|
δ

≤ k

δ
.

Now consider any two sets Si∩R, Sj∩R in F|R. Their symmetric difference consists
of the elements of Δ (Si, Sj) ∩ R, and so

E [|Δ(Si ∩ R, Sj ∩ R)|] = |Δ(Si, Sj)|
δ

≥ 1.

Thus one can hope that the sets of F remain distinct in F|R, and that each set will
have size at most k

δ in F|R. Now using the shallow-cell complexity of F ,

|F| = |F|R| ≤
n

δ
· ϕF

(
n

δ
,
k

δ

)
.

Converting this intuition into a proof will be done using Theorem 5.1.

Proof of Theorem 5.8. From Theorem 5.1, we have

|F| ≤ 2 · E
[
|F|A|

]
, where A ⊆ X is a uniform random sample of size

⌈
8dn

δ

⌉
− 1.

For the case of set systems with VC-dimension at most d, |F|A| can be upper
bounded independent of the specific choice of A. Thus using Lemma 4.3 to upper
bound |F|A|, we get

|F| ≤ 2 max
A⊆X,

|A|=� 8dn
δ �−1

|F|A| ≤ 2

(
e|A|
d

)d

≤ 2

(
8en

δ

)d

.

�

Proof of Theorem 5.10. Let A ⊆ X be a uniform random sample of size
8dn
δ − 1. Note that for any S ∈ F , E [|S ∩ A|] ≤ 8dk

δ as |S| ≤ k. Define

FA =

{
S ∈ F : |S ∩ A| > 3 · 8dk

δ

}
.

Markov’s inequality (Equation (1.26)) implies that for any S ∈ F ,

Pr
[
S ∈ FA

]
= Pr

[
|S ∩ A| > 3 · 8dk

δ

]
≤ 1

3
.

The sets of F|A can be partitioned into two collections: each S ∩ A ∈ F|A with
|S∩A| > 3 · 8dkδ belongs to the first collection, otherwise the second collection. The

number of sets in the first collection can be upper bounded by |FA| while each set
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in the second collection has size at most 3 · 8dk
δ . Thus we have

E [|F|A|] ≤ E
[
|FA|

]
+ E

[
|(F \ FA)|A|

]
≤
∑
S∈F

Pr
[
S ∈ FA

]
+ |A| · ϕF

(
|A|, 3 · 8dk

δ

)

≤ |F|
3

+
8dn

δ
· ϕF

(
8dn

δ
,
24dk

δ

)
,

where the number of sets in the projection of F \ FA onto A is bounded using the
shallow-cell complexity ϕF (·, ·). Now the bound follows from applying Theorem 5.1:

|F| ≤ 2 · E [|F|A|] ≤ 2

(
|F|
3

+
8dn

δ
· ϕF

(
8dn

δ
,
24dk

δ

))

=⇒ |F| ≤ 6 ·
(
8dn

δ
· ϕF

(
8dn

δ
,
24dk

δ

))
.

�

The computation of E [|F|A|] can be rephrased as follows. First note that for
any Y ⊆ X and any F ′ ⊆ F , we have

|F|Y | ≤
∣∣F ′∣∣+ ∣∣(F \ F ′) |Y ∣∣ .

By the definition of expectation,

E [|F|A|] =
∑
Y ⊆X

|Y |= 8dn
δ

−1

|F|Y | · Pr [A = Y ]

Letting FY be the sets of F with projected size at least 3 · 8dk
δ

in F|Y ,

≤
∑
Y ⊆X

|Y |= 8dn
δ

−1

(∣∣∣FY
∣∣∣+ ∣∣∣(F \ FY

)
|Y
∣∣∣) · Pr [A = Y ]

= E
[∣∣∣FA

∣∣∣]+ ∑
Y ⊆X

|Y |= 8dn
δ

−1

∣∣∣(F \ FY
)
|Y
∣∣∣ · Pr [A = Y ]

≤ |F|
3

+
8dn

δ
· ϕF

(
8dn

δ
,
24dk

δ

)
.

We remark here that the packing lemma for half-spaces proven earlier, Theorem 5.2,
follows immediately by Theorem 5.10 and Theorem 1.16. This proof—without
the use of any spatial properties—illustrates the usefulness of abstraction and not
surprisingly, this will carry over to the study of ε-nets.

Bibliography and discussion. The shallow packing lemma for some
geometric set systems was first shown in [DEG165c]. The statement was
then generalized and the proof simplified in [Mus16], whose presentation
we have essentially followed here. The technical trick in the proof is to
upper bound the desired quantity |F| by a function that involves |F| itself,
and is a technique to shorten an iterative/inductive/recursive argument.
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CHAPTER 6

Epsilon-Nets: Combinatorial Bounds

The initial study of ε-nets in the field of computational geometry started in the 1980s
with the work of Clarkson who showed the existence of ε-nets of size O

(
1
ε log

1
ε

)
for specific geometric set systems. He was mainly interested in their algorithmic
applications, such as nearest-neighbor queries for a set of points in Euclidean space.
Chapter 2 is largely based on his work.

Independently, Haussler and Welzl showed similar bounds in a purely abstract
setting, needing just that the given set system has bounded VC-dimension. In fact,
what was needed, given a set system (X,F), was the property that there exist an
absolute constant d such that

for all Y ⊆ X, |F|Y | = O
(
|Y |d

)
(see Lemma 4.3).

They showed, surprisingly, that this is already a sufficient condition for the existence
of small ε-nets; the following will be the first theorem of this chapter.

Theorem 6.1. Let (X,F) be a finite set system, d ≥ 1 an integer such that
VC-dim(F) ≤ d, and ε ∈

(
0, 1

2

)
a given parameter. Let N be a uniform ran-

dom sample of X of size t =
⌈
56 d
ε ln 1

ε

⌉
. Then N is an ε-net of F with probability

at least 1
2 .

It was later shown that the above bound is optimal within constant factors; that is,
for every positive integer n, integer d ≥ 2 and small-enough parameter ε > 0, there
is a set system (X,F) with |X| = n and VC-dim (F) ≤ d, such that any ε-net of F
has size Ω

(
d
ε log

1
ε

)
. This lower bound will be presented in Chapters 10 and 11.

Over the past thirty years, it has been observed that improvements to the Clarkson
and Haussler–Welzl bounds are possible for a variety of geometric set systems.
We have already seen an example in Chapter 3: O

(
1
ε

)
-sized ε-nets exist for set

systems induced by disks in the plane. Early work towards o
(
1
ε log

1
ε

)
upper bounds

was fundamentally geometric, involving spatial partitioning along the ideas seen in
Chapter 3.

Over the next twenty years, through the work of Aronov, Chan, Clarkson, Ezra,
Ray, Sharir, Varadarajan and others, it was realized that geometry is not really
needed. In fact, somewhat surprisingly, an entire suite of optimal bounds can
be obtained entirely combinatorially, with the shallow-cell complexity being a key
parameter of a set system that dictates the size of ε-nets.

The reason that the shallow-cell complexity of a set system comes into
play is the following. Given a set system (X,F), the probability that
a set F ∈ F is not hit by a uniform random sample N ⊆ X decreases
exponentially with the size of F . On the other hand, the number of sets

89
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of F of size at most k is an increasing function of k whose growth is
upper bounded by the shallow-cell complexity of the set system. It turns
out that the interplay between these two dictates the sizes of ε-nets.

The second main theorem of this chapter will be the following.

Theorem 6.2. Let (X,F) be a finite set system with shallow-cell complexity ϕF (·, ·)
and with VC-dim (F) ≤ d. Then for any ε ∈

(
0, 1

2

)
there exists an ε-net of F of

size

O

(
d

ε
+

1

ε
logϕF

(
16d

ε
, 48d

))
.

Consider the primal set system R induced by disks in the plane: as ϕR (m, k) =
O
(
k2
)
(Lemma 1.2) and VC-dim (R) ≤ 3, Theorem 6.2 implies the existence of

ε-nets of size O
(
1
ε

)
. Thus we recover Theorem 3.3 from just the shallow-cell com-

plexity of R!
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1. A First Bound using Ghost Sampling

Mathematics is one of a few fields in which one can do top-level work
without a lot of life experience, something that might be key in the arts
or humanities. One does not have to have experience raising children
through school, dealing with family tragedies, and so forth, to be able to
find three numbers whose fourth powers add up to another one.

Noam Elkies

We prove the following.

Theorem 6.1. Let (X,F) be a finite set system, d ≥ 1 an integer such that
VC-dim(F) ≤ d, and ε ∈

(
0, 1

2

)
a given parameter. Let N be a uniform ran-

dom sample of X of size t =
⌈
56 d
ε ln 1

ε

⌉
. Then N is an ε-net of F with probability

at least 1
2 .

Set n = |X|. We can assume that each set in F has size at least εn.

For ease of calculations, we will allow an element to be picked into N
multiple times. That is, N will be a sequence of size t =

⌈
56d
ε ln 1

ε

⌉
,

where each element in this sequence is chosen uniformly at random from
X. In a natural way, a sequence Y is an ε-net of F if Y contains at least
one element from each set of F .

Throughout this section we will work with sequences instead of sets.
Moreover, the size of the intersection of any set R ∈ F with a sequence
will count multiplicities.

Overview of ideas. Let T = Xt denote the set of all t-sized sequences of elements
of X, and let Tb ⊆ T be the sequences which are not an ε-net of F . Our goal is

to upper bound |Tb|. In particular, we will show that |Tb| < |T |
2 , implying that

N—constructed by picking t elements uniformly at random, with replacement—is
an ε-net of F with probability at least 1

2 . This implies the same property for a
uniform random sample of X of size t, proving Theorem 6.1.

Fix an ordering of the sets of F and

for each Y ∈ Tb, let RY ∈ F be the first set in the ordering for which Y
fails—that is, for which RY ∩ Y = ∅.

We will use the probabilistic averaging technique from Chapter 1. That is, we
take a uniform random sequence S of X of a certain size s—with replacement, so
S ∈ Xs—and examine the relationship between Tb and S. Specifically,

we count the expected number of sequences Y ∈ Tb s.t. |RY ∩S| ≥ εs
2
.

Lower bound: On one hand, for any Y ∈ Tb,

(6.3) E
[
|RY ∩ S|

]
=

s∑
i=1

|RY |
n

≥
s∑

i=1

ε = εs,

keeping in mind that each element of RY is counted with multiplicity in |RY ∩S|.
A tail bound will then imply that the expected number of sets Y ∈ Tb for which

|RY ∩ S| ≥ εs
2 is at least |Tb|

2 .
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Upper bound: On the other hand, this expectation can be calculated exactly:

1

ns

∑
Z∈Xs

∣∣∣{Y ∈ Tb : |RY ∩ Z| ≥ εs

2

}∣∣∣
=

1

ns

∣∣∣{(Z, Y ) : Z ∈ Xs, Y ∈ Tb ⊆ Xt, |RY ∩ Z| ≥ εs

2

}∣∣∣ .(6.4)

Call each of the above (Z, Y ) a satisfying pair. That is,

Z ∈ Xs, Y ∈ Tb ⊆ Xt, |RY ∩ Y | = 0 while |RY ∩ Z| ≥ εs
2 .

We will show that these constraints together force an upper bound on the total
number of satisfying pairs.

Combining the lower and upper bounds will then give the desired bound on |Tb|.

Proof of Theorem 6.1. For Z ∈ Xs, define

TZ =
{
Y ∈ Tb : |RY ∩ Z| ≥ εs

2

}
.

Set s = t and let S be an element chosen uniformly at random from Xs.

We count the expected size of TS in two ways.

Lemma 6.5 (Lower bound).

E
[
|TS |

]
=
∑
Y ∈Tb

Pr
[
|RY ∩ S| ≥ εs

2

]
≥ 1

2
· |Tb|.

Proof. The proof follows from linearity of expectation and the next claim.

Claim 6.6. For any R ∈ F , Pr
[
|R ∩ S| ≤ εs

2

]
< 1

2 .

Proof. For i = 1, . . . , s, let Yi be an indicator random variable that is 1 if and
only if the i-th element of S is in R. Then

|R ∩ S| =
s∑

i=1

Yi, where Pr [Yi = 1] =
|R|
n

≥ ε.

Then Chernoff’s bound (Theorem 1.20) applied to the s variables {Y1, . . . , Ys} with
δ = 1

2 implies that

Pr

[
|R ∩ S| ≤

(
1− 1

2

)
εs

]
≤ exp

(
−εs

8

)
≤ exp

(
−
56d ln 1

ε

8

)
<

1

2
,

recalling that s = t =
⌈
56d
ε ln 1

ε

⌉
. �

The upper bound of 1
2 in Claim 6.6 can be replaced by o (1) but it doesn’t matter

for us as this only changes the multiplicative constant factor in the final bound (see
discussion). �

The upper bound on E [|TS |] is implied by the following combinatorial statement.

Lemma 6.7 (Upper bound).∑
Z∈Xs

|TZ | =
∣∣∣{(Z, Y ) : Z ∈ Xs, Y ∈ Tb ⊆ Xt, |RY ∩ Z| ≥ εs

2

}∣∣∣ < n2t

4
.(6.8)
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Proof. The trick to showing Equation (6.8) is to use averaging again.

For each U ∈ Xs+t and R ∈ F , let Ψ (U, R) be the number of ways of
partitioning U into two subsequences Z ∈ Xs and Y ∈ Xt such that
(Z, Y ) is a satisfying pair, with RY = R.

As each satisfying pair (Z, Y ) can be combined into a sequence of size s+ t in
(
s+t
t

)
ways, we have (

s + t

t

) ∑
Z∈Xs

|TZ | =
∑

U∈Xs+t

∑
R∈F

Ψ(U, R) .(6.9)

We make two observations:

(1) For each fixed U ∈ Xs+t, let F ′ ⊆ F be such that all the sets in F ′ have
the same intersection with U . Then all R ∈ F ′ have the same intersection
with any (Z, Y ) derived from U , implying that Ψ (U, R) is (possibly) non-
zero only for the first set, according to our initial ordering, of F ′. As there
are |F|U | distinct intersections of sets of F with U , there are at most |F|U |
sets R ∈ F for which Ψ (U, R) is non-zero.

(2) For a fixed R ∈ F with |R ∩ U | ≥ εs
2 , there are at most

(
s+t− εs

2
t

)
ways to

select Y from U such that Y does not contain any element of R. This is
an upper bound on Ψ (U, R) for any fixed U and R.

The above two observations together with Equation (6.9) imply that
∑

Z∈Xs |TZ |
can be upper bounded by

1(
s+t
t

) · ∑
U∈Xs+t

|F|U | ·
(

s + t − εs
2

t

)
≤

∑
U∈Xs+t

·
(

e (s + t)

d

)d

·
(
s+t− εs

2
t

)(
s+t
t

) ,

where the second step follows from Lemma 4.3. It remains to simplify this upper
bound:

= n2t ·
(
2et

d

)d

·
2t − εt

2

2t

2t − εt
2 − 1

2t − 1
· · ·

t − εt
2 + 1

t + 1

(
recalling that s = t

)

= n2t ·
(
2et

d

)d

·
(
1−

εt
2

2t

)
· · ·

(
1−

εt
2

t + 1

)
≤ n2t ·

(
2et

d

)d

·
(
1−

εt
2

2t

)t

≤ n2t ·
(
2et

d

)d

· e− εt
4 ≤ n2t ·

(
112 e

ε
ln

1

ε

)d

· e−14d ln 1
ε

= n2t ·
(
112 e

ε
ln

1

ε

)d

· ε14d < n2t ·
(
112 e

ε2

)d

· ε14d

< n2t · (112 e)d · ε12d <
n2t

4
,

as (112e)d · ε12d ≤ (112e)d ·
(
1
2

)12d
< 1

4 . �

Combining the upper and lower bounds,

1

2
· |Tb| ≤ E [|TS |] =

1

ns

∑
Z∈Xs

|TZ | <
nt

4
,

gives |Tb| < nt

2 = |T |
2 , as required. �

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



94 6. EPSILON-NETS: COMBINATORIAL BOUNDS

A remark: the upper bound used in the proof, that

|F|U | ≤
(
e|U |
d

)d

,

is a consequence of the fact that VC-dim (F) ≤ d. If instead we only used

|F|U | = O (|U |)d, the final bound would come out to be O
(
d
ε
log d

ε

)
.

We conclude with two remarks.

Ghost sampling: A clever double-counting trick in the proof is to upper bound
the number of satisfying pairs (Z, Y )—where Z ∈ Xs and Y ∈ Xt—by enumer-
ating over all (s + t)-sized subsets of X. This trick was also used in the proof of
Theorem 5.1, though in that case we had t = 1.
In statistics and learning theory literature, this instance of double-counting is
called ghost sampling , and it is a useful technique to avoid discretization when
the base set X is infinite. For the case when the set system (X,F) is finite, there
are simpler proofs (see Chapter 12).
In the proof that we presented, we only wanted the probability that the random
sample N succeeds to be an ε-net of F to be non-zero, which is sufficient to
guarantee the existence of an ε-net of the required size. By introducing this
probability as a parameter in the sample size and re-working the above proof, we
arrive at the following statement (a proof is presented in Chapter 12).

Theorem 6.10. Let (X,F) be a finite set system, d ∈ N a positive integer such
that VC-dim(F) ≤ d, and ε ∈

(
0, 1

2

)
a given parameter. Then there exists an

absolute constant C6 > 0 such that a random sample N constructed by picking
each point of X independently with probability C6

ε|X| ln
1

εdγ
is an ε-net of F with

probability at least 1− γ.

Iterative View: As is often the case with double-counting proofs, one can ‘unroll’
the proof of Theorem 6.1 to an iterative version, as follows1. Let (X0,F0) be a
set system with |X0| = n and ε > 0 a parameter such that each set of F0 has size
at least εn. A straightforward application of Chernoff’s bound implies that there
exists a X1 ⊆ X0 such that each S ∈ F0 contains at least εn

2 elements of X1 and
further

|X1| ≤ |X0| ·
(
1

2
+

√
10 log |F0|

εn

)
.

Now one can repeat this step for the set system (X1,F1 = F|X1
) to get a set

X2 ⊆ X1 and so on. After the i-th iteration we have a set Xi such that each
S ∈ F0 contains at least εn

2i elements of Xi and furthermore,

|Xi| ≤ |Xi−1| ·
(
1

2
+

√
10 log |Fi−1|

εn
2i−1

)
≤ · · · ≤ n ·

i−1∏
j=0

(
1

2
+

√
10 log |Fj |

εn
2j

)
.

1Also this can be done by an inductive argument, though that somewhat obscures the ideas.
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We continue the iterations as long as iteration i satisfies

√
10 log |Fi|

εn

2i
≤ 1

2 . Say the

above procedure runs for t iterations. Now a calculation shows that for all i ≤ t,

|Xi| ≤ n ·
i−1∏
j=0

(
1

2
+

√
10 log |Fj |

εn
2j

)
≤ c1 ·

n

2i
,(6.11)

where c1 is a sufficiently large constant. We set t =
⌊
log εn

c′ d log 1
ε

⌋
for a sufficiently

large constant c′ depending only on c1. Then it can be verified that for all i ≤ t,√
10 log |Fi|

εn
2i

≤
√

10 log |Ft|
εn
2t

≤

√√√√10 log
(
ec1n
2td

)d
εn
2t

≤

√√√√10 log
(

ec1c′ log
1
ε

ε

)
c′ log 1

ε

≤ 1

2
,

where the second step follows from Equation (6.11) and Lemma 4.3.
Finally, each S ∈ F0 contains at least εn

2t ≥ c′d log 1
ε ≥ 1 points of Xt. Thus Xt

is an ε-net of F0, with

|Xt| ≤ c1 ·
n

2t
= c1 ·

n
εn

c′ d log 1
ε

= O

(
d

ε
log

1

ε

)
.

An elegant strengthened form of this idea is the basis of Chapter 8.

Bibliography and discussion. A slightly weaker bound than the
main theorem was first shown in [HW876a], and built upon the work
in [VC716a]. The bound of this section is from [Blu+89]. The proof
is usually stated entirely in probabilistic language while we have chosen a
more combinatorial exposition that makes clear its basis in the probabilis-
tic averaging technique of Chapter 1. The proof also follows immediately
from the more general notion of ε-approximations (see Chapter 13 ).
The constant ‘56’ in Theorem 6.1 can be replaced, with more precise cal-
culations, by 1 + o(1)! In particular, it was shown in [KPW926a] that a
uniform random sample obtained by d

ε

(
log 1

ε + 2 log log 1
ε + 3

)
independent

draws is an ε-net with probability at least 1− e−d.
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put. Geom. 7 (1992), no. 2, 163–173, DOI 10.1007/BF02187833. MR1139078
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2. Optimal ε-Nets using Packings

The question you raise, ‘how can such a formulation lead to computa-
tions?’ doesn’t bother me in the least! Throughout my whole life as a
mathematician, the possibility of making explicit, elegant computations
has always come out by itself, as a byproduct of a thorough conceptual un-
derstanding of what was going on. Thus I never bothered about whether
what would come out would be suitable for this or that, but just tried to
understand—and it always turned out that understanding was all that
mattered.

Alexandre Grothendieck

Given a set system (X,F), we now show the existence of small ε-nets of F as a
function of its shallow-cell complexity, which we first recall.

Definition 4.4. A set system (X,F) has shallow-cell complexity ϕF (·, ·) if for
any positive integer k and any finite Y ⊆ X, the number of sets in F|Y of size
at most k is upper bounded by |Y | · ϕF

(
|Y |, k

)
.

For a family R of geometric objects in R
d—e.g., the family of all half-spaces—

the shallow-cell complexity of R is defined to be the shallow-cell complexity of
the primal set system

(
R

d,R
)
.

The main theorem we will prove in this section is the following.

Theorem 6.2. Let (X,F) be a finite set system with shallow-cell complexity ϕF (·, ·)
and with VC-dim (F) ≤ d. Then for any ε ∈

(
0, 1

2

)
there exists an ε-net of F of

size

O

(
d

ε
+

1

ε
logϕF

(
16d

ε
, 48d

))
.

Overview of ideas. The proof requires three ideas. For the moment assume that
each set in F has size exactly εn.

(1) Fix any maximal subset P ⊆ F such that every pair of sets of P have
symmetric difference at least εn

2 . In other words, P is a maximal
(
εn, εn

2

)
-

packing of F (see Definition 5.9). Setting δ = εn
2 , k = εn and applying

Theorem 5.10, we have

|P| ≤ 48dn

δ
· ϕF

(
8dn

δ
,
24dk

δ

)
= O

(
d

ε
· ϕF

(
O

(
d

ε

)
, O (d)

))
.

The key point here is that for each F ∈ F \P, the maximality of P implies
that there exists a set S ∈ P such that the size of the symmetric difference
between F and S is at most εn

2 . In other words, F contains at least εn
2

points from S, where |S| = εn by assumption. Thus a 1
2 -net NS for the

set system (S,F|S) must hit F and consequently
⋃

S∈P NS is an ε-net of
F . Here the sets of P play the role of canonical objects of Chapter 2.

Simply picking a 1
2 -net NS separately for each (S,F|S), S ∈ P, where

each NS is of constant size by Theorem 6.10, will give an ε-net of F of
total size∑

S∈P

|NS | = O
(
|P|
)
= O

(
d

ε
· ϕF

(
O

(
d

ε

)
, O (d)

))
.

This is too big.
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(2) The next idea is to ‘amortize’ the size of the 1
2 -nets by first picking a

random sample R ⊆ X.

For a fixed S ∈ P and (S,F|S), Theorem 6.10 states that a
random sample of S constructed by picking each point of S
independently with probability

p = Θ

(
1

(1/2) |S| log
1

γ
+

d

(1/2) |S| log
1

(1/2)

)

= Θ

(
1

εn
log

1

γ
+

d

εn

)
.

is a 1
2 -net of F|S with probability at least 1− γ.

Instead of sampling points separately from each S ∈ P, we will construct
a ‘global’ random sample R by picking each point of X independently
with the above probability p.

For a fixed S ∈ P, R fails to be a 1
2 -net of F|S with probability at

most γ. By the union bound, the probability that there exists a S ∈ P
such that R fails to be a 1

2 -net of F|S is at most |P| ·γ. Setting γ = 1
|P|+1

implies that, with non-zero probability, R is a 1
2 -net for all F|S , S ∈ P.

Then

E [|R|] = np = O

(
1

ε
log

1

γ
+

d

ε

)

= O

(
1

ε
log

(
d

ε
· ϕF

(
O

(
d

ε

)
, O (d)

))
+

d

ε

)

= O

(
1

ε
log

d

ε

)
+ O

(
1

ε
logϕF

(
O

(
d

ε

)
, O (d)

))
+ O

(
d

ε

)
.

The large additional term O
(
1
ε log

d
ε

)
still remains.

(3) Since the expected number of sets in P for which R fails is at most |P| ·γ,
we had set γ < 1

|P| to ensure the existence of a set R with no failures.

Instead, we will set γ such that the expected number of F|S , S ∈ P, for
which R fails to be a 1

2 -net is O
(
1
ε

)
. The key point is that for each of

these failed sets of P, we can afford to separately add a O (d)-sized 1
2 -net

for a total of O
(
d
ε

)
additional points. In other words, we set γ so that

|P| · γ = Θ
(
1
ε

)
. Then the size of the initial random sample R is

O

(
1

ε
log

1

γ
+

d

ε

)
= O

(
1

ε
log
(
ε |P|

)
+

d

ε

)

= O

(
1

ε
logϕF

(
O

(
d

ε

)
, O (d)

)
+

d

ε

)
,

as desired.

We now turn to the formal proof with complete calculations.

Proof of Theorem 6.2. For an integer j ≥ 0, set

εj = 2j · ε and δj =
εjn

2
.
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For each j = 1, . . . ,
⌈
log 1

ε

⌉
, define

Fj =
{
S ∈ F : εj−1n ≤ |S| < εjn

}
.

Further let Pj be a maximal subset of Fj satisfying the property that

for all S, S′ ∈ Pj , |Δ(S, S′)| ≥ δj .

As each set in Fj has size less than εjn, Theorem 5.10 implies that

|Pj | ≤
48 dn

δj
· ϕF

(
8 dn

δj
,
24 dεjn

δj

)
=

96 dn

εjn
· ϕF

(
16 dn

εjn
,
48 dεjn

εjn

)

=
96 d

εj
· ϕF

(
16 d

εj
, 48 d

)
.(6.12)

Claim 6.13. Let j ∈
{
1, . . . , �log 1

ε �
}
. Suppose the set Nj ⊆ X is a 1

2 -net simulta-
neously for all these set systems:{(

S,Fj |S
)
: S ∈ Pj

}
.

Then Nj hits all the sets of Fj .

Proof. Let F ∈ Fj . If F ∈ Pj , then clearly it is hit by the 1
2 -net of Fj |F .

Otherwise by the maximality of Pj , there exists a S ∈ Pj such that

|Δ(F, S)| = |F \ S|+ |S \ F | < δj and hence |F \ S| < δj − |S \ F |.

As |F | ≥ 2j−1εn = δj , it follows that

|F ∩ S| = |F | − |F \ S| ≥ δj −
(
δj − |S \ F |

)
= |S \ F |.

This implies that |F ∩ S| ≥ |S|
2 and as F ∩ S ∈ Fj |S , F is hit by the 1

2 -net of
Fj |S . �

Thus it suffices to compute, for each j = 1, . . . , �log 1
ε �, a set Nj such that

Nj is a 1
2 -net of all the |Pj | set systems (S,Fj |S), S ∈ Pj .

We can then return
⋃

j Nj as an ε-net of F . We will construct each Nj separately

for each index j ∈
{
1, . . . , �log 1

ε �
}
by computing the following two sets Rj and Mj ,

and setting Nj = Rj ∪ Mj .

Constructing Rj: Let Rj be a sample constructed by picking each point of X
independently with probability

C6 ·
(

d

(1/2) · εj−1n
ln

1

(1/2)
+

1

(1/2) · εj−1n
ln

(
d · ϕF

(
16d

εj
, 48d

)))
.

where C6 is the constant from Theorem 6.10. For each S ∈ Pj , we have |S| ∈
[εj−1n, εjn) and so Theorem 6.10 applied to

the set system (S,F|S) with ε =
1

2
, γ =

1

d · ϕF
(

16d
εj

, 48d
) ,

implies that Rj is a 1
2 -net of F|S with probability at least 1− γ. Furthermore,

E [|Rj |] = O

(
d

εj
+

1

εj
log

(
d · ϕF

(
16d

εj
, 48d

)))
.
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Constructing Mj: Initialize Mj = ∅. For each S ∈ Pj for which Rj fails to be a
1
2 -net, construct a

1
2 -net of (S,Fj |S) of size O (d) (by Theorem 6.10) and add it

to Mj . Then

E
[
|Mj |

]
=
∑
S∈Pj

Pr
[
Rj is not a

1

2
-net of Fj |S

]
·
(
size of

1

2
-net of Fj |S

)

≤
∑
S∈Pj

1

d · ϕF
(

16d
εj

, 48d
) · O (d) = |Pj | ·

1

d · ϕF
(

16d
εj

, 48d
) · O (d)

≤ 96d

εj
· ϕF

(
16d

εj
, 48d

)
· 1

d · ϕF

(
16d
εj

, 48d
) · O (d) = O

(
d

εj

)
,

where the second-to-last step uses the upper bound on |Pj | given in Equation (6.12).

Thus we can conclude with the expected size of the final ε-net N of F :

E[|N |] =

log 1

ε �∑
j=1

E
[
|Rj |+ |Mj |

]
=


log 1
ε �∑

j=1

E
[
|Rj |

]
+


log 1
ε �∑

j=1

E
[
|Mj |

]

=


log 1
ε �∑

j=1

O

(
d

εj
+

1

εj
log

(
d · ϕF

(
16d

εj
, 48d

)))
+


log 1
ε �∑

j=1

O

(
d

εj

)

=


log 1
ε �∑

j=1

O

(
d

2jε
+

1

2jε
log d +

1

2jε
logϕF

(
16d

2jε
, 48d

))
+


log 1
ε �∑

j=1

O

(
d

2jε

)

= O

(
d

ε

)
+ O

(
1

ε

) 
log 1
ε �∑

j=1

1

2j
· logϕF

(
16d

2jε
, 48d

)

≤ O

(
d

ε

)
+ O

(
1

ε

) 
log 1
ε �∑

j=1

1

2j
· logϕF

(
16d

ε
, 48d

)

= O

(
d

ε
+

1

ε
logϕF

(
16d

ε
, 48d

))
.

�
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CHAPTER 7

Epsilon-Nets: An Algorithm

The goal of this chapter is to study the following algorithm to compute an ε-net of
a given set system (X,F). The precise constants will be specified later.

General Net-Finder Algorithm
(
(X,F), d,ϕF , ε

)
Specification: VC-dim (F) ≤ d, ε > 0.

N0 : a uniform random sample of X of size Θ
(
1
ε logϕF

(
Θ
(
d
ε

)
,Θ(d)

))
.

N = N0.
while there exists a set S ∈ F , |S| ≥ ε |X|, not hit by N do

add Θ (d) uniformly chosen random elements of S to N .

return N .

The main theorem of this chapter shows that the General Net-Finder Algorithm
computes ε-nets of expected size equal, within constant factors, to those guaranteed
by Theorem 6.2. This algorithm has two main advantages over earlier constructions.

Simplicity: The algorithm is oblivious to the intricate combinatorial constructs
that we have seen earlier—packings, spatial partitioning, empty canonical objects
and so on. In fact some of these ingredients from earlier work are present but
only in the proof—the ‘complexity’ is shifted from the algorithm to its analysis.

Adaptivity: The choice of the Θ (d) elements added to N in each iteration is
guided not only by the choice of the initial sample N0, but also takes into account
all elements added so far to N . This is not the case for Theorem 6.2, where after
the initial random sample, the additional points for each ‘failed event’ were added
and analysed independently. The new algorithm adds points to N only when it
is required. While this additional ‘adaptivity’ does not improve the theoretical
worst-case bound, it can give better bounds in practice.

We remark that the unhit set S at each iteration need not be random—it can be
any unhit set. The analysis of this algorithm will only use the randomness of the
initial sample as well as the Θ(d) elements picked in each previous iteration. The
specific choice of the set S is irrelevant.

As we will see in Chapter 16, most known bounds on ε-net sizes follow from

Theorem 6.2. Thus General Net-Finder Algorithm computes ε-nets whose sizes

are equal, within constant factors, to the best known bounds for commonly

studied geometric set systems.

For the case of set systems F with ϕF (n, k) = O (kc) for an absolute constant
c ≥ 1, it is not even necessary to take an initial random sample. The algorithm
simplifies to the following.

101
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102 7. EPSILON-NETS: AN ALGORITHM

Linear Net-Finder Algorithm
(
(X,F), d,ϕF , ε

)
Specification: VC-dim (F) ≤ d, ϕF (n, k) = O (kc) for a constant c ≥ 1.

N = ∅.
while there exists a set S ∈ F , |S| ≥ ε |X|, not hit by N do

add Θ (d) uniformly chosen random elements of S to N .

return N .

By Theorem 6.2, such a F has an ε-net of size O
(
1
ε

)
. The second theorem of this

chapter shows that Linear Net-Finder Algorithm constructs ε-nets of expected size
O
(
1
ε

)
in these cases as well.
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1. Special Case: Linear-sized Nets

Every lecture should make only one main point. The German philoso-
pher G. W. F. Hegel wrote that any philosopher who uses the word ‘and’
too often cannot be a good philosopher. I think he was right, at least
insofar as lecturing goes. Every lecture should state one main point and
repeat it over and over, like a theme with variations.

Gian-Carlo Rota

Let (X,F) be a set system with shallow-cell complexity ϕF(·, ·) and VC-dim(F) ≤
d. We will study the following algorithm for computing an ε-net N of F .

Linear Net-Finder Algorithm
(
(X,F), d,ϕF , ε

)
Specification: VC-dim (F) ≤ d, ϕF (n, k) = O (kc) for a constant c ≥ 1.

N = ∅.
while there exists a set S ∈ F , |S| ≥ ε |X|, not hit by N do

NS : pick each x ∈ S independently with prob. C6 ·
(

1
ε′ |S| ln 2 + d

ε′ |S| ln
1
ε′

)
,

where ε′ = 1
100

and C6 is the constant from Theorem 6.10.

N = N ∪ NS .

return N .

In order to avoid dealing with implementation-specific details of the
above algorithm, we will assume the existence of an ‘oracle’ that can
return an unhit set in our set system with respect to the current set N .
While the algorithm itself is oblivious to the structure of F , efficient im-
plementation of the oracle depends on the specific geometric properties
of F . This is outside the scope of this text; see discussion.

Here is the main theorem of this section.

Theorem 7.1. Let (X,F) be a finite set system, and let c, d be two absolute
constants such that the shallow-cell complexity of F is ϕF (n, k) = O (kc) and
VC-dim (F) ≤ d. Then for any ε > 0, Linear Net-Finder Algorithm returns an
ε-net of expected size O

(
1
ε

)
, where the constant in the asymptotic notation depends

on c and d.

Furthermore it runs for an expected O
(
1
ε

)
iterations.

In particular, the Linear Net-Finder Algorithm computes an ε-net of expected

size O
(
1
ε

)
for the primal set systems induced by half-spaces in R

2, half-spaces

in R
3, pseudo-disks and disks in R

2 as well as for the dual set systems induced

on objects in the plane with linear union complexity.

Overview of ideas. Recall that the key idea in the proof of Theorem 6.2 is to
construct a maximal packing P ⊆ F ; that is, a maximal P ⊆ F such that

every pair of sets of P have symmetric difference at least εn
2 .

Using Theorem 5.10, we get

|P| = O

(
d

ε
ϕF

(
O

(
d

ε

)
, O (d)

))
= O

(
1

ε

)
,
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using our assumption on ϕF and that c, d are considered absolute constants. Instead
of constructing P as earlier, the proof now proceeds as follows.

Fix a maximal packing P ⊆ F . At the i-th iteration, say the oracle
returns an unhit set Si ∈ F . Linear Net-Finder Algorithm then adds a
uniform random subset NSi

⊆ Si of expected size Θ (1) to N . By the
maximality of P, Si shares a large fraction of its elements with some
Y ∈ P (call it the closest set of Si).

Now let j > i be a later iteration and Sj an unhit set returned by the
oracle at iteration j such that the closest set of Sj in P is also Y . Thus
Sj also shares a large fraction of its elements with Y , yet is unhit by the
random sample NSi

. This will be used to show that expected symmetric
difference between Sj ∩Y and Si∩Y is large—in fact a constant fraction
of |Y |.
For each Y ∈ P, let FY ⊆ F be the sets, considered over all iterations,
whose closest set in P is Y . Then by the above reasoning, the sets in
{S ∩ Y : S ∈ FY } have, on average, pairwise large symmetric difference.
Applying Theorem 5.10 to these sets will allow us to derive the upper
bound E [|FY |] = O (1).

Together with the upper bound on |P|, we get

E [|N |] =
∑
Y ∈P

E [|FY |] ·Θ(1) = O

(
1

ε

)
.

In the proof below, we will assume that each set S ∈ F considered by the algorithm
has size

[
εn, 2εn

)
. Then we will show that an expected O

(
1
ε

)
elements are added

to N .
The general case follows directly by grouping the sets considered by the
algorithm by their sizes—all sets of size

[
2iεn, 2i+1εn

)
go into group i,

for i = 0, . . . , log 1
ε . The algorithm can be seen as constructing simulta-

neously a
(
2iε
)
-net for group i. The proof below implies that for each

group i, the expected number of elements of X added to N is O
(

1
2iε

)
.

Then the expected total number of elements added to N over all groups
can be upper bounded by

log 1
ε∑

i=0

O

(
1

2iε

)
= O

(
1

ε

)
.

Let β ∈ [4ε′, 1] be a constant to be specified later.

Let P be a maximal (2εn, (1− β) 2εn)-packing of F , and let P =
{
P 1, . . . , Pm

}
.

By Theorem 5.10,

m = |P| ≤ 48dn

(1− β) 2εn
ϕF

(
8dn

(1− β) 2εn
,

24d · 2εn
(1− β) 2εn

)

= O

(
d

(1− β) ε
· ϕF

(
4d

(1− β) ε
,

24d

(1− β)

))
.(7.2)
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Say the Linear Net-Finder Algorithm continues for t steps.

Let Si be the unhit set returned by the oracle at the i-th step and let
NSi

be the random sample of Si added to N .

As P is a maximal (2εn, (1− β) 2εn)-packing of F , for each Si there exists an index
j ∈ [m] with |Δ

(
Si, P

j
)
| < (1− β) 2εn (it is possible that P j = Si). Assign Si to

the set P j . For each j ∈ [m], let nj be the number of sets of {S1, . . . , St} assigned
to P j and denote them by

Sj =
{

Sj
1 , . . . , S

j
nj

}
,

listed in the order considered by the Linear Net-Finder Algorithm.

Lemma 7.3. For each j ∈ [m] and i ∈ [nj ],

|Sj
i ∩ P j | >

|P j |+ |Sj
i | − (1− β)2εn

2
≥ βεn.

Proof. Note that

|Sj
i |+ |P j | = |P j \ Sj

i |+ |Sj
i \ P j |+ 2 |Sj

i ∩ P j |
< (1− β) 2εn + 2 |Sj

i ∩ P j |.

Re-arranging the terms gives the first inequality. The second follows from the fact
that |P j |, |Sj

i | ≥ εn. �

For each j ∈ [m], define

S ′j =
{
S ∈ Sj : NS is an ε′-net of the set system (S,F|S)

}
.

The core of the argument is the following lemma.

Lemma 7.4. For any j ∈ [m],

|S ′j | = O

(
d

(β − 2ε′)
· ϕF

(
8d

(β − 2ε′)
,

24d

(β − 2ε′)

))
.

Proof. Let n′
j = |S ′j |. By re-labeling the sets of Sj , we can assume that

S ′j =
{
Sj
1, . . . , S

j
n′
j

}
, again listed here in the order that they were considered by

the Linear Net-Finder Algorithm. Consider their projection onto P j :

T ′j =
{

T j
1 , . . . , T j

n′
j

}
, where T j

i = Sj
i ∩ P j .

Then observe the following:

• For each i ∈
[
n′
j

]
, Lemma 7.3 implies that

|T j
i | ≥ βεn.

• For each 1 ≤ k < l ≤ n′
j , the set NSj

k
was added to N in the algorithm

before the set Sj
l was considered. As NSj

k
is an ε′-net of F|Sj

k
and the set
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Sj
l is not hit by NSj

k
, it must be that Sj

l contains less than ε′-th fraction

of the points of Sj
k, implying that

|T j
k ∩ T j

l | = |Sj
k ∩ Sj

l ∩ P j | ≤ |Sj
k ∩ Sj

l | < ε′ · |Sj
k| < ε′ · 2εn.

The above two facts imply that for any T j
l and T j

k ,∣∣∣Δ(T j
l , T j

k

)∣∣∣ = ∣∣∣T j
k \ T j

l

∣∣∣+ ∣∣∣T j
l \ T j

k

∣∣∣ ≥ 2 (βεn − ε′ · 2εn) = (β − 2ε′) 2εn.

Thus the sets of T ′j form a
(
|P j |, (β − 2ε′) 2εn

)
-packing over the elements of P j .

By Theorem 5.10, we have

|S ′j | = |T ′j | = O

(
d

(β − 2ε′)
· ϕF

(
8d

(β − 2ε′)
,

24d

(β − 2ε′)

))
.

�

Lemma 7.5. For any j ∈ [m],

E
[
|Sj |

]
= O

(
d

(β − 2ε′)
· ϕF

(
8d

(β − 2ε′)
,

24d

(β − 2ε′)

))
.

Proof. For each Sj
i ∈ Sj , NSj

i
is constructed by picking each element of Sj

i

independently with probability

C6 ·
(

1

ε′|Sj
i |

ln 2 +
d

ε′|Sj
i |

ln
1

ε′

)
.

Let Yi be an indicator random variable that is 1 if and only if NSj
i
is an ε′-net of

F|Sj
i
. Then Theorem 6.10 implies that

Pr [Yi = 1] = Pr
[
NSj

i
is a ε′-net of F|Sj

i

]
≥ 1

2
.

Note that the value of Yi is independent of the values of Yj , j < i.

Now consider a random experiment consisting of a sequence of independent Ber-
noulli trials, where the i-th trial is a ‘success’ if Yi = 1. Then for any integer
r, the expected number of trials to get r successes is at most r

(1/2) (it follows a

negative binomial distribution). On the other hand, the number of successes is
upper bounded by Lemma 7.4, and the proof follows. �

We now return to the proof of the main theorem.

Theorem 7.1. Let (X,F) be a finite set system, and let c, d be two absolute
constants such that the shallow-cell complexity of F is ϕF (n, k) = O (kc) and
VC-dim (F) ≤ d. Then for any ε > 0, Linear Net-Finder Algorithm returns an
ε-net of expected size O

(
1
ε

)
, where the constant in the asymptotic notation depends

on c and d.

Furthermore it runs for an expected O
(
1
ε

)
iterations.
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Proof. Clearly the algorithm only stops when N is an ε-net. Thus it remains
to bound the expected size of N .

At each iteration, from the set Si ∈ F returned by the oracle, we add at most

E [|NSi
|] = C6 ·

(
1

ε′
ln 2 +

d

ε′
ln

1

ε′

)
.

new elements to N . Furthermore, the expected number of iterations is

E

⎡
⎣ m∑
j=1

|Sj |

⎤
⎦ =

m∑
j=1

E
[
|Sj |

]

= m · O
(

d

(β − 2ε′)
· ϕF

(
8d

(β − 2ε′)
,

24d

(β − 2ε′)

)) (
Lemma 7.5

)
= O

(
d

(1− β) ε
· ϕF

(
4d

(1− β) ε
,

24d

(1− β)

))

· O
(

d

(β − 2ε′)
· ϕF

(
8d

(β − 2ε′)
,

24d

(β − 2ε′)

)) (
Equation (7.2)

)
.

Setting β to be any small constant, say β = 1
25 and ε′ = β

4 = 1
100 , we get

E [|N |] = O

(
1

ε

)
,

where the constant in the asymptotic notation depends on c and d. �
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[Mus19]. For geometric set systems, the existence of efficient implemen-
tation of such oracles follow from the extensive work on range searching,
reporting and emptiness data-structures (see [Aga18]).

[Aga18] P. K. Agarwal, Range searching, Handbook of discrete and computational geometry, CRC
Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 575–598. MR1730187
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2. General Case

Thought is only a flash in the middle of a long night, but the flash that
means everything.

Henri Poincaré

Let (X,F) be a set system with VC-dim (F) ≤ d, and shallow-cell complexity
ϕF(·, ·). In this section we extend the algorithm of the previous section to compute
ε-nets of set systems as a function of their shallow cell complexity ϕF (·, ·). The
only difference in the algorithm is that instead of starting with an empty set N , we
start with a random sample N0 taken from X.

General Net-Finder Algorithm
(
(X,F), d,ϕF , ε

)
Specification: VC-dim (F) ≤ d, ε > 0.

N0 : pick each x ∈ X i.i.d. with probability

C6 ·
(

2
βε|X| ln

(
d2ϕF

(
8d

β(1−β)ε ,
24d

β(1−β)

)2)
+ 2 d

βε|X| ln
2
β

)
,

where β = 1
25 and C6 is the constant from Theorem 6.10.

N = N0

while there exists a set S ∈ F , |S| ≥ ε |X|, not hit by N do

NS : pick each x ∈ S i.i.d. with probability C6 ·
(

1
ε′ |S| ln 2 + d

ε′ |S| ln
1
ε′

)
,

where ε′ = 1
100 .

N = N ∪ NS .

return N .

We will again assume the existence of an oracle as a black-box that can return an
unhit set in our set system with respect to the current candidate net N . Each
iteration of the above algorithm makes one call to the oracle.

Our main theorem is the following.

Theorem 7.6. Let (X,F) be a finite set system with shallow-cell complexity ϕF (·, ·)
and VC-dim (F) ≤ d. Then for any ε ∈

(
0, 1

2

]
, General Net-Finder Algorithm

returns an ε-net of expected size

O

(
1

ε
log

(
ϕF

(
210d

ε
, 630 d

))
+

d

ε

)
.

Furthermore, it runs for an expected O
(
1
ε

)
iterations.

Overview of ideas. For the case ϕF (n, k) = O (kc), the maximal packing that we
constructed had size O

(
1
ε

)
and we showed that the iterative algorithm added an

expected O (1) new elements to N for each set of the packing (Theorem 7.1). For
the general case that we consider now, a maximal packing will be bigger, with size
O
(
1
εϕF

(
O
(
d
ε

)
, O (d)

))
. So we cannot afford to add new points for each set of the

packing.

To avoid that, we first take a global sample. Then the expected number of sets of
the packing for which we have to add additional points becomes much smaller and
the analysis proceeds as earlier.
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As before, we assume that each set S considered by the algorithm has size [εn, 2εn)
and show that, in expectation, O

(
1
ε

)
additional points are added after the initial

random sample N0.

In general, let group i consist of the sets of F of size
[
2iεn, 2i+1εn

)
. The

algorithm can be seen as constructing simultaneously a
(
2iε
)
-net for group

i, for i = 0, . . . ,
⌈
log 1

ε

⌉
. The proof below implies that for an initial random

sample of expected size O
(

1
2iε

log
(
ϕF
(
210d
2iε

, 630d
)))

, the algorithm runs for

an expected O
(

1
2iε

)
iterations, each of which adds Θ (d) additional points, to

compute a
(
2iε
)
-net for the sets of group i. Then the expected size of the

initial random sample N0 over all groups can be upper bounded by∑
i

O

(
1

2iε
log

(
ϕF

(
210d

2iε
, 630d

)))
= O

(
1

ε
log

(
ϕF

(
210d

ε
, 630d

)))
and the expected total number of iterations is upper bounded by

∑
i O
(

1
2iε

)
=

O
(
1
ε

)
.

The analysis continues that of the previous section. Recall that F consists of
sets of size [εn, 2εn), and let P be a (2εn, (1− β) 2εn)-packing of F . We have
P =

{
P 1, . . . , Pm

}
, where

m = O

(
d

(1− β) ε
ϕF

(
4d

(1− β) ε
,

24d

(1− β)

))
.

Say the algorithm continues for t iterations and let S1, . . . , St be the sets
considered in these t iterations. Denote by NSi

the random sample of Si

added to N at iteration i. For each j ∈ [m], nj is the number of sets of
{S1, . . . , St} assigned to P j ∈ P, and denote these sets by

Sj =
{

Sj
1 , . . . , S

j
nj

}
,

listed in the order considered by the General Net-Finder Algorithm.

We restate the key lemmas.

Lemma 7.3. For each j ∈ [m] and i ∈ [nj ],

|Sj
i ∩ P j | > |P j |+ |Sj

i | − (1− β)2εn

2
≥ βεn.

Lemma 7.5. For any j ∈ [m],

E
[
|Sj |
]
= O

(
d

(β − 2ε′)
· ϕF

(
8d

(β − 2ε′)
,

24d

(β − 2ε′)

))
.

We remark here that the expectation in Lemma 7.5 is over the choice of random
points added to N during the t iterations. It is independent of the initial sample
N0 and holds for any choice of N0.

Proof of Theorem 7.6. Clearly the algorithm only stops when N is an ε-
net. Thus it remains to bound its expected size.
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Consider an index j ∈ [m]. By Lemma 7.3, for any i ∈ [nj ],

|Sj
i ∩ P j | > βεn ≥ β

2
· |P j |.(7.7)

If N0 is a β
2 -net of

(
P j ,F|P j

)
, then Equation (7.7) implies that any S ∈ Sj would

be hit by N0 and thus Sj = ∅. By Theorem 6.10, for a fixed index j,

Pr

[
N0 is not a

β

2
-net of

(
P j ,F|P j

)]
≤ 1

d2ϕF

(
8d

β(1−β)ε ,
24d

β(1−β)

)2 .(7.8)

From each Si we add at most

E [|NSi
|] = |Si| · C6 ·

(
1

ε′|Si|
log 2 +

d

ε′|Si|
log

1

ε′

)
= O

(
d

ε′
log

1

ε′

)
= O (d)

additional points to N . Furthermore, the expected number of iterations is

E

⎡
⎣ m∑
j=1

|Sj |

⎤
⎦ =

m∑
j=1

E
[
|Sj |

]

=

m∑
j=1

E

[
|Sj |

∣∣ N0 is not a
β

2
-net of

(
P j ,F|P j

)]

· Pr
[
N0 is not a

β

2
-net of

(
P j ,F|P j

)]

= O

(
d

(1− β) ε
ϕF

(
4d

(1− β) ε
,

24d

(1− β)

))
· 1

d2ϕF
(

8d
β(1−β)ε ,

24d
β(1−β)

)2
· O
(

d

(β − 2ε′)
· ϕF

(
8d

(β − 2ε′)
,

24d

(β − 2ε′)

))
,

where the last step follows from substituting the value of m, Equation (7.8) and
Lemma 7.5. By the assumption on the monotonicity of ϕF (·, ·) in both arguments,
we get

= O

(
1

(1− β) (β − 2ε′) ε

)
.

Putting everything together,

E [|N |] = E [|N0|] + E

[
t∑

i=1

|NSt
|
]
= E [|N0|] + O (d) · E

⎡
⎣ m∑
j=1

|Sj |

⎤
⎦

= C6 ·
(

2

βε
ln

(
d2ϕF

(
8d

β (1− β) ε
,

24d

β (1− β)

)2
)

+
2 d

βε
ln

2

β

)

+ O

(
d

(1− β) (β − 2ε′) ε

)
.

Setting β to be any small constant, say β = 1
25 , and ε′ = β

4 = 1
100 , we get the

desired bound. �
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CHAPTER 8

Epsilon-Nets: Weighted Case

Let (X,F) be a set system with shallow-cell complexity ϕF (m, k) = O (kc) for an
absolute constant c. Then for any ε > 0, Theorem 6.2 states the existence of an
ε-net N of F with

|N | = O

(
1

ε

)
.

We now consider a generalization where one is also given a weight function w : X →
R

+. Then instead of minimizing the cardinality of the ε-net of F , one would like
to minimize its weight. Note that we still want N to hit sets of cardinality at least
ε · |X|.

We have already seen an ε-net problem involving a weight function w (·) where
the goal was to pick an ε-net of minimum cardinality but hitting all sets of
weight at least ε-th fraction of the total weight. By duplicating elements
according to their weights it was shown to be equivalent to the unweighted
cardinality-based ε-net problem.

This, however, is not the case for the problem we address in this chapter.

Let W =
∑

x∈X w(x) be the total weight of the elements of X. Then our aim is to

construct an ε-net N of F where the average weight of an element of N is O
(

W
|X|

)
.

The first theorem of this chapter shows that indeed that is possible: there exists an
ε-net of F , assuming that ϕF (m, k) = O (kc) for an absolute constant c, of total
weight

(8.1) O

(
W

|X| ·
1

ε

)
.

In fact, the first main result of this chapter will prove the following statement.

Theorem 8.2. Let (X,F) be a set system on n elements and let ε > 0 be a given
parameter. Further assume that F has shallow-cell complexity ϕF (m, k) = O

(
k2
)
.

Then there exists a probabilistic procedure to compute an ε-net N of F such that
each p ∈ X is present in N with probability O

(
1
εn

)
.

Linearity of expectation then implies that the expected weight of N is the one given
by Equation (8.1). Further, with the weights w (x) = 1 for all x ∈ X, one gets the
unweighted problem, and so the above bound cannot be improved.

At first glance, Theorem 8.2 is surprising: consider the set system formed by

a set X of n points in R where the subsets are induced by intervals. Given

any ε > 0, consider the partition of X into
⌊
1
ε

⌋
disjoint sets X1, . . . , X	 1

ε 
,
each containing at least εn contiguous points. Then if one picks each p ∈
X into a uniform random sample R independently with probability Θ

(
1
εn

)
,

113
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the probability of not hitting a fixed Xi is
(
1−Θ

(
1
εn

))εn
= Θ(1). So, in

expectation there will be Θ
(
1
ε

)
sets that will not be hit by N—that is, picking

points of X independently at random will leave a constant fraction of the sets

unhit.

The algorithms of Chapter 3 constructed an ε-net via a 2-step process where the
points of X were not picked independently: the first step was to pick an independent
uniform random sample R ⊆ X of size Θ

(
1
ε

)
and the second step consisted of

adding additional points from each of sets not hit by R, to get the final ε-net
N . However, that introduces non-uniformity—not all points of X end up in N
with asymptotically the same probability and it is not clear how to control the
probability of each element of X being added to N .

The key new idea is to design a procedure that ‘slows down’ the construc-
tion of N . We will still construct an ε-net using random sampling—but
now over logarithmically many rounds. This allows the points picked in
each round to depend on the choices made in earlier rounds and enables
us to carefully design a probability distribution such that each point is
picked with roughly the same probability.

The second main result of this chapter generalizes Theorem 8.2 to give a bound on
the size of weighted ε-nets as a function of the shallow-cell complexity of the set
system.
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1. Special Case: Linear-sized Nets

Mathematics is amazingly compressible: you may struggle a long time,
step by step, to work through some process or idea from several ap-
proaches. But once you really understand it and have the mental per-
spective to see it as a whole, there is a tremendous mental compression.
You can file it away, recall it quickly and completely when you need it,
and use it as just one step in some other mental process. The insight
that goes with this compression is one of the real joys of mathematics.

William Thurston

This section considers set systems with small shallow-cell complexity. The case
for set systems with arbitrary shallow-cell complexity will be treated in the next
section. Recall the notion of shallow-cell complexity.

Definition 4.4. A set system (X,F) has shallow-cell complexity ϕF (·, ·) if for
any positive integer k and any finite Y ⊆ X, the number of sets in F|Y of size
at most k is upper bounded by |Y | · ϕF

(
|Y |, k

)
.

For a family R of geometric objects in R
d—e.g., the family of all half-spaces—

the shallow-cell complexity of R is defined to be the shallow-cell complexity of
the primal set system

(
R

d,R
)
.

The main theorem of this section is the following.

Theorem 8.2. Let (X,F) be a set system on n elements and let ε > 0 be a given
parameter. Further assume that F has shallow-cell complexity ϕF (m, k) = O

(
k2
)
.

Then there exists a probabilistic procedure to compute an ε-net N of F such that
each p ∈ X is present in N with probability O

(
1
εn

)
.

The proof of Theorem 8.2 works more generally for set systemsF with ϕF (m, k)

= O (kc) for some absolute constant c ≥ 1. However for expository purposes

we state and prove it for the case c = 2.

The primal set system induced on a set of points in R
2 by disks satisfies the condi-

tions of Theorem 8.2—see Lemma 1.2—and thus Theorem 8.2 implies Theorem 3.3.

Overview of ideas. Assume that each set of F has size at least εn.

We will present a probabilistic iterative procedure that constructs an ε-net N over
log (Θ (εn)) rounds, where each round adds some elements to N . The elements
added in round i will depend on the choices made in earlier rounds and thus there
is a complicated dependency between the events {p ∈ N : p ∈ X}. Nevertheless we
will prove that each element of X ends up in N with probability O

(
1
εn

)
.

The following is the key procedure applied at each round.

Lemma 8.3. Let (X,F) be a set system with shallow-cell complexity ϕF (m, k) =
O
(
k2
)
. Let k ≥ 400 be a positive integer such that |S| ≥ k for all S ∈ F . Construct

a set Y by choosing each element of X independently with probability

1

2
+

√
10 ln k

k
.
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Then one can construct a set Q ⊆ X \ Y such that

(1) for each S ∈ F , either |S ∩ Y | ≥ k
2 or S ∩ Q 
= ∅, and

(2) each p ∈ X belongs to Q with probability O
(

1
k2

)
, where the probability

is over the choice of Y . The constant in this probability depends on the
multiplicative constant in ϕF (m, k).

To see the idea behind the proof of Lemma 8.3, note that as each p ∈ X is added to

Y with probability 1
2 +

√
10 ln k

k , each set S ∈ F will contain greater than |S|
2 ≥ k

2

elements of Y in expectation. However there will be some failures—that is, sets of
F from which less than k

2 elements are picked into Y . For each such S ∈ F , we will
add a carefully chosen element pS ∈ S to Q. The new insight here is that

it is possible to assign each S ∈ F to an element pS ∈ S such that each
element p ∈ P is assigned O

(
k3
)
sets of F .

This follows from the fact that if ϕF (m, k) = O
(
k2
)
, then on average, a

point of P is contained in only O
(
k3
)
sets of F . To see this, assume for

simplicity that all sets of F have size Θ (k); then this average is at most

|F| ·Θ(k)

n
=

O
(
nk2

)
·Θ(k)

n
= O

(
k3
)
.

Thus each p ∈ X can potentially be added to Q because of a failure of some
S ∈ F from one of the O

(
k3
)
sets assigned to p. On the other hand, a calculation

using Chernoff’s bound will show that Pr
[
|S ∩ Y | < k

2

]
= O

(
1
k5

)
for each S ∈ F .

Together with the union bound, this implies that each p ∈ X is added to Q with
probability O

(
1
k2

)
, as desired.

Before giving the proof of Lemma 8.3, we first see how to apply it iteratively to get
the main result.

Proof of Theorem 8.2. The algorithm works over t iterations, for an inte-
ger parameter t to be fixed later. We can assume that each set of F has size at
least εn.

Weighted Linear Net-Finder Algorithm
(
(X,F) , ε > 0

)
.

Specification: ϕF (m, k) = O
(
k2
)
.

X0 = X, Q0 = ∅ and F0 = F .
i = 0.

while i < t do
apply Lemma 8.3 to (Xi,Fi) with ki =

εn
2i to get the sets Y and Q.

set Xi+1 = Y and Qi+1 = Q.
let Fi+1 be the set system obtained from Fi by first removing all sets of
Fi hit by Q and then projecting Fi onto Y . That is,

Fi+1 =
{
S ∩ Y : S ∈ Fi and S ∩ Q = ∅

}
.

i = i + 1.

return N = Xt ∪ Q1 ∪ · · · ∪ Qt.
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Note that by induction and Lemma 8.3, each set in Fi has size at least εn
2i .

Let pi be the probability of adding an element from Xi into Xi+1. That is,

pi =
1

2
+

√
10 ln εn

2i

εn
2i

.

First observe that pi is an increasing function of i.

Claim 8.4. For any i ≤ log εn
8 ,√
10 ln εn

2i+1

εn
2i+1

≥ 1.1 ·
√

10 ln εn
2i

εn
2i

.

Proof. Setting 2l = εn
2i ,

ln 2l−1

2l−1
≥ (1.1)2 · ln 2

l

2l
⇐⇒ 2 (l − 1) ≥ (1.1)2 · l ⇐⇒ l ≥ 2

2− 1.12
= 2.53 . . .

Thus the claim holds for l ≥ 3—or equivalently, for i ≤ log εn
8 . �

We want to continue the iterative procedure as long as the probability
of each element being picked is at most 1. Towards this, set

(8.5) t =
⌊
log
( εn

400

)⌋
.

Then as pi is increasing with i (Claim 8.4), we have√
10 ln εn

2i

εn
2i

≤
√

10 ln εn
2t

εn
2t

≤
√

10 ln 400

400
≤ 1

2
,(8.6)

and thus pi ≤ 1. Also ki ≥ kt =
εn
2t ≥ 400.

It remains to prove the following two statements.

1. N = Xt ∪Q1 ∪ · · · ∪Qt is an ε-net: Each S ∈ F of size at least εn is either
hit by some Qi for i ≤ t or it contains at least εn

2t ≥ 400 elements of Xt.

2. Each p ∈ X is present in N with probability O
(

1
εn

)
: The key is the fol-

lowing.

Claim 8.7. For any i ≤ t, Pr
[
p ∈ Xi

]
= O

(
1
2i

)
.

Proof.

Pr
[
p ∈ Xi

]
≤

i−1∏
j=0

(
1

2
+

√
10 ln εn

2j

εn
2j

)
=

1

2i

i−1∏
j=0

(
1 + 2

√
10 ln εn

2j

εn
2j

)

≤ 1

2i

i−1∏
j=0

exp

(
2

√
10 ln εn

2j

εn
2j

)
=

1

2i
exp

⎛
⎝2

√
10

i−1∑
j=0

√
ln εn

2j

εn
2j

⎞
⎠ .

The summation in the above expression is upper bounded by a geometric series
due to Claim 8.4 and thus

Pr
[
p ∈ Xi

]
≤ 1

2i
exp

(
O

(√
ln εn

2i

εn
2i

))
= O

(
1

2i

)
,

where the last step follows from Equation (8.6). �
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Recalling that Pr [p ∈ Qj ] = O
(

1
(kj−1)2

)
= O

(
1

( εn

2j−1 )
2

)
by Lemma 8.3,

Pr
[
p ∈ Q1 ∪ · · · ∪ Qt

]
=

t∑
j=1

Pr [p ∈ Xj−1] · Pr [p ∈ Qj ]

=

t∑
j=1

O

(
1

2j−1

)
· O
(

1(
εn

2j−1

)2
)

= O

(
1

(εn)2

)
t∑

j=1

2j = O

(
1

(εn)2

)
· O(2t) = O

(
1

εn

)
.

Finally, by Claim 8.7,

Pr
[
p ∈ Xt

]
= O

(
1

2t

)
= O

(
1

εn

)
.

This concludes the proof of Theorem 8.2. �

It remains to prove the key lemma.

Lemma 8.3. Let (X,F) be a set system with shallow-cell complexity ϕF (m, k) =
O
(
k2
)
. Let k ≥ 400 be a positive integer such that |S| ≥ k for all S ∈ F . Construct

a set Y by choosing each element of X independently with probability

1

2
+

√
10 ln k

k
.

Then one can construct a set Q ⊆ X \ Y such that

(1) for each S ∈ F , either |S ∩ Y | ≥ k
2 or S ∩ Q 
= ∅, and

(2) each p ∈ X belongs to Q with probability O
(

1
k2

)
, where the probability

is over the choice of Y . The constant in this probability depends on the
multiplicative constant in ϕF (m, k).

Proof. A technical detail in calculating probabilities is that the sets of F can
have different sizes. However it is not hard to see that the ‘worst case’ is when each
set of F has size Θ (k), since the probability of choosing less than k

2 elements from
S ∈ F decreases exponentially with |S|. Thus we restrict ourselves to F≤2k ⊆ F
and show that any fixed element of X belongs to Q with probability O

(
1
k2

)
.

The same proof shows that any fixed element of X is added to Q because of a

set in F≤2ik \ F≤2i−1k with probability O

(
1

(2ik)2

)
. The general bound then

follows by summing up over all set sizes to get

Pr
[
p ∈ Q

]
=

�log n
k �∑

i=1

O

(
1

(2ik)2

)
= O

(
1

k2

)
.

Lemma 8.8. There is a way to assign each S ∈ F≤2k to an element pS ∈ S such
that each p ∈ X is assigned O

(
k3
)
sets of F≤2k.
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Proof. By assumption on the shallow-cell complexity of F , |F≤2k| = O
(
nk2

)
and thus ∑

S∈F≤2k

|S| = O
(
nk3

)
.

By the pigeonhole principle there exists an element p ∈ X belonging to O
(
k3
)

sets of F≤2k—all these sets are assigned to p. Remove p from X, remove the sets
containing p from F≤2k and reiterate for the remaining sets.

After the j-th step, there are O
(
(n − j) k2

)
remaining sets of size at most 2k over

the remaining (n− j) elements of X. One of these n− j elements will be contained
in O

(
k3
)
remaining sets, which are then assigned to it. One can continue this

process until all sets have been assigned to some element of X. �

The next statement gives an upper bound on the probability that a set S ∈ F≤2k

causes the element pS ∈ X to be added to Q. For notational ease, set

f(k) =

√
10 ln k

k
.(8.9)

Claim 8.10. For any S ∈ F≤2k,

Pr

[
|S ∩ Y | <

k

2

]
≤ exp

(
−kf(k)2

2

)
.

Proof. As |S| ≥ k,

E
[
|S ∩ Y |

]
= |S| ·

(
1

2
+ f (k)

)
≥ k

2
+ kf(k),

Chernoff’s bound (Corollary 1.23) implies that

Pr

[
|S ∩ Y | <

k

2

]
= Pr

[
|S ∩ Y | <

(
1− 2f(k)

1 + 2f(k)

)
·
(

k

2
+ kf(k)

)]

≤ exp

(
−1

2

(
2f(k)

1 + 2f(k)

)2

·
(

k

2
+ kf(k)

))
= exp

(
− kf(k)2

1 + 2f(k)

)
≤ e−

kf(k)2

2 ,

where the last step follows from the fact that f(k) ≤ 1
2 by Equation (8.6). �

Claim 8.10 is the reason for setting the value of f (k) as we did. Lemma 8.8
states that any element in X can be added to Q due to one of O

(
k3
)
sets of

F≤2k. Thus to be able to upper bound, using the union bound, the probability
that any fixed element of X is added to Q due to a set of F≤2k, we must have

e−
kf(k)2

2 ·Θ
(
k3) ≤ 1

k2
,

which is what dictates the value of f (k) in Equation (8.9).

Now if Y has less than k
2 elements from S, the algorithm adds the designated

element pS ∈ S to Q. Thus by Claim 8.10 and Lemma 8.8, for any p ∈ X,

Pr
[
p ∈ Q

]
≤

∑
S∈F≤2k
pS=p

Pr

[
|S ∩ Y | <

k

2

]
≤

∑
S∈F≤2k
pS=p

e−
k
2

10 ln k
k =

∑
S∈F≤2k
pS=p

e−5 ln k

= O
(
k3
)
· 1

k5
= O

(
1

k2

)
.

This finishes the proof of the lemma. �
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Bibliography and discussion. A slightly non-optimal bound containing
the key insight was discovered by Varadarajan [Var10], who applied it
for the specific case of dual set systems induced by geometric objects in
R

2. His charging scheme was implicitly encoded in a permutation of the
elements of X. The bound was later generalized and improved to the
optimal bound by Chan et al. [Cha+12], whose proof and charging scheme
we have essentially followed here.

[Cha+12] T. M. Chan, E. Grant, J. Könemann, and M. Sharpe, Weighted capacitated, prior-
ity, and geometric set cover via improved quasi-uniform sampling, Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New
York, 2012, pp. 1576–1585. MR3205315

[Var10] K. Varadarajan, Weighted geometric set cover via quasi-uniform sampling, STOC’10—
Proceedings of the 2010 ACM International Symposium on Theory of Computing,
ACM, New York, 2010, pp. 641–647. MR2743313
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2. General Case

Fejér’s papers are particularly well written, they are very easy to read.
This is due to his style of work: When he found an idea, he tended it with
loving care; he tried to perfect it, simplify it, free it from unessentials; he
worked on it carefully and minutely until the idea became transparently
clear. He eventually produced a work of art, not of too large dimen-
sions, but highly finished . . .He attracted many people to mathematics
by the success of his own work and by his personal charm. He sat in a
coffee house with young people who could not help loving him and try-
ing to imitate him as he wrote formulas on the menus and alternately
spoke about mathematics and told stories about mathematicians. In fact,
almost all Hungarian mathematicians who were his contemporaries or
somewhat younger were personally influenced by him, and several started
their mathematical career by working on his problems.

George Pólya

The main theorem of this section proves the general form of Theorem 8.2. Recall
the definition of a well-behaved function.

Definition 4.5. A function ϕ (·, ·) is (a, b)-well-behaved, for a ∈ (1, 2) and
b ∈ R

+, if it is non-decreasing in both arguments and for all positive integers
m ≥ k ≥ b ≥ 2,

ϕ (m, k) ≤
(
ϕ

(
m

2
,
k

2

))a

.

Theorem 8.11. Let (X,F) be a set system on n elements and a ∈ (1, 2), b ∈ R
+

be parameters such that the shallow-cell complexity of F , ϕF (·, ·), is (a, b)-well-

behaved. Let ε > 0 be a given parameter and set c1 = exp
( √

2√
2−

√
a

)
and c2 =

b + 2
a

a−1 . Note that c1, c2 ≥ 1. Then there exists a procedure to compute an ε-net
N of F such that each p ∈ X is present in N with probability

O
(c1 c2

εn
+

c1
εn

lnϕF

(c1 n

2t
,
εn

2t

))
,

where t is the largest integer in
[
0, log εn

c2

]
such that for all i < t,

(8.12)

√
8 ln

(
εn
2i · ϕF

(
c1n
2i , εn

2i

))
εn
2i

≤ 1

2
.

Furthermore, let w : X → R be weights on the elements of X, with W =
∑

p∈X w (p).
Then there exists an ε-net of F of total weight

O
(
W
(c1 c2

εn
+

c1
εn

lnϕF
(c1 n

2t
,
εn

2t

)))
.

The somewhat odd condition given by Equation (8.12) is due to the fact that

we do not assume anything about the function ϕF (·, ·), other than that it

is well-behaved. For the case of shallow-cell complexity functions of natural

geometric set systems, typically t = log (Ω (εn)) and so Theorem 8.11 gives a

bound matching the one of Theorem 6.2.
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The proof is similar to that of Theorem 8.2, the key lemma being the following
generalization of Lemma 8.3.

Lemma 8.13. Let (X,F) be a set system and k a positive integer such that |S| ≥ k

for all S ∈ F , and where
√

8 ln(k·ϕF (|X|,k))
k ≤ 1

2 . Let Y be a uniform random sample

of X of size

|X| ·
(
1

2
+

√
8 ln (k · ϕF (|X|, k))

k

)
.

Then one can construct a set Q ⊆ X \ Y such that

(1) for each S ∈ F , either |S ∩ Y | ≥ k
2 or S ∩ Q 
= ∅, and

(2) each p ∈ X belongs to Q with probability O
(

1
k2

)
, where the probability is

over the choice of Y .

Compared to the proof in the previous section, the calculations using
Lemma 8.13 become technically more involved due to the fact that the proba-
bility of picking an element into Y involves the function ϕF (·, ·), which addi-
tionally has |X| as an argument.

To simplify the technical details, Lemma 8.13 is stated with a slightly different

probability distribution from that of Lemma 8.3, with Y being a random sam-

ple of a fixed size. This simplifies later calculations, though the entire proof

can also be made to work where each element of X is added to Y independently

with probability 1
2
+
√

8 ln(k·ϕF (|X|,k))
k

.

The algorithm is the same as earlier, except we will use Lemma 8.13.

Weighted Net-Finder Algorithm
(
(X,R), ε > 0

)
.

X0 = X, Q0 = ∅ and F0 = F .
i = 0.

while i < t do
apply Lemma 8.13 to (Xi,Fi) with ki =

εn
2i to get the sets Y and Q.

set Xi+1 = Y and Qi+1 = Q.
let Fi+1 be the set system obtained from Fi by first removing all sets of
Fi hit by Q and then projecting Fi onto Y . That is,

Fi+1 =
{
S ∩ Y : S ∈ Fi and S ∩ Q = ∅

}
.

i = i + 1.

return N = Xt ∪ Q1 ∪ · · · ∪ Qt.

Number of iterations t. Let t be the largest integer in
[
0, log εn

c2

]
such that

for all i < t,

(8.14)

√
8 ln

(
εn
2i · ϕF

(
c1n
2i , εn

2i

))
εn
2i

≤ 1

2
.
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Note that if t = 0—that is, Equation (8.14) already does not hold for i = 0,
we have

8 ln (εn · ϕF (c1n, εn))

εn
>

1

4
,

we can simply return P as the ε-net N . Then for each p ∈ X,

Pr [p ∈ N ] = 1 ≤ 32 ln (εn · ϕF (c1n, εn))

εn
= O

(
1

εn
lnϕF (c1n, εn)

)
,

as required.

We will also assume that εn
c2

≥ 8—otherwise return P as the ε-net N , with

each element being picked into N with probability 1 < 8c2
εn

= O
(
c2
εn

)
.

As either t = log εn
c2

or Equation (8.14) is violated for some i < log εn
c2
, we get the

following.

(8.15)
1

2t
≤ max

{
c2
εn

,
32 ln

(
εn
2t · ϕF

(
c1n
2t , εn

2t

))
εn

}
= O

(
c2
εn

+
lnϕF

(
c1n
2t , εn

2t

)
εn

)
.

We will need the following claim.

Claim 8.16. For each i < t,√
8 ln

(
εn

2i+1 ϕF
(

c1n
2i+1 , εn

2i+1

))
εn

2i+1

≥
√

2

a
·

√
8 ln

(
εn
2i ϕF

(
c1n
2i , εn

2i

))
εn
2i

.

Proof. By squaring, removing the logarithms and re-arranging the terms, this
is equivalent to

εn

2i+1
ϕF

( c1n

2i+1
,

εn

2i+1

)
≥
(εn

2i

) 1
a
(
ϕF

(c1n

2i
,
εn

2i

)) 1
a

,

which follows from the next two inequalities.

1.

(
εn
2i

) 1
a

εn
2i+1

=
2 · 2(1− 1

a ) i

(εn)1−
1
a

≤
2 ·
(

εn
c2

)1− 1
a

(εn)1−
1
a

=
2

c
a−1
a

2

≤ 1,

since 2i ≤ 2t ≤ εn
c2

and c2 ≥ 2
a

a−1 .

2.
(
ϕF
( c1n

2i+1
,

εn

2i+1

))a
≥
(
ϕF
(c1n

2i
,
εn

2i

))
,

by the definition of (a, b)-well-behaved functions and the fact that εn
2i ≥ εn

2
log εn

c2

≥
c2 ≥ b. �

Proof of Theorem 8.11. It is easy to see that N = Xt ∪Q1 ∪ · · · ∪Qt is an
ε-net: for each S ∈ F of size at least εn, either S was hit by Qi for some i ≤ t or
it contains at least εn

2t ≥ c2 ≥ 1 elements of Xt.

It remains to upper bound the probability of any fixed element of X belonging to
N .

Claim 8.17. For each i ≤ t, |Xi| ≤ c1 · n
2i . Furthermore, Pr [p ∈ Xi] ≤ c1 · 1

2i for
each p ∈ Xi.
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Proof. The proof is by induction on i. Clearly it is true for i = 0. So assume
that |Xj | ≤ c1 · n

2j for all j < i. Applying Lemma 8.13, we get

|Xi| = |Xi−1| ·

⎛
⎝1

2
+

√
8 ln
(
ki−1 · ϕF

(
c1n
2i−1 , ki−1

))
ki−1

⎞
⎠

= · · · = n ·
i−1∏
j=0

⎛
⎝1

2
+

⎛
⎝
√

8 ln
(
kj · ϕF ( c1n

2j
, kj)
)

kj

⎞
⎠
⎞
⎠

=
n

2i

i−1∏
j=0

⎛
⎝1 + 2

⎛
⎝
√

8 ln
(
kj · ϕF ( c1n

2j
, kj)
)

kj

⎞
⎠
⎞
⎠

≤ n

2i
· exp

⎛
⎝2

i−1∑
j=0

⎛
⎝
√

8 ln
(
kj · ϕF ( c1n

2j
, kj)
)

kj

⎞
⎠
⎞
⎠ (

using 1 + x ≤ ex
)

≤ n

2i
· exp

⎛
⎜⎝2

√
8 ln
(
ki−1 · ϕF ( c1n

2i−1 , ki−1)
)

ki−1
·
i−1∑
j=0

1√
2
a

j

⎞
⎟⎠ (

Claim 8.16
)

≤ n

2i
· exp

(
i−1∑
j=0

(√
a

2

)j
) (

Equation (8.14)
)

≤ n

2i
· exp

⎛
⎝ 1

1−
√
a√
2

⎞
⎠ = c1 ·

n

2i
.

Similarly,

Pr [p ∈ Xi] ≤
i−1∏
j=0

⎛
⎝1

2
+

⎛
⎝
√

8 ln
(
kj · ϕF (

c1n
2j , kj)

)
kj

⎞
⎠
⎞
⎠ ≤ c1 ·

1

2i
.

�

Thus,

Pr
[
p ∈ Q1 ∪ · · · ∪ Qt

]
=

t∑
j=1

Pr
[
p ∈ Xj−1

]
· Pr

[
p ∈ Qj

]

=

t∑
j=1

O
( c1
2j−1

)
· O
(

1(
εn
2j

)2
)

= O

(
c1

(εn)2

)
t∑

j=1

2j = O

(
c1

(εn)2

)
· O(2t)

= O

(
c1

(εn)2
· εn

c2

)
= O

( c1
εn

)
.

Finally, using Equation (8.15),

Pr
[
p ∈ Xt

]
= O

(c1
2t

)
= O

(
c1 c2
εn

+
c1 lnϕF

(
c1n
2t , εn

2t

)
εn

)
.

This finishes the proof of the first part of Theorem 8.11. The second part follows
from the first and linearity of expectation. �
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Lemma 8.13. Let (X,F) be a set system and k a positive integer such that |S| ≥ k

for all S ∈ F , and where
√

8 ln(k·ϕF (|X|,k))
k ≤ 1

2 . Let Y be a uniform random sample

of X of size

|X| ·
(
1

2
+

√
8 ln (k · ϕF (|X|, k))

k

)
.

Then one can construct a set Q ⊆ X \ Y such that

(1) for each S ∈ F , either |S ∩ Y | ≥ k
2 or S ∩ Q 
= ∅, and

(2) each p ∈ X belongs to Q with probability O
(

1
k2

)
, where the probability is

over the choice of Y .

Proof. Let F = {S1, . . . , Sm}, n = |X| and for i ≥ 0 define

Fi =
{

S ∈ F : 2i k ≤ |S| < 2i+1 k
}

.

Lemma 8.18. There is a way to assign each S ∈ Fi to an element pS ∈ S such that
each p ∈ X is assigned at most

ϕF
(
n, 2i+1k

)
· 2i+1k

sets of Fi.

Proof. By the shallow-cell complexity of F and the assumption that ϕ (·, ·)
is non-decreasing in both arguments, |Fi| ≤ n · ϕF(n, 2i+1k). This implies that∑

S∈Fi

|S| ≤ |Fi| · 2i+1k ≤ n · ϕF (n, 2i+1k) · 2i+1k.

By the pigeonhole principle there exists an element p ∈ X belonging to at most
ϕF(n, 2i+1k) · 2i+1k sets of Fi; all these sets are assigned to p. Remove p from X,
remove the sets containing p from Fi and reiterate for the remaining sets.

At the j-th step there are at most

(n − j) · ϕF (n − j, 2i+1k) ≤ (n − j) · ϕF
(
n, 2i+1k

)
remaining sets of Fi over the remaining (n − j) elements of X. Again one of these
n − j elements will be contained in at most ϕF

(
n, 2i+1k

)
· 2i+1k remaining sets—

these are then assigned to it.

One can continue this process until all sets of Fi have been assigned to some element
of X. �

Our construction of Q is simple: if S ∈ F violates the first property—that is,
|S∩Y | < k

2—then we add pS ∈ S to Q. Next, we upper bound the probability that
an element pS ∈ X is forced to be picked in Q due to a set S ∈ F . Set

f(k) =

√
8 ln (k · ϕF (n, k))

k
.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



126 8. EPSILON-NETS: WEIGHTED CASE

Claim 8.19. For any S ∈ F ,

Pr

[
|S ∩ Y | <

k

2

]
≤ exp

(
−|S| · f (k)2

)
.

Proof. Chernoff’s bound (Corollary 1.24) implies that

Pr

[
|S ∩ Y | <

k

2

]
= Pr

[
|S ∩ Y | <

(
k

|S| (1 + 2f (k))

)
· |S|

(
1

2
+ f (k)

)]

= Pr

[
|S ∩ Y | <

(
1− |S| (1 + 2f (k))− k

|S| (1 + 2f (k))

)
· |S|

(
1

2
+ f (k)

)]

≤ exp

(
−1

2

(
|S| (1 + 2f (k))− k

|S| (1 + 2f (k))

)2

· |S|
(
1

2
+ f (k)

))

= exp

(
− (|S|+ |S|2f (k)− k)

2

4|S| (1 + 2f (k))

)

≤ exp

(
− (|S|+ |S|2f (k)− k)

2

8|S|

)

≤ exp

(
− (|S|2f (k))

2

8|S|

)
= exp

(
−1

2
|S| · f (k)2

)
.

The third-to-last step used the fact that f (k) ≤ 1
2 and the second-to-last step that

|S| ≥ k. �

Now one can calculate the probability that any p ∈ X is added to Q:

Pr
[
p ∈ Q

]
≤

�log n
k �∑

i=0

∑
S∈Fi
pS=p

Pr

[
|S ∩ Y | <

k

2

]
≤

�log n
k �∑

i=0

∑
S∈Fi
pS=p

exp

(
−1

2
|S| · f (k)

2

)

≤
�log n

k �∑
i=0

∑
S∈Fi
pS=p

exp
(
−2i−1 k · f(k)2

)

≤
�log n

k �∑
i=0

ϕF
(
n, 2i+1k

)
2i+1k · exp

(
−2i−1k · 8 ln (k · ϕF (n, k))

k

)

≤
�log n

k �∑
i=0

2i+1k

k2i+2

ϕF
(
n, 2i+1k

)
(ϕF (n, k))2

i+2 ≤
�log n

k �∑
i=0

2i+1k

k2i+2

(ϕF (n, k))2(i+1)

(ϕF (n, k))2
i+2

≤
∞∑
i=0

2i+1 k

k2i+2 = O

(
1

k2

)
,

where the third-to-last step uses the fact that ϕF is well-behaved and that k ≥
εn
2t ≥ b.

This completes the proof of the lemma. �
Bibliography and discussion. The proof follows the ones in [Var10,
Cha+12], though we stated and proved it in a slightly different setting.
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3. Application: Rounding Linear Programs

The aim of theory really is, to a great extent, that of systematically
organising past experience in such a way that the next generation, our
students and their students and so on, will be able to absorb the essential
aspects in as painless a way as possible, and this is the only way in which
you can go on cumulatively building up any kind of scientific activity
without eventually coming to a dead end.

Michael Atiyah

Consider the weighted minimum hitting set problem for disks.

Let P be a set of n points in R
2, w : P → R

+ a weight function on P
and R a collection of m subsets of P induced by disks in the plane. Then
the minimum-weight hitting set problem asks for a hitting set Q ⊆ P of
R of minimum weight.

The main theorem of this section is the following.

Theorem 8.20. Let P be a set of n points in R
2, w : P → R

+ a weight function
and R a collection of m subsets of P induced by disks in the plane. Then there
is a polynomial-time algorithm to compute a O (1)-approximation to the weighted
minimum hitting set problem on P and R.

Proof. The linear programming relaxation (LP) for this problem assigns a
variable xp to each p ∈ P , with the objective function being to minimize the
weighted sum of the xp’s. See the LP below.

Minimize
∑
p∈P

w(p) · xp

subject to

(C1) for each R ∈ R :
∑
p∈R

xp ≥ 1,

(C2) for each p ∈ P : 0 ≤ xp ≤ 1.

This LP can be solved in polynomial time using standard algorithms (see discus-
sion). Furthermore, the xp variables are rational and so there exists a sufficiently
large integer Δ such that each scaled weight Δ · xp is an integer.

Construct a new set system (P ′,R′) as follows. For each p ∈ P , let Xp be a set of
Δ · xp new points, each with the same coordinates and weight as p. Then set

P ′ =
⋃
p∈P

Xp,

R′ =

⎧⎨
⎩⋃

p∈R

Xp : R ∈ R

⎫⎬
⎭ .

Note that a hitting set of R′ gives a hitting set of the same weight of R. Further-
more,

|P ′| =
∑
p∈P

Δ · xp, and ∀ R′ ∈ R′, |R′| =
∑
p∈R

Δ · xp ≥ Δ,
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where the last inequality follows from the LP constraint (C1). As |R′| ≥ Δ for
each R′ ∈ R′, to compute a hitting set of R′, it suffices to compute an ε′-net of R′,
where

ε′ =
Δ

|P ′| =
Δ∑

p∈P Δ · xp
=

1∑
p∈P xp

.

Apply Theorem 8.2 to (P ′,R′) to get an ε′-net N such that for all p′ ∈ P ′,

Pr
[
p′ ∈ N

]
= O

(
1

ε′ |P ′|

)
.

By the linearity of expectation, the expected total weight of N can be upper
bounded as∑

p′∈P ′

Pr
[
p′ ∈ N

]
· w (p′) = O

(
1

ε′ |P ′|

) ∑
p′∈P ′

w (p′)

= O

( ∑
p∈P w (p) ·Δ · xp

1∑
p∈P xp

·
∑

p∈P Δ · xp

)
= O

⎛
⎝∑

p∈P

w (p) · xp

⎞
⎠ .

Recall that
∑

p∈P w(p)·xp is the value of the solution returned by the LP. Therefore
the set N with the above weight—after discarding multiple copies of the same point
of P—is a hitting set that is, in expectation, a constant-factor approximation to
the weighted minimum hitting set of R.

This completes the proof. �

A similar statement follows for more general set systems as a function of their
shallow-cell complexity, by using Theorem 8.11.
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CHAPTER 9

Epsilon-Nets: Convex Sets

Let d ≥ 2 be an integer, and C the family of all convex sets in R
d. Let R be the

primal set system induced by C on a set P of n points in R
d; that is,

R =
{
C ∩ P : C ∈ C

}
.

Observe that if P is in convex position, thenR = 2P . This implies that VC-dim (R)
is unbounded: for any positive integer n, a set of n points in R

d in convex position
is shattered by C (see Definition 4.2). In particular, any ε-net for R must have size
at least n − εn, that is, almost all points of P !

This leads naturally to the notion of a weak ε-net, where one is allowed to construct
a net by picking points in R

d and not just from P .

Definition 9.1. Let P be a set of n points in R
d. For a parameter ε > 0, a set

Q ⊆ R
d is a weak ε-net of P with respect to convex sets if C∩Q 
= ∅ for any convex

set C ⊂ R
d containing at least εn points of P .

It turns out that it is possible to construct weak ε-nets with respect to convex
sets of size independent of |P | and depending only on ε and d. The first part of
this chapter will present the proof for the current-best bound for any R

d. Unlike
the case of ε-nets of set systems with bounded VC-dimension, there is a large gap
between the best-known upper and lower bounds for weak ε-nets.

The second main result of this chapter is a nice application of ε-nets to show that
any convex set can be approximated by a convex polytope with few vertices.

131
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132 9. EPSILON-NETS: CONVEX SETS

1. Weak ε-nets

One almost wouldn’t believe that after thousands of years of geometry,
it is still possible to discover such pretty theorems [E. Welzl’s theorem
on matchings with low crossing number] about points in the plane.

Jǐŕı Matoušek

The main theorem that we will prove is the following.

Theorem 9.2. Let P be a set of n points in R
d, d ≥ 2, and ε ∈

(
0, 1

2

]
a given

parameter. Then there exists a weak ε-net N with respect to convex sets in R
d of

P , with

|N | = O

(
1

εd
loga

(
1

ε

))
,

where a = Θ
(
d3 ln d

)
and the constant in the asymptotic notation depends on d.

To simplify the presentation, we will assume that P is in general position.

Overview of ideas. As a warm-up, consider the following proof demonstrating
the existence of a weak ε-net N of size O

(
1
ε2

)
for the two-dimensional case.

Let l be a vertical line with n
2

points of P on each side (assume n is even),

and denote these two sets by P1 and P2. Order the
(
n
2

)2
intersection points of

l with the line segments spanned by a point of P1 and a point of P2, by their

y-coordinate and pick every
⌊(

εn
4

)2⌋
-th point to form the set Nl, with

|Nl| =
(
n
2

)2⌊
ε2n2

16

⌋ = O

(
1

ε2

)
.

Next, recursively compute a weak 3
2
ε-net N1 of P1 and separately a weak 3

2
ε-

net N2 of P2, and set N = Nl ∪N1 ∪N2. Letting f
(
1
ε

)
denote the size of N ,

we have

f

(
1

ε

)
= 2 f

(
2

3ε

)
+O

(
1

ε2

)
, which solves to f

(
1

ε

)
= O

(
1

ε2

)
.

To see that N is a weak ε-net of P , let C be any convex set containing at least
εn points of P and consider these two cases:

C contains at least εn
4

points from both P1 and P2: Then the interval

C∩l contains at least
(
εn
4

)2
intersections between l and the segments spanned

by C ∩ P , and so C must contain a point of Nl.

C contains at least 3εn
4

points from one of P1 or P2: Say from P1; then
a weak ε′-net of P1 would hit C if

3

4
εn ≥ ε′ · n

2
=⇒ ε′ ≤ 3εn/4

(n/2)
=

3

2
ε.

Thus C is hit by N1.

We remark here that the natural way to extend the above construction to R
d

gives a weak ε-net of size O
(

1

ε2
d

)
—adding many points lying on the same

hyperplane is just too wasteful.
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1. WEAK ε-NETS 133

Almost all known weak ε-net constructions, including the proof of Theorem 9.2,

are recursive. That is, for carefully chosen integers r and t, we show the

existence of a partition of P into t equal-sized sets and a set Q ⊂ R
d such that

any convex set containing points from greater than r sets of the partition must

contain a point of Q. Any remaining unhit convex set must then contain at

least εn
r

points from one of the sets of the partition. Thus Q together with the

weak εt
r
-nets constructed recursively for each set of the partition is a weak ε-net

of P . The method of the partitioning, construction of Q and the parameters

t, r involve trade-offs, which then dictate the size of the final weak ε-net.

The proof of Theorem 9.2 relies on two key structural results, which we first present.

Theorem 9.3. Let P be a set of n points in R
d in general position. Define the

convex polytope
centerpolytope (P ) =

⋂
P ′⊆P

|P ′|> d
(d+1)

·|P |

conv (P ′) .

Then centerpolytope (P ) is non-empty.

Each q ∈ centerpolytope (P ) is called a centerpoint of P , and has the useful property

that any closed half-space containing q contains at least |P |
(d+1) points of P .

We sketch a proof of the fact that centerpolytope (P ) is non-empty for the
two-dimensional case; the general case follows similarly. Let

CP =

{
conv

(
P ′) : P ′ ⊆ P, |P ′| > 2

3
|P |
}
.

For any C,C ′ ∈ CP , let

f
(
C,C ′) = min

q∈C∩C′
y-coordinate (q) .

Let C1, C2 ∈ CP be the pair maximizing f (·, ·) over all pairs of sets in CP and
let q ∈ C1 ∩ C2 be the point realizing f (C1, C2) (see figure). We claim that q
is contained in all sets of CP and thus centerpolytope (P ) is non-empty.

Otherwise let C3 ∈ CP be a set not containing q. Now C3 must inter-

sect C1 ∩ C2—as every 3-tuple of sets of CP must have a point of P in

common as their union contains greater than 2n points of P—and so either

f (C1, C3) > f (C1, C2) or f (C2, C3) > f (C1, C2), contradicting the extremal

choice of {C1, C2}.

C1

C2

q

y-axis

C3
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134 9. EPSILON-NETS: CONVEX SETS

Corollary 9.4. Let P ′ be a set of points in R
d in general position. Then there

exists a set Q ⊆ R
d of size at most |P ′|d2

such that for every S ⊆ P ′, a centerpoint
of S belongs to Q.

Proof. For any S ⊆ P ′, apply Theorem 9.3 to get centerpolytope (S). Each
vertex of centerpolytope (S) is a centerpoint of S and, by our general position
assumption, is the intersection of d hyperplanes, each spanned by d points of S.

Thus the set of all distinct vertices of centerpolytope (S), over all S ⊆ P ′, forms
the required set Q. As Q consists of the intersections of all d-tuples of hyperplanes,

each of which is spanned by d points of P ′, |Q| ≤
(|P ′|

d

)d
≤ |P ′|d2

. �

The second structural result needed is Matoušek’s simplicial partition theorem1,
stated without proof.

Theorem 9.5. Let P be a set of n points in R
d and t ∈

[
2, n

2

]
a given integer

parameter. Then there exists a partition {P1, . . . , Pt} of P with |Pi| =
⌊
n
t

⌋
for

i = 1, . . . , t − 1, such that any hyperplane in R
d intersects the convex-hull of at

most C5 · t1−
1
d sets of this partition. Here C5 is a constant depending only on d.

Proof of Theorem 9.2. Let t ∈
[
2, n

2

]
be an integer parameter whose value

is independent of n and will be set later. At the cost of worse constants, we will
assume for simplicity that n is divisible by t. If ε ≤ 1

n , we can return P as a weak

ε-net, of size n ≤ 1
ε ; otherwise our construction is the following.

Weak Net-Finder Algorithm
(
P ⊂ R

d, ε > 0
)
.

Partition P into t sets Ξ = {P1, . . . , Pt} using Theorem 9.5.
Pick an arbitrary point from each Pi ∈ Ξ and let P ′ be this set of t points.

Apply Corollary 9.4 to P ′ to get a set Q ⊆ R
d of size at most td

2

.
for i = 1, . . . , t do

recursively construct a weak ε′-net Ni of Pi, where ε′ = ε t
1
d

C5(d+1) .

return N = N1 ∪ · · · ∪ Nt ∪ Q.

Claim 9.6. The set N is a weak ε-net for P .

Proof. Let C be a convex set containing at least εn points of P . If C contains
at least ε′ · n

t points from some Pi ∈ Ξ, then C contains a point of Ni and we are
done.

So assume that C contains less than ε′ · nt points from each set of Ξ. Let ΞC be the
sets of Ξ with non-empty intersection with C and let PC ⊆ P ′ be the points chosen
from the sets of ΞC . Note that

|PC | = |ΞC | >
εn

(ε′n/t)
=

εt

ε′
.

Let q ∈ Q be a centerpoint of PC . We claim that C must contain q. Otherwise,
there exists a hyperplane h separating C from q. Let P h

C be the points of PC lying

1Matoušek’s work is built on a stunning insight due to E. Welzl on matchings with low
crossing numbers.
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q

h+

C

in the closed half-space h+ containing q and not containing C and let Ξh
C denote

their corresponding sets. See figure. The fact that q is a centerpoint of PC implies
that

|Ξh
C | = |P h

C | ≥
|PC |

(d + 1)
>

εt

ε′ (d + 1)
.(9.7)

However, observe that the convex-hull of each set of Ξh
C must intersect h—each

such set intersects C and also contains a point of P h
C , and these two lie on different

sides of h. Thus Theorem 9.5 together with Equation (9.7) implies that

C5 · t1−
1
d ≥

∣∣Ξh
C

∣∣ > εt

ε′ (d + 1)
, and hence ε′ >

ε t
1
d

C5 (d + 1)
,

contradicting the value of ε′ set in the algorithm. �

It remains to upper bound the size of the weak ε-net.

Claim 9.8.

|N | ≤ b

εd
loga

1

ε
,

where a = 2d3 ln (C5 (d + 1)) and b = (C5 (d + 1))9d
4

.

Proof. Let f
(
1
ε

)
be the size of the weak ε-net constructed by the algorithm.

Then for any integer t,

(9.9) |N | = f

(
1

ε

)
≤ t · f

(
1

ε′

)
+ |Q| ≤ t · f

(
C5 (d + 1)

ε t
1
d

)
+ td

2

.

We show by induction that f
(
1
ε

)
≤ b

εd
loga 1

ε for an appropriate value of t.

The construction for the base case, when ε > 1

(C5(d+1))8d
2 , is as follows:

Use Theorem 9.5 with t′ =

⌈(
C5(d+1)

ε

)d
+ 1

⌉
to get a partition Ξ′ of t′ sets.

Let R be a set of t′ points, one from each set of Ξ′, and letQ′ be a set containing
a centerpoint of each subset of R. Then we claim that Q′ is a weak ε-net of
P . To see this, let C be a convex set containing at least εn points of P and
intersecting the sets Ξ′

C ⊆ Ξ′. Note that |Ξ′
C | ≥ εn

(n/t′) = εt′. We show that a

centerpoint c′ ∈ Q′ of Ξ′
C must hit C. Otherwise, the hyperplane separating
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c′ from C intersects the convex-hull of at least εt′

(d+1)
sets of Ξ′

C and at most

C5 · t′1−
1
d by Theorem 9.5. The value of t′ was chosen to get a contradiction

here. Finally, by Corollary 9.4 and the fact that ε > 1

(C5(d+1))8d
2 ,

|Q′| ≤
⌈(

C5 (d+ 1)

ε

)d

+ 1

⌉d2
≤ 1

εd

(
(2C5 (d+ 1))d

3

εd2

)

≤ 1

εd

(
(C5 (d+ 1))9d

4
)
=

b

εd
.

Returning to the inductive step, note that to get an upper bound of Õ
(

1
εd

)
, the td

2

term in Equation (9.9) must be Õ
(

1
εd

)
, which forces us to set t = 1

ε1/d
2. Applying

the inductive upper bound on f
(
1
ε′

)
,

f

(
1

ε

)
≤ t · b (C5 (d+ 1))d

εdt
loga

C5 (d+ 1)

ε t
1
d

+
1

εd

=
b

εd

(
(C5 (d+ 1))d loga

C5 (d+ 1)

ε
1− 1

d2

)
︸ ︷︷ ︸+

1

εd
.

The underlined expression can be upper bounded as

≤ (C5 (d+ 1))d
(
1− 1

d2

)a

loga
(C5 (d+ 1))2

ε

(
since d ≥ 2

)
≤ (C5 (d+ 1))d e−a/d2 loga

(C5 (d+ 1))2

ε

=
1

(C5 (d+ 1))d

(
log

1

ε
+ log (C5 (d+ 1))2

)a (
substituting the value of a

)

=
1

(C5 (d+ 1))d
· loga 1

ε
· exp

(
log (C5 (d+ 1))2

log 1
ε

· 2d3 ln (C5 (d+ 1))

)

=
1

(C5 (d+ 1))d
· loga 1

ε
· exp

(
log (C5 (d+ 1))2

8d2 log (C5 (d+ 1))
· 2d3 ln (C5 (d+ 1))

)

=
1

(C5 (d+ 1))d
· loga 1

ε
· exp

(
1

2
· d ln (C5 (d+ 1))

)
≤ 1

2
loga

1

ε
.

Thus we can conclude that

f

(
1

ε

)
≤ b

εd

(
1

2
loga

1

ε
+

1

b

)
≤ b

εd
loga

1

ε
.

�

This completes the proof of Theorem 9.2. �

2Theorem 9.5 can be applied for this value of t since ε ∈
[
1
n
, 1
2d

]
implies that t ∈

[
2, n

2

]
.

Furthermore ε′ ∈
(
0, 1

2

]
for this value of t.
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2. Application: Polytope Approximation

I want to express a radical alternative that I learned from Sir Michael
Atiyah. His view was that the most significant aspects of a new idea are
often not contained in the deepest or most general theorem which they
lead to. Instead, they are often embodied in the simplest examples, the
simplest definition and their first consequences.

David Mumford

Let K be a convex set in R
d. For a parameter ϑ ∈ (0, 1) and a point q ∈ K, define

ϑKq to be the convex set obtained by ‘shrinking’ K by a factor of ϑ radially around
q. Formally, for a point q ∈ R

d and a parameter ϑ ∈ (0, 1), define the bijective
function

fq,ϑ (p) = ϑ · p + (1− ϑ) · q.

q

p

fq(p, ϑ)

ϑ · |pq|
(1 − ϑ) · |pq|

Then

ϑKq =
{
fq,ϑ (p) : p ∈ K

}
.

Note that vol (ϑKq) = ϑd · vol (K).

The main theorem of this section shows that any convex set K can be approximated
by a convex polytope with few vertices (see figure).

Theorem 9.10. Let K be a convex set in R
d, α ∈

(
0, 1

2

)
and q ∈ K a point such

that any half-space containing q contains at least α · vol(K) volume of K (we say
that q has half-space depth α with respect to K). Then for any parameter ϑ ∈ (0, 1)

one can find a convex polytope C with O
(

d
α(1−ϑ)d

ln 1
α(1−ϑ)d

)
vertices such that

ϑKq ⊆ C ⊆ K.

qϑKq

K

C
h1

h+
1
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Overview of ideas. The fact that any half-space containing q contains at least
α ·vol(K) volume of K will be used to show that ϑKq must be ‘in the middle’ of K.
More precisely, consider any hyperplane h1 tangent to ϑKq (see the figure). Then
we will show that the half-space h+

1 (the side not containing ϑKq) contains a large
fraction of the volume of K, namely

vol
(
K ∩ h+

1

)
≥ ε′ · vol(K),

where ε′ depends only on α, ϑ and d. Then the convex-hull of an ε′-net of the
primal set system induced on K by half-spaces must contain ϑKq and thus is the
required convex set C.

Proof of Theorem 9.10. The main claim is the following.

Claim 9.11. Let h+
1 be a half-space with a non-empty intersection with ϑKq. Then

vol
(
K ∩ h+

1

)
≥ (1− ϑ)d · α · vol (K) .

Proof. By translating h+
1 ‘outwards’, we can assume that h1 is tangent to

ϑKq, say at the point q1, and where h+
1 does not contain q. Further let h0, h2 be

two hyperplanes—both parallel to h1—such that h0 contains q and h2 is tangent
to K at a point q2. See the figure.

To lower bound the volume of K ∩ h+
1 (the patterned region in the figure), we are

going to argue that a copy K ′ of K ∩ h+
0 —scaled by a factor of (1− ϑ)—lies inside

K ∩ h+
1 . Then we have

vol
(
K ∩ h+

1

)
≥ vol (K ′) = (1− ϑ)d · vol

(
K ∩ h+

0

)
≥ (1− ϑ)d · α · vol (K) ,

and we are done.

It remains to construct such a K ′. The trick is to scale K ∩ h+
0 with respect to the

point q2. Namely set

K ′ =
{
fq2,(1−ϑ) (p) : p ∈ K ∩ h+

0

}
.

q

 Kq

K h1

h0

h2h+1

h+0

q1

q2

ϑ

As f(·) maps a hyperplane to a parallel hyperplane (for completeness we give a
proof of this fact at the end), we show that in the mapping K ∩ h+

0 → K ′, h0 gets
mapped to h1.
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(1) In the mapping K → ϑKq, the hyperplane h2 must map to h1 under
fq,ϑ (·) and the point q2 is mapped to q1; that is, fq,ϑ (q2) = q1.

(2) Then fq2,(1−ϑ) (q) = q1; that is, the mapping K ∩ h+
0 → K ′ maps q to q1,

since

fq2,(1−ϑ) (q) = ϑ · q2 + (1− ϑ) · q = fq,ϑ (q2) = q1.

This implies that h0 is mapped to h1 under fq2,(1−ϑ) (·).
Thus each point in K∩h+

0 gets mapped to a point of K∩h+
1 and so K ′ ⊆ K∩h+

1 . �

We can now conclude the proof of Theorem 9.10. Set ε′ = (1− ϑ)
d · α. By

Claim 9.11, each half-space intersecting ϑKq contains at least ε′ fraction of the
volume of K. Let N ⊂ K be an ε′-net of the primal set system induced on K by
half-spaces in R

d. The fact that N is an ε′-net implies that the convex-hull of N
must contain ϑKq, as required.

The number of vertices of C can be upper bounded using Theorem 6.10:

|C| ≤ |N | = O

(
d

ε′
ln

1

ε′

)
= O

(
d

α (1− ϑ)d
ln

1

α (1− ϑ)d

)
.

�

Theorem 9.3 together with Theorem 9.10 implies the following.

Corollary 9.12. Let K be a convex set in R
d and ϑ ∈ [0, 1] a given parameter.

Then one can find a convex polytope C with O
(

d2

(1−ϑ)d
log d

(1−ϑ)d

)
vertices such that

ϑ Kq ⊆ C ⊆ K.

The above corollary can be improved further using a beautiful fact—called

Grünbaum’s inequality—that for any convex set K in R
d there exists a point

q ∈ K (in fact, the centroid of K) with half-space depth 1
e
with respect to K.

The fact that this is independent of d is quite amazing.

For completeness, we show that the function fq,ϑ(·) maps a hyperplane to a parallel
hyperplane.

Claim 9.13. Let q ∈ R
d and ϑ ∈ (0, 1) be a given parameter. Let h be a hyperplane

passing through a point p ∈ R
d and with normal N . Then the function fq,ϑ (·) maps

h to the hyperplane that is parallel to h and contains the point fq,ϑ (p).

Proof. Let r 
= p be a point lying on h, that is, (r − p) · N = 0, where N is
a normal unit vector of h. Then fq,ϑ (r) lies on the hyperplane h′ passing through
fq,ϑ (p) and with normal N , since(

fq,ϑ (r)− fq,ϑ (p)
)
· N = (ϑr − ϑp) · N = ϑ (r − p) · N = 0.

�

Bibliography and discussion. The theorem and its proof is from
Naszódi [Nas19]. There has been a long sequence of beautiful work on
approximations of polytopes (e.g., see [Ary+20]).
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CHAPTER 10

VC-dimension of k-Fold Unions: Basic Case

We now turn towards lower bounds on sizes of ε-nets for both abstract and geo-
metric set systems. The starting point is an observation due to N. Alon, which we
illustrate with the following theorem from an area of combinatorics called Ramsey
theory (there are quantitatively precise versions of this statement but this suffices
to illustrate the main idea).

Theorem. There exists a function f : Z+ → Z
+ such that the following is true.

Given any positive integer k, any subset of
{
1, . . . , f(k)

}
of size at least f(k)

2 con-
tains an arithmetic progression of size k.

Given a positive integer k, let X =
{
1, . . . , f(k)

}
. Now suppose we want to hit all

arithmetic progressions of size at least k in X. That is, we seek an ε′-net, ε′ = k
f(k) ,

of the set system (X,F), where

F =
{
R ⊆ X : R is an arithmetic progression

}
.

Then any ε′-net N of F must have size at least f(k)
2 , since otherwise

the set X \ N has size at least f(k)
2 and by the above Theorem, X \ N

contains an arithmetic progression R of size k. But R is not hit by N , a
contradiction!

Now observe that the lower bound of f(k)
2 on the size of any ε′-net N is a super-linear

function of 1
ε′ . That is, for any ε′-net N ,

|N | ≥ f(k)

2
=

k

2
· f(k)

k
=

k

2
· 1
ε′

.

One can re-write the lower bound on |N | purely in terms of 1
ε′ by writing k in terms

of 1
ε′ , but for that one needs to know the function f (·).

Further observe that (X,F) can be realized as a geometric set system induced

on a set of points in the plane—e.g., by mapping X to a set P of points in R
2

with the map x → (x, 0). Then the set system F induced on X by arithmetic

progressions is contained in the primal set system induced on P by sine curves

in the plane.

A few years after N. Alon’s work, in a major breakthrough, J. Pach and G. Tardos
gave a tight lower bound on the size of ε-nets of primal set systems induced by
half-spaces in R

4. Their technique was later used to derive tight lower bounds for
several other basic geometric set systems, including those induced by half-spaces in
R

d.

143
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144 10. VC-DIMENSION OF k-FOLD UNIONS: BASIC CASE

Rather than proving these lower bounds directly, we will show that a more powerful
structural property is true, which then immediately implies lower bounds on sizes
of ε-nets. For that we define the notion of the k-fold union of a set system.

Definition 10.1. Given a set system (X,F) and an integer k ≥ 1, the k-fold union
of F , denoted by Fk, is the set system obtained by adding the union of at most k
sets of F to Fk. That is,

Fk =
{

Ri1 ∪ · · · ∪ Rik : Rij ∈ F for all 1 ≤ j ≤ k
}

.

As the k sets need not be distinct, we have F ⊆ Fk. Similarly one can define k-fold
intersections of a given set system.

The topic of Chapters 10 and 11 is to study lower bounds on the VC-dimension of
k-fold unions of both abstract and geometric set systems. These will then be used
to derive lower bounds on sizes of ε-nets.
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1. Abstract Set Systems

If one is trying to maximize the size of some structure under certain
constraints, and if the constraints seem to force the extremal examples
to be spread about in a uniform sort of way, then choosing an example
randomly is likely to give a good answer.

Timothy Gowers

We will prove the following theorem in this section.

Theorem 10.2. There exists a constant C9 ≥ 1 such that for any integer k ≥ C9,
there exists a set system (X,F) with |X| = �k log k� such that

(1) VC-dim (F) ≤ 5, and
(2) F3k shatters X. That is, VC-dim

(
F3k

)
≥ �k log k�.

Note that an upper bound on the VC-dimension of Fk in terms of k and the VC-
dimension of F follows by a direct counting argument.

Lemma 10.3. Let (X,F) be a set system with VC-dim (F) ≤ d and let k ≥ 2

be an integer. Then VC-dim
(
Fk
)
= O (d k log k).

Proof. For any Y ⊆ X with |Y | ≥ d, we will show that
∣∣Fk|Y

∣∣ ≤(
e|Y |
d

)dk
. Lemma 4.6 then implies that VC-dim

(
Fk
)
= O(d k log k), as re-

quired.

Fix any Y ⊆ X. For each RY ∈ Fk|Y there exists a R ∈ Fk such that
RY = R ∩ Y , with R being the union of k sets of F . Say R = R1 ∪ · · · ∪ Rk,
where Ri ∈ F . As

RY = R ∩ Y = (R1 ∩ Y ) ∪ · · · ∪ (Rk ∩ Y ) ,

each set in Fk|Y is the union of at most k sets of F|Y . As |F|Y | ≤
(

e|Y |
d

)d
by

Lemma 4.3, ∣∣∣Fk|Y
∣∣∣ ≤ (|F|Y |)k ≤

(
e|Y |
d

)dk

,

as required. �

The key to proving Theorem 10.2 is the following set system.

Lemma 10.4. There exists a constant C9 ≥ 1 such that for any integer k ≥ C9,
there exists a set system (X,F) with |X| = �k log k� such that

(P1) |S ∩ S′| ≤ 4 for all S, S′ ∈ F , and
(P2) for every integer b = 1, . . . , �log log k�, the following holds:

any Y ⊆ X of size at least k log k
2b

contains a set S ∈ F of size at least
log k
b .

We use this to first complete the proof of Theorem 10.2, and then return to the
proof of Lemma 10.4.

Proof of Theorem 10.2. Let (X,F) be the set system given by Lemma 10.4.
Add to F all the |X| singleton sets. We show that this is the desired set system.
Clearly we still have |S ∩ S′| ≤ 4 for all S, S′ ∈ F .
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146 10. VC-DIMENSION OF k-FOLD UNIONS: BASIC CASE

Claim 10.5. VC-dim (F) ≤ 5.

Proof. If a set Y ⊆ X of size 6 is shattered by F , then F must contain two
sets having 5 elements of Y in common, a contradiction to property (P1). �

Claim 10.6. F3k shatters X. In other words, any set Y ⊆ X can be expressed as
a union of at most 3k sets of F .

Proof. Let Y ⊆ X be any subset of X. If |Y | ≤ k, then Y is the union of at
most k singleton sets of F and we’re done. So assume that |Y | > k and we now
show that there exist at most 3k sets in F whose union is Y .

Let b ∈
[
1, �log log k�

]
be an integer such that

(10.7)
k log k

2b
< |Y | ≤ k log k

2b−1
.

By property (P2), there exists a set S ∈ F of size at least log k
b such that

S ⊆ Y . Set Y = Y \ S. If Y still satisfies Equation (10.7), we re-iterate
the previous step (for the same value of b). This can continue for at most

(10.8)

k log k

2b−1
−

k log k

2b

log k

b

=

k log k

2b

log k

b

= k ·
b

2b
steps,

each of which consists of choosing a set of F covering at least
log k

b
remaining elements of Y .

After these steps, we have |Y | ≤
k log k

2b
. Again let b′ > b be an integer

such that
k log k

2b′
< |Y | ≤ k log k

2b′−1
.

As before, we continue to find sets of F of size at least
log k

b′
contained

in Y .

This process continues as long as |Y | > k log k
2log log k = k. When we finally

get |Y | ≤ k, we can add k singletons to cover the remaining elements.

The total number of sets added can be upper bounded, using Equation (10.8), by


log log k�∑
i=1

k · i

2i
≤ k

∞∑
i=0

i

2i
= 2k.1

Thus in total we were able to cover Y with at most 3k sets of F , as required. �

This completes the proof of Theorem 10.2. �

It remains to prove the following.

1
∑∞

i=0
i
2i

=
(
1
2

)
+

(
1
4
+ 1

4

)
+

(
1
8
+ 1

8
+ 1

8

)
+ · · · . The sum of the first terms from each

parenthesis gives 1, the sum of all the second terms give 1
2
and so on, to get the total of 2.
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Lemma 10.4. There exists a constant C9 ≥ 1 such that for any integer k ≥ C9,
there exists a set system (X,F) with |X| = �k log k� such that

(P1) |S ∩ S′| ≤ 4 for all S, S′ ∈ F , and
(P2) for every integer b = 1, . . . , �log log k�, the following holds:

any Y ⊆ X of size at least k log k
2b

contains a set S ∈ F of size at least
log k
b .

Proof. Let X be a set of �k log k� elements. We will construct the set system
F on X probabilistically and show that, with non-zero probability, F satisfies both
the properties (P1) and (P2) simultaneously.

Fix an integer t =
⌈
56 k2 log2 k

⌉
. For each b = 1, . . . , �log log k�, let

Fb : t sets of size

⌈
log k

b

⌉
chosen at random (with replacement) from

(
X⌈

log k
b

⌉).

Our set system is then

F =


log log k�⋃
b=1

Fb.

Discarding the duplicate sets in F , we will show that F satisfies both the properties
(P1) and (P2) simultaneously with positive probability.

As we are only interested in demonstrating the existence of the required set

system, the proof does not attempt to optimize the various probability calcu-

lations. A more careful calculation gives a lower value of C9.

Lemma 10.9. F fails to satisfy property (P2) with probability at most 1
k .

Proof. Let b ∈
[
1, �log log k�

]
be a fixed integer and Y ⊆ X with |Y | ≥ k log k

2b
.

Then

Pr

[
a uniform random subset of size

⌈
log k

b

⌉
is contained in Y

]
=

( |Y |⌈
log k
b

⌉)
( |X|⌈

log k
b

⌉)

≥

⌈
k log k

2b

⌉
· · ·
(⌈

k log k
2b

⌉
−
⌈
log k
b

⌉
+ 1
)

�k log k� · · ·
(
�k log k� −

⌈
log k
b

⌉
+ 1
) ≥

⎛
⎝
⌈
k log k

2b

⌉
− log k

b

�k log k�

⎞
⎠
� log k

b �

≥ 1

2log k+b

(
1− 2b

b k

)� log k
b �

≥ 1

2 k log k

(
1− 2 log k

k

)
log k�
≥ 1

28 k log k
,

where the last step used the fact that
(
1− 2 log k

k

)
log k�
≥ 1

14 for k ≥ 40.
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Thus the probability that there exists a set Y that violates property (P2) can be
upper bounded as

2|X| ·
(
1− 1

28 k log k

)t

≤ 2k log k · exp
(
− t

28 k log k

)
≤ exp

(
k log k − t

28 k log k

)
≤ 1

k
,

recalling that t =
⌈
56 k2 log2 k

⌉
. �

Lemma 10.10. F fails to satisfy property (P1) with probability O
(

log12 k
k

)
.

Proof. Recall that F =
⋃

b Fb, where each set in Fb has size
⌈
log k
b

⌉
and

|Fb| ≤ t (ignoring duplicate sets).

The probability that two random sets of F share at least 5 elements of X increases
with the sizes of the sets, so we will do the calculations setting the size of each set
in F to the maximum value of �log k�. This will then imply the same upper bound
for sets of smaller size.

Fix a set S of size �log k�. We first upper bound the probability that a uniform
random set S′ of size �log k� intersects S in at least 5 elements of X.

Pr
[
|S ∩ S′| ≥ 5

]
=


log k�∑
i=5

(|S|
i

)
·
( |X|−|S|

log k�−i

)
( |X|

log k�

) =


log k�∑
i=5

(
log k�
i

)
·
(�k log k	−
log k�


log k�−i

)
(�k log k	


log k�
) .

(10.11)

We will need the following fact:

for any two integers a, b with a > 2b ≥ 10,(
b
5

) (
a−b
b−5

)(
a
b

) ≤ b5· (a − b)!

(b − 5)! (a − 2b + 5)!
·b! (a − b)!

a!
≤ b10· (a − b)b−5

(a − b)b
≤ b10(

a
2

)5 .

It is not hard to see that the numerator in Equation (10.11) is a decreasing function

of i: as E [|S ∩ S′|] = |S|· 
log k�
�k log k	 < 1, the probability that S and S′ share i elements

decreases with i. As �k log k� > 2�log k� ≥ 10 for k ≥ 32,

Pr
[
|S ∩ S′| ≥ 5

]
≤ �log k� ·

(
log k�
5

)
·
(�k log k	−
log k�


log k�−5

)
(�k log k	


log k�
) ≤ �log k� · 2

5 �log k�10

�k log k�5
.

Thus the probability that there exist two sets of F sharing at least 5 elements of
X can be upper bounded, using the union bound, by(

|F|
2

)
· �log k� · 2

5 �log k�10

�k log k�5
≤
(
t · �log log k�

)2
· 32 �log k�11

�k log k�5
= O

(
log12 k

k

)
,

recalling that t =
⌈
56 k2 log2 k

⌉
. �

Lemma 10.9 and Lemma 10.10 imply that both properties (P1) and (P2) hold for

F with probability at least 1−O
(

log12 k
k

)
. There exists a sufficiently large constant

C9 ≥ 40 such that this probability is positive for any k ≥ C9, implying the existence
of such a set system. �
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Bibliography and discussion. The proof in this section is essentially
that of Eisenstat and Angluin [EA0710a]. By a more careful construction
one can improve the bound on the VC-dimension from 5 to 2 [Eis09]. While
we will see a more powerful lower bound construction with better bounds
later, we presented this proof as it is a nice illustration of a probabilistic
construction for proving a lower bound.

[EA0710a] D. Eisenstat and D. Angluin, The VC dimension of k-fold union, Inform. Process.
Lett. 101 (2007), no. 5, 181–184, DOI 10.1016/j.ipl.2006.10.004. MR2291190

[Eis09] D. Eisenstat, k-fold unions of low-dimensional concept classes, Inform. Process. Lett.
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2. Axis-Aligned Rectangles in R
2

Theories come and go, but examples stay forever.

Israel Gelfand

Let R be a set of axis-aligned rectangles in the plane. For any point p ∈ R
2, the

set of rectangles of R containing p is denoted by Rp. That is,

Rp =
{
R ∈ R : R � p

}
.

The main theorem of this section shows that, surprisingly, the upper bound on
the VC-dimension of k-fold unions—Lemma 10.3—is already tight for the dual set
system induced by axis-aligned rectangles in the plane.

Theorem 10.12. For any integer r ≥ 3, there exists a set R of (r − 1) 2r−2 axis-
aligned rectangles in the plane such that

for any S ⊆ R, there exists a set Q ⊆ R
2 of size 2r−1 such that S =⋃

q∈Q Rq.

In particular, since for any integer k ≥ 4 there exists an integer r ≥ 3 such that
2r−1 ≤ k < 2r, the above gives a set R of size (r − 1) 2r−2 ≥ k

4 log
k
2 and Q of size

2r−1 ≤ k.

In other words, if F is the dual set system induced by axis-aligned rectangles in R
2,

then

VC-dim
(
Fk
)
≥ k

4
log

k

2
.

The proof of Theorem 10.12 is based on a parity argument. While technically simple
and quite ‘thematic’, it is ingenious and requires some time to appreciate and digest
(and is worth remembering!). Most of the proof will be spent on understanding the
construction of R and its properties. The final proof will then follow naturally.

We first construct a larger set T of canonical rectangles contained in the square
U = [0, 2r]× [0, 2r]. T will be partitioned into (r− 1) levels, where T i ⊆ T denotes
the set of rectangles at level i, for i = 1, . . . , (r − 1).

Rectangles of T i: To construct the rectangles of level i, consider the grid formed
by partitioning U with 2i equally-spaced vertical strips of width 2r−i and 2r−i

equally-spaced horizontal strips of height 2i. The set T i consists of the rectangles
induced by the pairwise intersection of these vertical and horizontal strips inside
U . These rectangles are interior-disjoint and their union covers U .
There are 2r rectangles in T i, each of width 2r−i, height 2i and area 2r.
Each rectangle of T will be an open rectangle. For the final construction, one can
slightly shrink these rectangles to get a set of closed rectangles.

Binary representation of T : Each rectangle in T i is the product of two open
intervals, a ‘horizontal’ interval of length 2r−i and a ‘vertical’ interval of length
2i. For notational convenience, we will represent each such interval by a sequence
of bits, as follows.
At level i, there are 2i horizontal intervals, each of length 2r−i. Thus each such
interval can be represented by a sequence of i bits. We will use the ‘binary-tree
labeling’ of the intervals: if the sequence a = a1 · · · ai represents the horizontal
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r = 4, i = 1 r = 4, i = 2 r = 4, i = 3

interval Ia, then the sequence a · 0 is the representation of the first half of Ia, and
a · 1 the second half of Ia. When it is clear, we will use the sequence a to denote
the interval Ia. See figure below.

0 1

00 01 10 11

000 001 010 011 100 101 110 111

∅

Formally, the bits a = a1 · · · ai denote the interval

Ia =
(
s, s + 2r−i

)
, where s =

i∑
j=1

2r−j · aj .

Similarly, each of the 2r−i vertical intervals, each of length 2i, can be represented
by a sequence of (r − i) bits.
Each rectangle of T i can then be seen as the product of two intervals:

T i =
{

a × b : a ∈ {0, 1}i, b ∈ {0, 1}r−i
}

.

Set T =
⋃r−1

i=1 T i.

The key properties of the rectangles of T are:

(1) Any two intervals Ia and Ia′ , represented by a = a1 · · · ai and a′ =
a′
1 · · · a′

j , are either disjoint or one contains the other; in particular, Ia
and Ia′ intersect if and only if a is a prefix of a′ or a′ is a prefix of a.

(2) Let R = a×b and R′ = a′×b′ be two rectangles of T ; that is, a, b together
have r bits and a′, b′ together have r bits. Then R and R′ intersect if and
only if Ia intersects Ia′ and Ib intersects Ib′ . Equivalently, R and R′

intersect if and only if a is a prefix of a′ and b′ is a prefix of b, or the other
way around.

(3) For i < j, if R = a × b ∈ T i and R′ = a′ × b′ ∈ T j are two intersecting
rectangles, then a is a prefix of a′ and b′ is a prefix of b. This implies that
if Ri ∈ T i intersects Rj ∈ T j , which intersects Rk ∈ T k, for i < j < k,
then Ri intersects Rk and there is a point in R

2 common to the interior
of Ri, Rj and Rk.
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This is true more generally for axis-aligned rectangles in the plane: if
every pair of a given set of rectangles has a non-empty intersection,
then all of them together have a non-empty intersection.

However, unlike the general case, Ri ∩ Rk is in fact contained

in Rj . This implies that the VC-dimension of the dual set system

induced by T is 2, as it is not possible to find a point q ∈ R
2

contained in Ri and Rk but not Rj .

The proof of the next two claims follow immediately from above considerations.

Claim 10.13. Let 1 ≤ i1 < i2 < · · · < ik ≤ (r − 1) be k integers and let Ri1 ∈
T i1 , Ri2 ∈ T i2 , . . . , Rik ∈ T ik be k rectangles of T . If Rij intersects Rij+1

for all
j = 1, . . . , k− 1, then the rectangles of {Ri1 , . . . , Rik} are pairwise intersecting and
there exists a point in R

2 lying in the interior of all of them.

Claim 10.14. A rectangle a1 · · · ai × b1 · · · br−i ∈ T i intersects precisely these two
rectangles of T i+1:

a1 · · · ai · 0× b1 · · · br−i−1 and a1 · · · ai · 1× b1 · · · br−i−1.

Similarly, a rectangle a1 · · · ai+1×b1 · · · br−i−1 ∈ T i+1 intersects precisely these two
rectangles of T i:

a1 · · · ai × b1 · · · br−i−1 · 0 and a1 · · · ai × b1 · · · br−i−1 · 1.

Orthogonal rectangles

Let a ∈ {0, 1}i−1 and b ∈ {0, 1}r−i−1. Note that when i = 1, Ia is the interval
(0, 2r) and when i = r − 1, Ib is the interval (0, 2r). Then the rectangle a × b
contains these four rectangles of T i:

a · 0× b · 0, a · 0× b · 1, a · 1× b · 0, a · 1× b · 1.

See the figure. This set of four rectangles of T i is called the cluster of a × b.

a

b

a · 0

b·
0

b·1

a · 1

b·
0

b·
1

a · 1a · 0

Call a set Si ⊂ T i orthogonal if and only if for each a ∈ {0, 1}i−1 and b ∈
{0, 1}r−i−1, Si contains either the two rectangles {a · 0× b · 0, a · 1× b · 1}
or the two rectangles {a · 0× b · 1, a · 1× b · 0} from the four rectangles
present in the cluster of a × b.
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Note that if Si is orthogonal, then |Si| = |T i|
2 = 2r−1.

The main lemma containing the parity argument is the following.

Lemma 10.15. Let S1 ⊂ T 1, . . . ,Sr−1 ⊂ T r−1 be orthogonal sets. Then there exists
a set Q of 2r−1 points such that

S1 ∪ · · · ∪ Sr−1 =
⋃
q∈Q

Tq,

where Tq is the set of rectangles of T containing the point q. In other words, the
points in Q hit precisely the rectangles in S1 ∪ · · · ∪ Sr−1.

Proof. Observe that as Si consists of 2r−1 disjoint rectangles, we need 2r−1

points just to hit all the rectangles in Si. This immediately implies two things:

(1) If a point set Q, |Q| = 2r−1, hits all rectangles in S1∪· · ·∪Sr−1, it cannot
intersect any rectangle in T \

{
S1 ∪ · · · ∪ Sr−1

}
.

(2) If the lemma is true, it must be that S1 ∪ · · · ∪ Sr−1 can be partitioned
into 2r−1 groups where each group contains precisely one rectangle from
each level and the rectangles in each group have precisely one point of Q
in common.

Thus it suffices to show that for each i = 1, . . . , r−2, each rectangle of Si intersects
precisely one rectangle of Si+1 and each rectangle of Si+1 intersects precisely one
rectangle of Si. The proof of Lemma 10.15 then follows by Claim 10.13.

Each rectangle of Si intersects precisely one rectangle of Si+1: Let R be
the rectangle R = a1 · · · ai × b1 · · · br−i ∈ Si. Then by Claim 10.14, R inter-
sects these two rectangles of T i+1:

ΞR =
{
a1 · · · ai · 0× b1 · · · br−i−1, a1 · · · ai · 1× b1 · · · br−i−1

}
.

On the other hand, from the cluster of a1 · · · ai × b1 · · · br−i−2 in T i+12, Si+1

contains precisely one of these two sets:{
a1 · · · ai · 0× b1 · · · br−i−2 · 0, a1 · · · ai · 1× b1 · · · br−i−2 · 1

}
{
a1 · · · ai · 0× b1 · · · br−i−2 · 1, a1 · · · ai · 1× b1 · · · br−i−2 · 0

}
.

In both the above two scenarios, precisely one rectangle of Si+1 is present in ΞR

and thus intersected by R. See figure where the two possibilities for the orthogonal
rectangles are patterned.

Each rectangle of Si+1 intersects precisely one rectangle of Si: The other
direction is similar. Let R′ = a′

1 · · · a′
i+1 × b′1 · · · b′r−i−1 ∈ Si+1. By Claim 10.14,

R′ intersects these two rectangles of T i:

Ξ′
R′ =

{
a′
1 · · · a′

i × b′1 · · · b′r−i−1 · 0, a′
1 · · · a′

i × b′1 · · · b′r−i−1 · 1
}
.

On the other hand, from the cluster of a′
1 · · · a′

i−1×b′1 · · · b′r−i−1 in T i, Si contains
precisely one of these two sets:{

a′
1 · · · a′

i−1 · 0× b′1 · · · b′r−i−1 · 0, a′
1 · · · a′

i−1 · 1× b′1 · · · b′r−i−1 · 1
}

{
a′
1 · · · a′

i−1 · 0× b′1 · · · b′r−i−1 · 1, a′
1 · · · a′

i−1 · 1× b′1 · · · b′r−i−1 · 0
}
.

2When i = r − 2, the interval b1 · · · br−i−2 is the interval (0, 2r).
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T i a1···ai− 1

b
1

b·
··

r−
i−

1

a1 ···ai

b
1

b·
··

r−
i

a1···ai− 1
b1

b·
··

r−
i−

2

a1···a

···a ···a

i0a1···ai1

a1 i0a1 i1

R Si

R

R

∈

Ξ

In both the above two scenarios, precisely one rectangle of Si is present in Ξ′
R′

and thus intersected by R′.

�

We have a parity argument at the core of the above proof: in each cluster

of four rectangles at every level i, exactly one rectangle from each row and

each column of the cluster is present in Si. For a rectangle R ∈ Si, when we

consider the level i + 1, R will be ‘split’ into two rectangles of half its width

and both belonging to the same row in level i + 1. Exactly one of them will

be picked into Si+1 and will be the only rectangle of Si+1 intersecting R.

Finally we return to the proof of the main theorem.

Proof of Theorem 10.12. Our goal is to show that given an integer r, there
exists a set R of (r− 1) · 2r−2 axis-aligned rectangles in the plane such that for any
set S ⊆ R, there exist a set Q ⊆ R

2 of 2r−1 points with S =
⋃

q∈Q Rq.

R will be constructed by choosing, from each set T i, i = 1 . . . (r− 1), the following
set Ri of 2r−2 rectangles:

Ri =
{
a1 · · · ai × b1 · · · br−i ∈ T i : ai = br−i = 0

}
.

See figure. Set R =
⋃r−1

i=1 Ri. Note that |R| = (r − 1) · 2r−2.

Let S ⊆ R. We now show the existence of a set Q of 2r−1 points hitting precisely
the rectangles in S.
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Construct the orthogonal sets S1, . . . ,Sr−1 as follows:

If a1 · · · ai−1 · 0× b1 · · · br−i−1 · 0 ∈ S, add{
a1 · · · ai−1 · 0× b1 · · · br−i−1 · 0
a1 · · · ai−1 · 1× b1 · · · br−i−1 · 1

}
to Si.

Otherwise add{
a1 · · · ai−1 · 0× b1 · · · br−i−1 · 1
a1 · · · ai−1 · 1× b1 · · · br−i−1 · 0

}
to Si.

See figure.

Ri S S i

T i

By construction, S1 ∪ · · · ∪ Sr−1 contains every rectangle of S and no rectangle of
R \ S. Furthermore each Si is an orthogonal set of T i.

Applying Lemma 10.15 to S1, . . . ,Sr−1, we get the required set Q of 2r−1 points
hitting precisely the rectangles in S1 ∪ · · · ∪ Sr−1 and thus S. �

As noted earlier, while the dual set system induced by rectangles has VC-dimension
4, the ones in the above construction have VC-dimension 2.

Bibliography and discussion. The beautiful proof is from the break-
through paper [PT13] (a more accurate calculation in the paper gives
better constant factors), where it was used to derive lower bounds on the
size of ε-nets of dual set systems induced by axis-parallel rectangles in the
plane. The construction is related to the notion of ‘orthogonal functions’
that were used by Roth to prove lower bounds for problems in geometric
discrepancy; we refer the reader to the texts [BC87,Cha00,Mat99] for
details.
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in Mathematics, vol. 89, Cambridge University Press, Cambridge, 1987, DOI
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CHAPTER 11

VC-dimension of k-Fold Unions: General Case

Given a set system (X,F) with VC-dimension d, Theorem 6.1 states the existence
of an ε-net of F of size

O

(
d

ε
log

1

ε

)
.

This is not an ‘if and only if’ statement—that is, it is not true that if F has VC-
dimension at least d, then any ε-net of F must have size Ω

(
d
ε log

1
ε

)
. For example,

the primal set system induced by half-spaces in R
3 has VC-dimension 4 and yet

there exist ε-nets of size O
(
1
ε

)
.

It is tempting to conjecture an improved bound is true for primal set systems

induced by half-spaces in R
d—that is, given any set P of points in R

d and

ε > 0, there exists an ε-net N ⊆ P of size O
(
1
ε

)
, where the constant hidden

in the asymptotic notation may depend on d. The best upper bound we have

seen so far is O
(
d
ε
log 1

ε

)
, implied by Theorem 6.1 and Lemma 4.13.

It was conjectured for many years, when no super-linear lower bound was known,
that an improved upper bound for ε-nets of half-spaces in R

d, d ≥ 4, should be
possible. Surprisingly, it turned out not to be the case: for any n, d ≥ 4 and ε > 0,
there exist a set P of n points in R

d such that any ε-net for the primal set system
induced on P by half-spaces in R

d must have size Ω
(
d
ε log

1
ε

)
. The proof of this

fact proceeds in two steps:

(1) we first lower bound the VC-dimension of the k-fold union of the primal
set system induced by half-spaces in R

d; in particular we will show that
this is Ω (dk log k) for d ≥ 4.

(2) we next observe that a lower bound on the VC-dimension of the k-fold
union of a set system is a lower bound on the size of any 1

2k -net of the set

system. Plugging in k = 2
ε gives the desired lower bound of Ω

(
d
ε log

1
ε

)
.

This chapter uses the above recipe to derive tight lower bounds on ε-net sizes for
several basic geometric set systems.

157
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1. Products of Set Systems

Wittgenstein once greeted me with the question: ‘Why do people say that
it was natural to think that the sun went round the earth rather than that
the earth turned on its axis?’
I replied: ‘I suppose, because it looked as if the sun went round the earth.’
‘Well,’ he asked, ‘what would it have looked like if it had looked as if the
earth turned on its axis?’

Elizabeth Anscombe

Given a set system (X ′,F ′) and an integer d ≥ 1, the goal of this section is to show
that one can construct a set system (X,F) such that

VC-dim (F) ≤ d·VC-dim (F ′) and VC-dim
(
Fk
)
≥ d·VC-dim

(
F ′k).

Here F ′k is the k-fold union of F ′, which we recall.

Definition 10.1. Given a set system (X,F) and an integer k ≥ 1, the k-fold

union of F , denoted by Fk, is the set system obtained by adding the union of
at most k sets of F to Fk. That is,

Fk =
{
Ri1 ∪ · · · ∪Rik : Rij ∈ F for all 1 ≤ j ≤ k

}
.

As the k sets need not be distinct, we have F ⊆ Fk. Similarly one can define
k-fold intersections of a given set system.

Our first result considers the abstract case.

Lemma 11.1. Let (X ′,F ′) be a set system and k a positive integer such that F ′k

shatters X ′. Then for any integer d ≥ 1, there exists a set system (X,F) with
|X| = d · |X ′| such that

(1) VC-dim (F) ≤ d ·VC-dim (F ′), and
(2) Fk shatters X; that is, VC-dim

(
Fk
)
≥ d · |X ′|.

This immediately implies the following.

Corollary 11.2. For any integer d ≥ 1 and k ≥ C9, where C9 is a
sufficiently large integer, there exists a set system (X,F) with |X| =
d · �k log k� such that

(1) VC-dim (F) ≤ 5d, and
(2) F3k shatters X; that is, VC-dim

(
F3k

)
≥ d · �k log k�.

Proof. Apply Theorem 10.2 to get a set system (X ′,F ′) such that
|X ′|=�k log k�, VC-dim (F ′) ≤ 5 and F ′3k shatters X ′. Then Lemma 11.1
applied to (X ′,F ′) gives the required set system (X,F), with |X| =
d · �k log k�, VC-dim (F) ≤ 5d and VC-dim

(
F3k

)
≥ d · �k log k�. �

We remark here that the lower bound for the VC-dimension of F3k given in
Corollary 11.2 is tight within constant factors, as it matches the upper bound
of Lemma 10.3.

Our second result shows that the construction of Lemma 11.1 can be ‘realized
geometrically’ to extend the lower bound for the VC-dimension of the k-fold union
of axis-aligned rectangles in R

2 to that of boxes in R
d.
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Theorem 11.3. For any integer r ≥ 3 and d ≥ 2, there exists a set B of
⌊
d
2

⌋
·

(r − 1) 2r−2 axis-aligned boxes in R
d such that

for any S ⊆ B, there exists a set Q ⊆ R
d of size 2r−1 such that S =⋃

q∈Q Bq,

where Bq is the set of boxes of B containing q.

In particular, since for any integer k ≥ 4 there exists an integer r ≥ 3 such that
2r−1 ≤ k < 2r, the above gives a set B of size

⌊
d
2

⌋
(r − 1) 2r−2 ≥

⌊
d
2

⌋
k
4 log

k
2 and Q

of size 2r−1 ≤ k.

In other words, if F is the dual set system induced by axis-aligned boxes in R
d, then

VC-dim
(
Fk
)
≥
⌊

d

2

⌋
· k

4
log

k

2
.

Proof of Lemma 11.1. Let (X1,F1) , . . . , (Xd,Fd) be d distinct copies of
(X ′,F ′); in particular, for each i = 1, . . . , d,

|Xi| = |X ′|, VC-dim (Fi) = VC-dim (F ′) , and Fk
i shatters Xi.

Then the required set system (X,F) is:

X = X1 ∪ · · · ∪ Xd,

F =
{

F1 ∪ · · · ∪ Fd : Fi ∈ Fi for i = 1, . . . , d
}
.

Clearly |X| = d · |X ′|. It remains to show the following.

VC-dim(F) ≤ d ·VC-dim
(
F ′): Assume otherwise and let Y ⊆ X be a set of

size

d ·VC-dim (F ′) + 1

shattered by F . By the pigeonhole principle, there exists an index i ∈ {1, . . . , d}
such that Y contains at least VC-dim (F ′)+1 points, denoted by the set Yi, from
Xi. But then Yi is shattered by Fi, a contradiction to the fact that VC-dim (Fi) =
VC-dim (F ′).

Fk shatters X: Let Y ⊆ X. Then Y = Y1∪· · ·∪Yd, where Yi ⊆ Xi. Furthermore,
for each i = 1, . . . , d, as Fk

i shatters Xi, we have Yi = Si,1∪Si,2∪· · ·∪Si,k, where
Si,j ∈ Fi. Thus

Y =
d⋃

i=1

Yi =
d⋃

i=1

k⋃
j=1

Si,j =
k⋃

j=1

d⋃
i=1

Si,j =
k⋃

j=1

Fj ,

where Fj = S1,j ∪ S2,j ∪ · · · ∪ Sd,j ∈ F .

This completes the proof. �

We remark here that this idea of constructing ‘product set systems’ also works

if they have different sizes (see discussion).
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Proof of Theorem 11.3. We prove the theorem for the case when the di-
mension d is even. The case where d is odd follows by applying the bound for
d − 1.

Apply Theorem 10.12 with parameter r to get a set A = {A1, . . . , An} of axis-
aligned rectangles in R

2, where

n = (r − 1) 2r−2.

Note that an axis-aligned box B in R
d can be seen as the product of d intervals,

where the i-th interval is the projection of B onto the i-th axis. In particular, each
Ai can be seen as a product of two intervals Ixi and Iyi , with Ai = Ixi × Iyi . By
scaling, we can assume that each interval lies in [0, 1].

We now ‘lift’ the rectangles of A to boxes in R
d. Each such box will be the product

of d intervals—two intervals from a rectangle of A and the other d− 2 intervals set
to [0, 1]. Each rectangle Ai is lifted

d
2 times, as follows.

Say Ai = Ixi × Iyi . Then the j-th lift of Ai, for j = 1, . . . , d
2 , will be the

box

Bi,j = [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
2j − 2 intervals

× Ixi × Iyi︸ ︷︷ ︸
Ai = Ix

i × Iy
i

× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
d − 2j intervals

.

The rectangle Ai is called the corresponding rectangle of the box Bi,j .

Let Bj be the set of |A| boxes formed by the j-th lift of all the rectangles of A,

Bj =
{
Bi,j : Ai ∈ A

}
.

The required set of boxes is then

B =

d
2⋃

j=1

Bj , with |B| = d

2
· |A| = d

2
· (r − 1) 2r−2.

It remains to show that for any set B′ ⊆ B, there exists a set Q of 2r−1 points in
R

d such that each box of B′ contains at least one point of Q and no box of B \ B′

contains any point of Q.

Partition B′ into disjoint sets B′
j = B′ ∩ Bj , with

B′ = B′
1 ∪ · · · ∪ B′

d
2
.

For a fixed j ∈
[
1, d

2

]
, by Theorem 10.12 applied to the corresponding rectangles of

the boxes of B′
j , we get a set Qj of 2r−1 points lying in [0, 1]

2
such that

• Qj hits all the corresponding rectangles of the boxes of B′
j .

• Qj hits none of the corresponding rectangles of the boxes of Bj \ B′
j .

Now pick an arbitrary point qj ∈ Qj from each j = 1, . . . , d
2 , and consider the point

q ∈ R
d obtained by ‘packing’ these d

2 points, each in [0, 1]2, into one point in [0, 1]d.
That is,

q =

(
qx1 , qy1 , . . . , qxj , qyj , . . . , qxd

2
, qyd

2

)
.

Here is the key claim regarding the point q constructed above.
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Claim 11.4. For each index j ∈
{
1, . . . , d

2

}
, the point q hits all the boxes in B′

j

whose corresponding rectangles were hit by the point qj . Furthermore, q hits no
box of Bj \ B′

j .

Proof. Take any B ∈ B′
j whose corresponding rectangle contains qj—that is,

the (2j − 1)-th interval of B contains qxj and the (2j)-th interval contains qyj . Then
q lies inside B, as the remaining coordinates of q are irrelevant since all the other
intervals of B are [0, 1].

For the second statement, assume for contradiction that q lies in a box B ∈ Bj \B′
j .

But then the point qj lies in the corresponding rectangle of B, a contradiction to
the property that Qj hits none of the corresponding rectangles of Bj \ B′

j . �

Now given Q1, . . . , Q d
2
, each containing 2r−1 points in R

2, pick an arbitrary point

from each Qj and pack these d
2 points into a point in R

d, and add it to Q. Repeat
the above step—that is, pick an arbitrary point from each of the remaining sets
Qj—and construct a second point in R

d and add to Q. This process goes on for
2r−1 steps, and thus Q consists of 2r−1 points.

Claim 11.4 implies that for each j ∈
{
1, . . . , d

2

}
, Q hits all boxes of B′

j and no box
of Bj \ B′

j . This concludes the proof. �
Bibliography and discussion. The idea of the proof of Lemma 11.1
is from [EA07] which states it in a more general setting. The proof of
Theorem 11.3 is from [KMP17].

[EA07] D. Eisenstat and D. Angluin, The VC dimension of k-fold union, Inform. Process. Lett.
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[KMP17] A. Kupavskii, N. H. Mustafa, and J. Pach, Near-optimal lower bounds for ε-nets for
half-spaces and low complexity set systems, A journey through discrete mathematics,
Springer, Cham, 2017, pp. 527–541. MR3726612
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2. Geometric Set Systems in R
d

When scientists attempt to explain their work to the general public they
are urged to simplify the ideas with which they work, to remove unneces-
sary technical language . . . to explain how elementary particles of matter
interact with one another we might describe them in terms of billiard
balls colliding with each other. One Hungarian physicist once remarked
in the course of writing a textbook that, although he would often be refer-
ring to the motions and collisions of billiard balls to illustrate the laws of
mechanics, he had neither seen nor played this game and his knowledge
of it was derived entirely from the study of physics books.

John Barrow

In this section we present lower bounds on the VC-dimension of k-fold unions of a
variety of basic geometric set systems. These follow by applying various geometric
transformations—lifting, duality, ‘stretching’—to the dual set system induced on
axis-aligned boxes in R

d.

Lifting axis-aligned boxes in R
d to points in R

2d: The positive orthant of Rd

consists of points with all positive coordinates.

Theorem 11.5. For any integer r ≥ 3 and d ≥ 4, there exists a set P of
⌊
d
4

⌋
·

(r − 1) 2r−2 points lying in the positive orthant of Rd such that

for any P ′ ⊆ P , there exists a set B of 2r−1 boxes in R
d, each contain-

ing the origin, such that P ′ =
⋃

B∈B (B ∩ P ).

In particular, since for any integer k ≥ 4 there exists an integer r ≥ 3 such that

2r−1 ≤ k < 2r, the above gives a set P of size
⌊
d
4

⌋
· (r − 1) 2r−2 ≥ (d−3)k

16 log k
2

and B of size 2r−1 ≤ k.
In other words, if F is the primal set system induced on a set of points lying in
the positive orthant of Rd by boxes containing the origin, then

VC-dim
(
Fk
)
≥ (d − 3) k

16
log

k

2
.

‘Stretching’ points in R
d: Considering the xd-axis as vertical, any half-space

containing the point that is the ‘minus infinity’ of the xd axis is called a downward-
facing half-space.

Theorem 11.6. For any integer r ≥ 3 and d ≥ 4, there exists a set P of
⌊
d
4

⌋
·

(r − 1) 2r−2 points lying in the positive orthant of Rd such that

for any P ′ ⊆ P , there exists a set H′ of 2r−1 downward-facing half-
spaces in R

d such that P ′ =
⋃

h∈H′ (h ∩ P ).

In particular, since for any integer k ≥ 4 there exists an integer r ≥ 3 such that

2r−1 ≤ k < 2r, the above gives a set P of size
⌊
d
4

⌋
· (r − 1) 2r−2 ≥ (d−3)k

16 log k
2

and H′ of size 2r−1 ≤ k.
In other words, if F is the primal set system induced on a set of points by half-
spaces in R

d, then

VC-dim
(
Fk
)
≥ (d − 3) k

16
log

k

2
.
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Dualizing points in R
d to hyperplanes in R

d: We now turn to the set system
at the heart of Theorem 3.9. Given a setH of hyperplanes in R

d and an integer k ≥
1, let Δk (H) be the set system induced on H by intersection with k-dimensional
simplices. That is,

Δk (H) =
{
HΔ : Δ is a k-dimensional simplex in R

d
}
,

where HΔ is the set of hyperplanes of H intersecting Δ:

HΔ =
{

h ∈ H : h ∩Δ 
= ∅
}
.

Theorem 11.7. For any integer r ≥ 3 and d ≥ 4, there exists a set H of
⌊
d
4

⌋
·

(r − 1) 2r−2 hyperplanes in R
d such that

for any H′ ⊆ H, there exists a 2r−1-dimensional simplex Δ in R
d such

that H′ = HΔ.

In particular, since for any integer k ≥ 4 there exists an integer r ≥ 3 such that

2r−1 ≤ k < 2r, the above gives a set H of size
⌊
d
4

⌋
· (r − 1) 2r−2 ≥ (d−3)k

16 log k
2

and Δ of dimension 2r−1 ≤ k.
In other words, if Δk is the set system induced on hyperplanes by intersection
with k-dimensional simplices in R

d, then

VC-dim (Δk) ≥
(d − 3) k

16
log

k

2
.

Proof of Theorem 11.5. Let d′ =
⌊
d
2

⌋
. Apply Theorem 11.3 in R

d′
with

parameter r to get a set B of
⌊
d′

2

⌋
· (r − 1) 2r−2 axis-aligned boxes in R

d′
.

It suffices to show that one can map each B ∈ B to a point π(B) lying in the

positive orthant of R2d′
and each p ∈ R

d′
to an axis-aligned box orthant(p) in R

2d′

containing the origin, such that

p ∈ B ⇐⇒ π(B) ∈ orthant(p).

Then π(B) =
{
π(B) : B ∈ B

}
gives the required set of points in R

2d′ ⊆ R
d, of size⌊

d′

2

⌋
· (r − 1) 2r−2 =

⌊⌊
d
2

⌋
2

⌋
· (r − 1) 2r−2 =

⌊
d

4

⌋
· (r − 1) 2r−2.

The map π (·): By translation we can assume that each B ∈ B is of the form

B = [s1, e1]× [s2, e2]× · · · × [sd′ , ed′ ], with ei > si > 0 for all i ∈ {1, . . . , d′} .

Define the lifted point as

π (B) =

(
s1,

1

e1
, s2,

1

e2
, . . . , sd′ ,

1

ed′

)
∈ R

2d′
.

Note that π (B) lies in the positive orthant of R2d′
.
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The map orthant (·): Map each point p =
(
x1(p), x2(p), . . . , xd′(p)

)
∈ R

d′
, with

each xi (p) > 0, to an axis-aligned box in R
2d′

as

orthant (p) =
[
0, x1(p)

]
×
[
0,

1

x1(p)

]
× · · · ×

[
0, xd′(p)

]
×
[
0,

1

xd′(p)

]
.

Now it can be verified that

p ∈ BLMN
s1 ≤ x1(p) ≤ e1, . . . , sd′ ≤ xd′(p) ≤ ed′LMN

0 < s1 ≤ x1(p), 0 <
1

e1
≤ 1

x1(p)
, . . . , 0 < sd′ ≤ xd′(p), 0 <

1

ed′
≤ 1

xd′(p)LMN
π (B) ∈ orthant (p) .

�

Proof of Theorem 11.6. Apply Theorem 11.5 in R
d and with parameter r

to get a set P of
⌊
d
4

⌋
· (r − 1) 2r−2 points lying in the positive orthant of Rd such

that for any Q ⊆ P , there exists a set B of 2r−1 axis-aligned boxes, each containing
the origin, such that Q =

⋃
B∈B (B ∩ P ).

We now ‘stretch’ the points of P to get the required point set.

Claim 11.8. Given a set P of points lying in the positive orthant of R
d, there

exists a function f : P → R
d such that the following holds: for any axis-aligned box

B ⊂ R
d that contains the origin, there is a downward-facing half-space hB ⊂ R

d

such that for all p ∈ P ,

p ∈ B ⇐⇒ f (p) ∈ hB.

Proof. For each i ∈ {1, . . . , d} do the following:

let 0 < ξi,1 < ξi,2 < ξi,3 < · · · denote the sorted sequence of the distinct
xi-coordinates of all the points of P . Now stretch these coordinates—
while maintaining their relative order—to ensure that

ξi,j+1

ξi,j
> d holds for every j.(11.9)

Let f (p) be the stretched copy of the point p with these stretched coordinates1 and
set f(P ) =

{
f(p) : p ∈ P

}
.

Observe that from the point of view of intersections with axis-aligned boxes, the
actual values of the coordinates of the points of P do not matter—only their relative
ordering does. Thus an axis-aligned box contains Q ⊆ P if and only if there is a
scaled axis-aligned copy of this box containing f(Q). Thus it suffices to show that

1Note that the map f (·) depends on the points of P , and is constructed specifically from the
given point set.
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for each p ∈ P , f(p) ∈ B if and only if f(p) ∈ hB, where hB is a downward-facing
half-space that will be constructed from B.

Let B be an axis-aligned box containing the origin. We can shrink B, without
changing its intersection with f (P ), so that B is of the form

B = [0, b1]× [0, b2]× · · · × [0, bd],

where each bi > 0 is equal to ξi,ji for some ji.

Define the downward-facing half-space hB as

hB :
x1

b1
+

x2

b2
+ · · ·+ xd

bd
≤ d.(11.10)

Now for any point p ∈ P :

f(p) ∈ B: That is, xi (f(p)) ∈ (0, bi] for all i = 1, . . . , d. Then each term of the
L.H.S. of Equation (11.10) lies in (0, 1] and so f(p) ∈ hB.

f(p) /∈ B: Then there exists a coordinate index i ∈ {1, . . . , d} such that xi (f(p)) >
bi. Crucially, due to our stretching, Equation (11.9) implies that xi (f(p)) > d ·bi.
But then the i-th term in the L.H.S. of Equation (11.10) is already larger than d
(and all the other terms are non-negative), implying that f(p) 
∈ hB.

�

We return the set f(P ), concluding the proof. �

Proof of Theorem 11.7. Apply Theorem 11.6 in dimension d to get a set
P of

⌊
d
4

⌋
· (r − 1) 2r−2 points in R

d. Let H be the set of hyperplanes dual to the
points of P .

Theorem 11.6 implies the following fact for P :

for any P ′ ⊆ P , there exists a set H′ of 2r−1 downward-facing half-spaces
in R

d such that the union of the half-spaces of H′ contains precisely P ′.

By duality, this translates to the following fact for H:

for any H′ ⊆ H, there exists a set Q′ of 2r−1 points in R
d such that

H′ =
⋃

q∈Q′ lq, where lq is the set of hyperplanes of H lying below (w.r.t.

the xd-axis) the point q.

Now we complete the proof by showing that for any H′ ⊆ H, there exists a 2r−1-
dimensional simplex Δ such that H′ = HΔ; that is, Δ intersects precisely the
hyperplanes of H′.

Given any H′ ⊆ H, let Q′ be a set of 2r−1 points such thatH′ =
⋃

q∈Q′ lq.

Let q′ be a point of R
d lying below all the hyperplanes of H′. Now

Δ = conv (Q′ ∪ {q′}) intersects precisely the hyperplanes of H′.

�
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Bibliography and discussion. The ideas of lifting and stretching (stated
for R

2) are from [PT13], where they are used to prove lower bounds on
sizes of ε-nets of the primal set system induced by half-spaces in R

4. The
relation to the VC-dimension of the k-fold union, as well as the use of
duality, is from [CMK19], whose presentation we have essentially followed
here.

[CMK19] M. Csikós, N. H. Mustafa, and A. Kupavskii, Tight lower bounds on the VC-dimension
of geometric set systems, J. Mach. Learn. Res. 20 (2019), Paper No. 81, 8. MR3960935

[PT13] J. Pach and G. Tardos, Tight lower bounds for the size of epsilon-nets, J. Amer. Math.
Soc. 26 (2013), no. 3, 645–658, DOI 10.1090/S0894-0347-2012-00759-0. MR3037784
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3. Lower bounds on Epsilon-Nets

There is hope, but not for us.

Franz Kafka

This section presents consequences of lower bounds on the VC-dimension of k-fold
unions to the sizes of ε-nets. This connection is the basis of the next statement.

Claim 11.11. Let (X,F) be a set system and k a positive integer such
that X is shattered by Fk; that is, VC-dim

(
Fk
)
≥ |X|. Then any 1

2k -net

of F must have size at least |X|
2 .

Proof. Let N be a 1
2k -net of F and suppose that N < |X|

2 . As

X is shattered by Fk, there exists a set S ∈ Fk containing precisely
the points of X \ N . That is, there exist k sets S1, . . . , Sk ∈ F , not
necessarily distinct, such that S1 ∪ · · · ∪ Sk = X \ N. By the pigeonhole
principle there exists a set S ∈ {S1, . . . , Sk} with

|S| ≥ |X \ N |
k

≥ |X|
2k

.

But S contains no point of N , a contradiction to the fact that N is a
1
2k -net of F . �

We next turn to deriving lower bounds for ε-net sizes using the above statement.

Abstract set systems: We now get a lower bound matching the upper bound in
Theorem 6.1.

Lemma 11.12. There exists a small-enough positive constant δ such that given a
parameter ε ∈ [0, δ] and integers n and d ≥ 1, there exists a set system (X,F) with
|X| ≥ n, VC-dim (F) ≤ 5d, such that any ε-net of F has size at least

⌊
d

12 ε log
1
6ε

⌋
.

Proof. Apply Corollary 11.2 with k =
⌊

1
6ε

⌋
(here we need δ ≤ 1

6C9
) to get

a set system (X ′,F ′) with |X ′| ≥
⌊

d
6ε log

1
6ε

⌋
such that

(1) VC-dim (F ′) ≤ 5d, and
(2) F ′3k shatters X ′.

Now Claim 11.11 implies that any

(
1

2·3� 1
6ε�

)
-net of F ′ must have size at least

|X′|
2 . As

(
1

2·3� 1
6ε�

)
≥ ε, any ε-net of F ′ has size at least

|X ′|
2

=

⌊
d

12 ε
log

1

6ε

⌋
.

We are almost done, except that we also want |X ′| ≥ n. That is easy—just
duplicate elements of X ′ to get the required set X of size n, as follows.
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for each p ∈ X ′, let Xp be a set of
⌈

n
|X′|

⌉
new elements and let

X =
⋃

p∈X′

Xp,

F =

⎧⎨
⎩ ⋃

p∈F ′

Xp : F ′ ∈ F ′

⎫⎬
⎭ .

It can be verified that |X| ≥ n, VC-dim (F) ≤ 5d and (X,F) has an
ε-net of size t if and only if (X ′,F ′) has an ε-net of size t.

�

We remark that by a direct probabilistic construction, one can improve the lower
bound of Lemma 11.12 by constant factors.

Theorem 11.13. Given any ε > 0 and integer d ≥ 2, there exists a set system
(X,F) such that VC-dim (F) ≤ d and any ε-net of F has size at least

(
1 − 2

d +
1

d(d+2) + o(1)
)
d
ε log

1
ε .

Axis-aligned boxes in R
d: The proof of the next statement follows along the

same lines, combining Theorem 11.3 with Claim 11.11.

Lemma 11.14. Given any ε ∈
[
0, 1

8

]
and integers n and d ≥ 2, there exists a set

B of n axis-aligned boxes in R
d such that any ε-net of the dual set system induced

on B has size at least
⌊
d
2

⌋
1

16ε log
1
4ε .

Proof. Set r to be the largest integer satisfying 2r ≤ 1
2ε ; i.e., r =

⌊
log 1

2ε

⌋
≥

2. Apply Theorem 11.3 with d and (r + 1) to get a set B of
⌊
d
2

⌋
2r−1r boxes in

R
d such that B is shattered by the 2r-fold union of the dual set system induced

on B.
Then Claim 11.11 implies that any 1

2·2r -net of the dual set system induced on B
has size at least |B|

2 . As 1
2·2r ≥ ε, any ε-net of this set system has size at least

|B|
2

≥
⌊
d
2

⌋
2rr

4
≥
⌊

d

2

⌋
1

16ε

(
log

1

2ε
− 1

)
=

⌊
d

2

⌋
1

16ε
log

1

4ε
,

where the second step used the fact that 2r = 2�log 1
2ε� ≥ 2log

1
2ε−1 = 1

4ε . Finally,
similar to the proof of Lemma 11.12, one can ‘duplicate’ rectangles in the con-
struction of Theorem 11.3 to increase the size of B to n (one has to be careful
with the geometric placement of the duplicates). �

Half-spaces in R
d: Theorem 11.6 together with Claim 11.11 implies the following.

Lemma 11.15. Given any ε ∈
[
0, 1

8

]
and integers n and d ≥ 4, there exists a

set P of n points in R
d such that any ε-net of the set system induced on P by

half-spaces has size at least
⌊
d
4

⌋
1

16ε log
1
4ε .
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Bibliography and discussion. We presented the lower bound for ε-nets
of abstract set systems first as its probabilistic proof is of independent inter-
est. Technically that is not necessary, as it is implied by the lower bound for
half-spaces in R

d. The proof of Theorem 11.13 is given in [KPW92] (see
also an exposition in [PA95]). The relation between lower bounds on the
VC-dimension of k-fold unions and sizes of ε-nets was implicit in [PT13],
and formulated explicitly by M. Csikós [Csi16].
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CHAPTER 12

Epsilon-Approximations: First Bounds

An ε-net N of a set system (X,F) with n elements is a ‘threshold’ structure: N
contains at least one element from each S ∈ F with |S| ≥ εn. It does not matter
if |S| = εn or |S| = n—in both cases N is only required to contain at least one
element of S.

In this chapter we consider a finer notion, where an approximation A ⊆ X not only
contains at least one element from each S ∈ F with |S| ≥ εn, but the number of
elements of A from S increases proportionally with the size of S. To see what notion
of ‘proportional’ can be expected, consider the following sequence of approximations
of F (these approximations are generally not possible; they should be seen as an
‘ideal’):

Let R1 ⊆ X be such that |R1| = n
2
, and

for all S ∈ F , |S ∩R1| = |S|
2
.

Repeating the same on the set system (R1,F|R1), let R2 ⊆ R1 be a set of size
|R1|
2

= n
4

such that |S ∩ R2| = |S∩R1|
2

= |S|
4
. See the figure for an example

where X is a set of points in R
2 and F is induced by three disks. Continuing

in this manner, let Ri be the set after i iterations. Then we have

|Ri| =
n

2i
and |S ∩Ri| =

|S|
2i

for all S ∈ F .

Each Ri is ‘perfectly representative’ of F , in the sense that for each S ∈ F the
proportion of points of S in Ri is equal to the proportion of points of S in X:∣∣∣∣ |S||X| −

|S ∩Ri|
|Ri|

∣∣∣∣ =
∣∣∣∣ |S|n − |S|/2i

n/2i

∣∣∣∣ = 0.

How closely the above ideal can be realized is captured by the notion of an ε-
approximation.

171
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We use the notation A = B ±C as a shorthand for A ∈ [B − C, B + C],
where A, B ∈ R and C ∈ R

+.

Definition 12.1. Given a finite set system (X,F) and a parameter ε > 0, a set
A ⊆ X is an ε-approximation of F if for each S ∈ F ,

|S ∩ A| = |S| · |A|
|X| ± ε · |A|.

Equivalently, dividing by |A| gives∣∣∣∣ |S||X| −
|S ∩ A|
|A|

∣∣∣∣ ≤ ε.

The main topic of this chapter is the existence and construction of ε-approximations
of small size. To see what bounds one can expect, it is instructive to consider the
behavior of a fixed set S ∈ F with respect to a random sample A of size t picked
uniformly out of all

(
n
t

)
possible subsets of X.

For any S ∈ F ,

E
[
|S ∩ A|

]
=
∑
p∈S

Pr
[
p ∈ A

]
= |S| · t

n
.

We compute the probability that A is an ε-approximation of the set S. That
is, A satisfies

|S ∩A| = |S| t
n

± ε t =
|S| t
n

(
1± εn

|S|

)
.

Applying Chernoff’s bound (Corollary 1.24) with E [|S ∩A|] = |S|t
n

and δ =
εn
|S| ,

Pr

[
|S ∩A| > |S|t

n

(
1 +

εn

|S|

)]
≤ exp

⎛
⎝−

ε2n2

|S|2

2 + εn
|S|

· |S|t
n

⎞
⎠

= exp

(
− ε2n t

2|S|+ εn

)
≤ e−

ε2t
3 ,

since 2|S|+ εn ≤ 3n. The other direction is similar:

Pr

[
|S ∩ A| < |S|t

n

(
1− εn

|S|

)]
≤ exp

(
− ε2n2

2|S|2 · |S|t
n

)

= exp

(
− ε2nt

2 |S|

)
≤ e−

ε2t
2 .

Thus to get even a constant probability, via Chernoff’s bound, of A being an ε-
approximation with respect to a fixed S ∈ F , we need to set t = Ω

(
1
ε2

)
. Further-

more, using the union bound over all sets of F , we get

Pr [A fails to be an ε-approximation of F ] ≤ |F| 2e− ε2 t
3 .

This immediately gives a first upper bound on the sizes of ε-approximations.

Theorem 12.2. Let (X,F) be a finite set system and ε, γ > 0 be given param-

eters. Then a uniform random sample A ⊆ X of size at least 3
ε2 ln

2|F|
γ is an

ε-approximation of F with probability at least 1− γ.
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Note that the bound of Theorem 12.2 holds for any set system. It can be

seen as the ε-approximation analog of Theorem 2.3. Theorem 2.3 also de-

scribes a greedy deterministic O (|X| |F|)-time algorithm for the construction

of ε-nets of size O
(
1
ε
log |F|

)
. This was generalized by Chazelle to a determin-

istic greedy O (|X| |F|)-time algorithm to compute an ε-approximation of size

O
(

1
ε2

log |F|
)
(see Chapter 4 in ‘The Discrepancy Method’).

The main goal of this chapter is to show the existence of ε-approximations of size
O
(

d
ε2 log

1
ε

)
for set systems of VC-dimension d.
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1. Proof using Induction

Theoretical physics is not just doing calculations. It’s setting up the
problem so that any fool could do the calculation.

Philip Anderson

The main theorem we will prove in this section is the following.

Theorem 12.3. There exists a positive constant C1 such that the following is true.
Let (X,F) be a finite set system with VC-dim (F) ≤ d, and let 0 < ε, γ < 1

2 be
given parameters. Let A be a uniform random subset of X of size at least

C1

ε2
·
(

d ln
1

ε
+ ln

1

γ

)
.

Then A is an ε-approximation of F with probability at least 1− γ.

Overview of ideas. Given (X,F) with n = |X|, the earlier bound of Theorem 12.2
depends on |F|:

a random sample A1 ⊆ X of size Ω
(

1
ε2 ln |F|

)
is an ε-approximation of

F with constant probability.

As |F| = O
(
nd
)
if VC-dim (F) ≤ d (Lemma 4.3), we have

|A1| = O

(
1

ε2
lnnd

)
.

Since the size of A1 is much smaller than that of X, the size of F|A1
is much smaller

than that of F . Thus applying Theorem 12.2 again, this time to F|A1
, gives an

ε-approximation A2 ⊆ A1 of F|A1
, with

|A2| = O

(
1

ε2
ln |A1|d

)
= O

(
d

ε2
ln

(
1

ε2
lnnd

))
(12.4)

= O

(
d

ε2
ln

1

ε2
+

d

ε2
ln lnnd

)
.

Now observe that A2 is a (2ε)-approximation of F :

Lemma 12.5. Given a set system (X,F), let A ⊆ X be an ε1-approximation
of F and let B ⊆ A be an ε2-approximation of F|A. Then B is a (ε1 + ε2)-
approximation of F .

Proof. Fix any S ∈ F . Then,

A is an ε1-approximation of F : |S ∩A| = |S| · |A|
|X| ± ε1 · |A|.

B is an ε2-approximation of F|A : | (S ∩ A) ∩B| = |S ∩ A| · |B|
|A| ± ε2 · |B|.

As B ⊆ A,

|S ∩B| = | (S ∩A) ∩B| =

(
|S| |A|
|X| ± ε1 · |A|

)
· |B|

|A| ± ε2 · |B|

=
|S| · |B|
|X| ± (ε1 + ε2) · |B|.

�
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Thus if we take A1 to be an ε
2 -approximation of F and A2 a ε

2 -approximation of

F|A1
, then A2 is an ε-approximation of F , of size O

(
d
ε2 ln

1
ε +

d
ε2 ln lnnd

)
(Equa-

tion (12.4)). This already improves upon the bound of Theorem 12.2!

In fact, we could keep applying Theorem 12.2 to get smaller and smaller approx-
imations, with the error of approximation increasing with each application. Each
successive iteration gives an improvement, as the size of each successive approxi-
mation is decreasing much faster than the increase in its error, as the formal proof
of Theorem 12.3 now demonstrates.

This insight can be implemented in a proof in two ways: the straightforward

method is to do the calculations explicitly over all iterations to prove that the

last iteration produces an ε-approximation of the desired size with the desired

probability. Alternatively, one can just do the calculations for a single step

and let induction ‘take care’ of the remaining iterations. We give the second

type of proof, though both are equivalent; the proof of the next section will

follow the first method.

Proof of Theorem 12.3. Given parameters ε and γ, let T (ε, γ) be a positive
integer such that a uniform random sample of size at least T (ε, γ) from X is an
ε-approximation of F with probability at least 1−γ. Then our goal is to show that

T (ε, γ) ≤ C1

ε2
·
(

d ln
1

ε
+ ln

1

γ

)
,

where C1 is a sufficiently large constant.

The proof will proceed by induction on ε. When ε ≤ 1/
√
|X|, then as X itself is

an ε-approximation of F , we have T (ε, γ) = |X| ≤ 1
ε2 . Otherwise we construct an

ε-approximation of F in two steps:

Step 1: take a uniform random sample A′ from X of size large-enough so that A′ is
an ε

2 -approximation of F with probability at least 1− γ
2 . By inductive hypothesis,

it suffices to set |A′| ≥ T
(
ε
2 , γ

2

)
.

Step 2: take a uniform random sample A from A′ of size large-enough so that A is
an ε

2 -approximation of (A′,F|A′) with probability at least 1− γ
2 . By Theorem 12.2,

it suffices to set

|A| ≥ 3

(ε/2)2
ln

2 |F|A′ |
(γ/2)

.

Thus the set A is a uniform random sample of X, and an ε-approximation of F
(Lemma 12.5) with probability at least 1− γ. So we can set

T (ε, γ) =
3

(ε/2)2
ln

2 |F|A′ |
(γ/2)

, where |A′| = T
( ε

2
,
γ

2

)
.

Now one can verify that T (ε, γ) ≤ C1

ε2

(
d ln 1

ε + ln 1
γ

)
for a sufficiently large absolute

constant C1, completing the proof.
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The inductive step calculations are as follows:

T (ε, γ) =
3

(ε/2)2
ln

2 |F|A′ |
(γ/2)

≤ 12

ε2
ln

⎛
⎝ 4

γ

(
e T
(
ε
2
, γ
2

)
d

)d
⎞
⎠(Lemma 4.3

)

≤ 12

ε2
ln

⎛
⎜⎝ 4

γ

⎛
⎝e 4C1

ε2

(
d ln 2

ε
+ ln 2

γ

)
d

⎞
⎠

d
⎞
⎟⎠(inductive hypothesis

)

≤ 12

ε2
ln

⎛
⎜⎝ 4

γ

⎛
⎝e 4C1

ε2
2
ε

(
d+ ln 2

γ

)
d

⎞
⎠

d
⎞
⎟⎠

≤ 12

ε2
ln

(
4

γ

(
e 8C1

ε3

(
1 +

1

d
ln

2

γ

))d
)

≤ 12

ε2
ln

(
4

γ

(
e 8C1

ε3
exp

(
1

d
ln

2

γ

))d
)

=
12

ε2
ln

(
4

γ

(
e 8C1

ε3

)d
2

γ

)

=
12

ε2

(
d ln

e 8C1

ε3
+ ln

8

γ2

)
≤ C1

ε2

(
d ln

1

ε
+ ln

1

γ

)
,

for a large-enough constant C1.

�

We conclude by showing that Theorem 12.3 together with Theorem 2.3 implies
bounds on ε-nets.

Theorem 12.6. Let (X,F) be a finite set system with VC-dim(F) ≤ d for an
integer d ≥ 1, and let ε ∈

(
0, 1

2

)
be a given parameter. Then there exists an absolute

constant C8 > 0 such that a uniform random sample N of X of size C8

ε ln 1
εdγ

is an

ε-net of F with probability at least 1− γ.

Proof. Let A be a uniform random sample of X of size 4C1

ε2

(
d ln 2

ε + ln 2
γ

)
and let N be a uniform random sample of A of size 2

ε ln
2|F|A|

γ . By Theorem 12.3,

A is an ε
2 -approximation of F with probability 1− γ

2 , and by Theorem 2.3, N is an
ε
2 -net of F|A with probability at least 1− γ

2 . We first observe that N is an ε-net of
F with probability at least 1− γ:

If A is an ε
2 -approximation of F , then for each S ∈ F with |S| ≥ ε |X|

we have

|S ∩ A| ≥ |S||A|
|X| − ε

2
|A| ≥ ε

2
|A|.

Thus if N is an ε
2 -net of F|A, then N hits S ∩ A and so hits S.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



1. PROOF USING INDUCTION 177

Finally,

|N | ≤ 2

ε
ln

2|F|A|
γ

≤ 2

ε
ln

(
2

γ

(
e|A|
d

)d
)

≤ 2

ε
ln

(
2

γ

(
e4C1

ε2

)d(
ln

2

ε
+

1

d
ln

2

γ

)d
)

≤ 2

ε
ln

(
2

γ

(
e8C1

ε3

)d(
1 +

1

d
ln

2

γ

)d
)

≤ 2

ε
ln

(
2

γ

(
e8C1

ε3

)d
2

γ

)

≤ C8

ε
ln

1

εdγ
,

by setting C8 to be a sufficiently large constant depending only on C1. �
Bibliography and discussion. The original proof of Theorem 12.3
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presented in the next section.
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2. Proof using Discrepancy

The point is, don’t let your ego disempower you. Ask the dumb question.
And if they try to make you feel dumb, they are making a power move.

Matt Stoller

In this section we will see a relation between ε-approximations and another funda-
mental notion called combinatorial discrepancy, defined as follows.

Definition 12.7. Given a set system (X,F) and a two-coloring χ : X →
{−1, 1}, define the discrepancy of a set R ⊆ X with respect to χ as

discχ (R) =

∣∣∣∣∣∣
∑
p∈R

χ (p)

∣∣∣∣∣∣ ,
and the discrepancy of F with respect to χ as

discχ (F) = max
R∈F

discχ (R) .

The discrepancy of F is then defined to be

disc (F) = min
χ:X→{−1,1}

discχ (F) .

As an illustration of the connection between approximations and discrepancy, we
will first reprove the result of the previous section.

Theorem 12.8. Let (X,F) be a finite set system with VC-dim (F) ≤ d and let
ε ∈

(
0, 1

2

]
be a given parameter. Then there exists an ε-approximation of F of size

O
(

d
ε2 log

1
ε

)
.

The following more general theorem establishes a relation between the size of ε-
approximations and the combinatorial discrepancy of a set system.

Theorem 12.9. Let (X,F) be a finite set system with X ∈ F and let f (·) be a
function such that disc (F|Y ) ≤ f (|Y |) for all Y ⊆ X. Then for every integer
t ≥ 0, there exists a set A ⊆ X of size

⌈
n
2t

⌉
such that A is an ε-approximation of

F , where

ε =
2

n

(
f(n) + 2f

(⌈n

2

⌉)
+ · · ·+ 2t−1f

(⌈ n

2t−1

⌉))
.

In particular, if there exists a constant c > 1 such that f (2m) ≤ 2
c f (m) for all

m ≥
⌈

n
2t

⌉
, then there exists an ε-approximation of F of size

⌈
n
2t

⌉
, and where

ε = Θ

(
2t

n
f
(⌈ n

2t

⌉))
.

For technical simplicity we will assume that n is a power of 2.

Overview of ideas. The proof follows by iteratively selecting a set R1 of half of
the elements of X while also ensuring that R1 contains close to half of the elements

from each set of F1. Of course a set R1 ⊆ X that contains |X|
2 points and also

1This idea is similar to the proof in Chapter 8.
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exactly halves every set of F is not always possible. The accuracy of R1 will have to
depend on the number of sets in F—e.g., for the complete set system F = 2X , for
any choice of R1 with n

2 elements, there will be a set of n
2 elements in F—namely

the set X \ R1—that will not contain any point of R1. Thus one asks for a set

R1 ⊆ X, |R1| = n
2 , such that for all S ∈ F , |S ∩ R1| is as close as possible to |S|

2 .

This is essentially the notion of combinatorial discrepancy. In fact, discrepancy can
be seen as a ‘first step’ towards ε-approximations, as follows.

Let χ be a two-coloring of X realizing disc (F) and let X+ be the elements

of X with color ‘1’. Assume for simplicity that |X+| = |X|
2 . Then for

any S ∈ F , ∣∣|S ∩ X+| −
(
|S| − |S ∩ X+|

)∣∣ ≤ disc (F) ,

implying that ∣∣∣∣|S ∩ X+| − |S|
2

∣∣∣∣ ≤ disc (F)

2
.

In other words,

|S ∩ X+| = |S| · |X+|
|X| ± disc (F)

n
|X+|,

and so the set X+ is an
(

disc(F)
n

)
-approximation of F .

To prove Theorem 12.8, we will first derive an upper bound on the discrepancy of
set systems with VC-dimension at most d, such that exactly half the elements are
colored ‘1’. Denote the set of these elements by R1. Now iteratively repeat this
halving process on F|R1

to get a set R2 ⊆ R1 and so on. The proof will show
that after t iterations, where t depends on 1

ε , the set Rt of |X|/2t elements is an
ε-approximation of F , satisfying the required bounds.

The same method, using the function f (·) to upper bound discrepancy at each
iteration, gives the proof of Theorem 12.9.

Our first statement, following the above discussion, gives an upper bound on combi-
natorial discrepancy of set systems. We will state and prove it in a slightly different
setting where, instead of assigning colors, the goal is to choose a subset of X of size

|X|/2 that contains close to |S|
2 elements from each S ∈ F .

Lemma 12.10. Given a set system (X,F), there exists a set R1 ⊆ X with |R1| = n
2

such that

for all S ∈ F , |S ∩ R1| =
|S|
2

±
√
2|S| ln (2|F|).

Proof. Let R1 be a uniform random subset of X of size n
2 . Note that for any

p ∈ X, we have Pr [p ∈ R1] =
1
2 and so for any S ∈ F we have E [|S ∩ R1|] = |S|

2 .

For a positive integer ΔS denoting the error term for S ∈ F , Chernoff’s bound
(Corollary 1.24), applied to the indicator random variables for the elements of S,
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gives

Pr

[
|S ∩ R1| >

|S|
2

+ ΔS

]
= Pr

[
|S ∩ R1| >

|S|
2

(
1 +

2ΔS

|S|

)]

< exp

⎛
⎜⎝−

(
2ΔS

|S|

)2
2 + 2ΔS

|S|
· |S|
2

⎞
⎟⎠

= exp

(
− Δ2

S

|S|+ΔS

)
< e−

Δ2
S

2|S| ,

where the last step follows from the assumption that ΔS < |S|
2 (otherwise the above

probability is 0). Setting ΔS =
√
2|S| ln (2|F|), the probability that there exists a

set S ∈ F with |S ∩R1| > |S|
2 +ΔS can be upper bounded, using the union bound,

as ∑
S∈F

Pr

[
|S ∩ R1| >

|S|
2

+ ΔS

]
<
∑
S∈F

e−
Δ2

S
2|S| = |F| · 1

2|F| =
1

2
.

By symmetry, the probability that there exists a set S ∈ F with |S∩R1| < |S|
2 −ΔS

is also less than 1
2 . This implies the existence of the required set R1. �

Note that Lemma 12.10 does not require F to have bounded VC-dimension and
holds for any set system. The fact that F has VC-dimension at most d will only
be used to plug in an upper bound on |F| via Lemma 4.3.

Proof of Theorem 12.8. We will compute the sets R1, R2, . . . iteratively.
Set R0 = X. Apply Lemma 12.10 to (X,F) to get a set R1 ⊂ X, |R1| = n

2 , such
that

(12.11) for all S ∈ F , |S ∩ R1| =
|S|
2

± 2
√

|R0| ln |F|R0
|.

In fact Lemma 12.10 gives a stronger statement where the error for each set

S is relative to the size of S—that is, |S ∩R1| = |S|
2

± 2
√

|S| ln |F|R0 |. For

ε-approximations the weaker statement suffices and simplifies subsequent cal-

culations. The stronger statement yields a sensitive approximation; see Defi-

nition 14.7.

Consider the set system derived from projecting F onto R1:

F|R1
= {S ∩ R1 : S ∈ F} .

Now applying Lemma 12.10 on (R1,F|R1
) gives a set R2 ⊂ R1, |R2| = |R1|

2 = n
4 ,

such that for all S ∈ F ,

|S ∩ R2| =
|S ∩ R1|

2
± 2
√
|R1| ln |F|R1

|

=
|S|
2 ± 2

√
|R0| ln |F|R0

|
2

± 2
√
|R1| ln |F|R1

|

=
|S|
4

± 2

1∑
j=0

√
|Rj | ln |F|Rj

|
21−j

.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



2. PROOF USING DISCREPANCY 181

Continuing on, after i iterations, we have the set Ri, |Ri| = n
2i , such that for every

S ∈ F ,

|S ∩ Ri| =
|S|
2i

± 2
i−1∑
j=0

√
|Rj | ln |F|Rj

|
2(i−1)−j

=
|S| |Ri|

n
±

⎛
⎝2i+1

n

i−1∑
j=0

√
|Rj | ln |F|Rj

|
2(i−1)−j

⎞
⎠ |Ri|

=
|S| |Ri|

n
±

⎛
⎝ 4√

n

i−1∑
j=0

√
2j ln |F|Rj

|

⎞
⎠ |Ri|

=
|S| |Ri|

n
±

⎛
⎝ 4√

n

i−1∑
j=0

√
2j ln

( en

2jd

)d⎞⎠ |Ri|.

The last step uses Lemma 4.3. The above summation can be upper bounded by an
increasing geometric series, since

2j+1 ln
(

en
2j+1d

)d
2j ln

(
en
2jd

)d =
2
(
ln
(

en
2jd

)
− ln 2

)
ln
(

en
2jd

) = 2− 2 ln 2

ln
(

en
2jd

) ≥ 1.1,

as en
2jd ≥ 6 for j ≤ i ≤ log en

6d , which will be the case. Therefore there exists an
absolute constant c′ ≥ 1 such that

|S ∩ Ri| =
|S| |Ri|

n
±
(

c′
4√
n

√
2i ln

( en

2id

)d)
|Ri|.

We set the number of iterations, i, to a value t such that the second term
of the above expression is at most ε |Ri|.

We verify that t = log
(

ε2n
dc log 1

ε

)
works, for a sufficiently large constant c ≥ 6

depending only on c′:

c′
4√
n

√
2t ln

( en

2td

)d
= c′

4√
n

√
ε2n

dc log 1
ε

· d · ln en

d

dc log 1
ε

ε2n

≤ c′ 4 ε

√
1

c log 1
ε

ln
ec log 1

ε

ε2

≤ c′ 4 ε

√
3e ln c

c
≤ ε, for sufficiently large c.

Thus Rt is an ε-approximation of F , with

|Rt| =
n

2t
= n

dc log 1
ε

ε2n
= O

(
d

ε2
log

1

ε

)
.

This completes the proof of Theorem 12.8. �
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Proof of Theorem 12.9. The proof follows by re-working the calculation
of Theorem 12.8 using the discrepancy function f(·) instead of Lemma 12.10. Set
R0 = X and for i = 0, . . . , t − 1, construct the set Ri+1 of size n

2i+1 as follows.

Assume for simplicity that n = |X| is a power of two.

Let χi be a two-coloring of F|Ri
such that discχi

(F|Ri
) ≤ f (|Ri|) and let

R+
i and R−

i be the two color classes induced by χi. Say |R+
i | =

|Ri|
2 + κ

and |R−
i | =

|Ri|
2 − κ, for some integer κ ≥ 0.

By the assumption that X ∈ F and hence (X∩Ri) = Ri ∈ F|Ri
, we have∣∣|R+

i | −
(
|Ri| − |R+

i |
) ∣∣ ≤ f (|Ri|), implying that |R+

i | =
|Ri|
2 ± f(|Ri|)

2 ,
and so

κ ≤ f (|Ri|)
2

.

Set Ri+1 ⊆ R+
i to be any set of size |Ri|

2 = n
2i+1 . Then for any set S ∈ F , as∣∣|S ∩ R+

i | −
(
|S ∩ Ri| − |S ∩ R+

i |
) ∣∣ ≤ f (|Ri|), we have |S ∩ R+

i | =
|S∩Ri|

2 ± f(|Ri|)
2

and thus

|S ∩ Ri+1| = |S ∩ R+
i | ± κ =

(
|S ∩ Ri|

2
± f (|Ri|)

2

)
± κ =

|S ∩ Ri|
2

± f (|Ri|) .

After t iterations we have computed a set Rt, |Rt| = n
2t , such that for all S ∈ F ,

|S ∩ Rt| =
|S|
2t

±
t−1∑
j=0

f
(

n
2j

)
2(t−1)−j

=
|S||Rt|

n
±

⎛
⎝ 2

n

t−1∑
j=0

2j f
( n

2j

)⎞⎠ |Rt|.

This proves the first part.

For the second part, observe that if there exists a constant c > 1 such that f(2m) ≤
2
c f(m) for all m ≥

⌈
n
2t

⌉
, then f

(
n
2j

)
≤ 2

cf
(

n
2j+1

)
or equivalently, 2j+1f

(
n

2j+1

)
≥

c · 2jf
(

n
2j

)
, for all j ≤ t − 1. That is, the terms are increasing by at least a

multiplicative factor of c > 1 and thus are upper bounded, within a constant factor
depending on c, by the last term of the summation.

Thus we get a set Rt such that |Rt| = n
2t and for each S ∈ F ,

|S ∩ Rt| =
|S||Rt|

n
±

⎛
⎝ 2

n

t−1∑
j=0

2j f
( n

2j

)⎞⎠ |Rt|

=
|S||Rt|

n
±
(

O

(
2tf

(⌈
n
2t

⌉)
n

))
|Rt|.

�

Many of the best upper bounds on ε-approximations are derived from Theorem 12.9
together with bounds on combinatorial discrepancy for the corresponding set sys-
tems. For example, the primal set system R induced on a set P of n points by

half-spaces in R
d has combinatorial discrepancy O

(
n

1
2−

1
2d

)
. Thus Theorem 12.9,

with

f (n) = O
(
n

1
2−

1
2d

)
and 2t = Θ

(
ε

2d
d+1 n

)
,

implies the existence of an ε-approximation of size O
(
n
2t

)
= O

(
1

ε
2d

d+1

)
of R.
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Chapter 16 lists many other bounds on the sizes of ε-approximations derived via
Theorem 12.9.

Bibliography and discussion. The connection between combinatorial
discrepancy and ε-approximations was discovered in the important pa-
per [MWW9312b]. An optimal bound on the discrepancy of half-spaces
was given by Matoušek [Mat95a]. The proof of Theorem 12.8 gives a
method for constructing an ε-approximation of size O

(
d
ε2 log

1
ε

)
, though it

is randomized. A divide-and-conquer ‘merge and reduce’ procedure—which
starts with an arbitrary partition of X into small-sized sets, which are then
hierarchically merged—was used in [CM9612b,Mat95b] to derive a de-
terministic algorithm to compute an ε-approximation of size O

(
d
ε2 log

1
ε

)
in time O (d)

3d 1
ε2d

(
log d

ε

)d
n.

Many other beautiful results in the general area of discrepancy
theory have been nicely presented in the texts on the sub-
ject [BC8712b,Mat99,Cha00,CST1412b].
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CHAPTER 13

Epsilon-Approximations: Improved Bounds

Recall the notion of an ε-approximation of a set system (X,F).

Definition 12.1. Given a finite set system (X,F) and a parameter ε > 0, a
set A ⊆ X is an ε-approximation of F if for each S ∈ F ,

|S ∩A| = |S| · |A|
|X| ± ε · |A|.

Equivalently, dividing by |A| gives∣∣∣∣ |S||X| −
|S ∩A|
|A|

∣∣∣∣ ≤ ε.

This chapter presents constructions of ε-approximations that improve the bounds
of Chapter 12. In the first result, the algorithm is unchanged—we will take a
single uniform random sample A from X and, improving upon previous analysis,
show that if A has size Ω

(
d
ε2

)
, then A is an ε-approximation of F with constant

probability. The key tool used is chaining .

Chaining is essentially the idea of doing the analysis by partitioning each S ∈ F
into a number of smaller sets (usually logarithmically many), each belonging

to a distinct ‘level’. The number of sets increases with increasing level while

the size of each set decreases. The error of approximation for S can be upper

bounded by the sum of approximation errors across levels, which turns out to

be a geometric series and gives the improved bounds.

If one is constrained to taking a single uniform random sample, then the above
bound of Ω

(
d
ε2

)
cannot be improved.

For the second result we turn to a geometric set system and derive improved bounds
by taking a non-uniform random sample. In particular, we will prove that there
exists an ε-approximation of size o

(
1
ε2

)
for the primal set system induced by half-

spaces in R
d:

Theorem 13.1. Let P be a set of n points in R
d and ε ∈

(
0, 1

2

]
a given parame-

ter. Then there exists an ε-approximation of size C3

(
1
ε2 log

1
ε

) d
d+1 of the primal set

system R induced on P by half-spaces in R
d, where C3 is a constant depending on

d.

185
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1. Improved Analysis via Chaining

Some people may sit back and say, I want to solve this problem and they
sit down and say, ‘How do I solve this problem?’ I don’t. I just move
around in the mathematical waters, thinking about things, being curious,
interested, talking to people, stirring up ideas; things emerge and I follow
them up. Or I see something which connects up with something else
I know about, and I try to put them together and things develop. I
have practically never started off with any idea of what I’m going to be
doing or where it’s going to go. I’m interested in mathematics; I talk,
I learn, I discuss and then interesting questions simply emerge. I have
never started off with a particular goal, except the goal of understanding
mathematics.

Michael Atiyah

The main theorem of this section improves the bound of Theorem 12.8 by a loga-
rithmic factor.

Theorem 13.2. Let (X,F), |X| = n, be a finite set system with VC-dim(F) ≤ d
and ε ∈

(
0, 1

2

]
a given parameter. Then a uniform random sample A ⊆ X of size

C2 · d
ε2 is an ε-approximation of F with constant probability, where C2 ≥ 1 is an

absolute constant independent of X, F and d.

The key point to note here is that the bound of O
(

d
ε2

)
is achieved by taking a

single uniform random sample. Furthermore if we want a random sample A to be
an ε-approximation of F with, say probability at least 1

2 , then the above bound is
asymptotically tight.

As seen earlier, a uniform random sample A ⊆ X of size Θ
(

d
ε2

)
fails to be an

ε-approximation for a fixed set S ⊆ X with constant probability if |S| = Ω(n).

As with all failures, this gives us useful information: to show that a uniform

set A ⊆ X of size Θ
(

d
ε2

)
fails to be an ε-approximation of F with probability

less than 1, we can only afford to use the union bound over O (1) sets of size

Ω (n). Indeed this is precisely what we will be able to do.

Overview of ideas. For the moment we treat the size of A as a parameter t whose
value will be set when needed. There are three additional ideas in the proof.

1. Independence from |F|: To upper bound the probability that A fails to be
an ε-approximation of F , one upper bounds the probability that A fails to be an
ε-approximation of a fixed set S ∈ F and then union bound is applied over all sets
of F . This adds a multiplicative factor of Θ (log |F|) in the sample size. An easy
pre-processing step allows us to replace |F| by a function of 1

ε : we will first take a
large-enough uniform random sample A′ ⊆ X such that A′ is an ε

2 -approximation

of F with constant probability. By Theorem 12.3 we can take |A′| = Θ
(

d
ε2 log

1
ε

)
.

Next recall the following lemma.

Lemma 12.5. Given a set system (X,F), let A ⊆ X be an ε1-approximation
of F and let B ⊆ A be an ε2-approximation of F|A. Then B is a (ε1 + ε2)-
approximation of F .

Thus it suffices to prove that a uniform random sample A ⊆ A′ of the desired
size is an ε

2 -approximation of F|A′ . To minimize notations we will continue to
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work with (X,F) and just assume that n = |X| = Θ
(

d
ε2 log

1
ε

)
. Lemma 4.3 then

implies that

|F| ≤
(

e|X|
d

)d

=

(
O

(
1

ε2
log

1

ε

))d

.(13.3)

We emphasize that the construction itself consists of taking a single uniform

random sample of the size indicated by Theorem 13.2. The step above is

only a proof technique, where we think of taking the random sample in two

iterations for analysis purposes.

2. Small sets of F : A random sample A of size t fails to be an ε-approximation
of a set S ∈ F if the random variable |S ∩ A| differs by greater than εt from its

expectation |S|t
n . Note that this interval εt is independent of the size of S. If |S|

is large, the deviation of |S ∩ A| from its expectation will be larger (in absolute
terms) and so there will be a higher probability that |S ∩ A| falls outside this εt
‘margin of error’. Specifically, as we want

|S ∩ A| = |S| · t
n

± εt =
|S| · t

n

(
1± εn

|S|

)
= E [|S ∩ A|] ·

(
1± εn

|S|

)
,

applying Chernoff’s bound (Corollary 1.24) with δ = εn
|S| , the probability that A

fails to be an ε-approximation of S is

Pr

[
|S ∩ A| >

(
1 +

εn

|S|

)
E [|S ∩ A|]

]
+ Pr

[
|S ∩ A| <

(
1− εn

|S|

)
E [|S ∩ A|]

]

≤ 2 exp

⎛
⎜⎝−

(
εn
|S|

)2
2 + εn

|S|
· |S|t

n

⎞
⎟⎠ = 2 exp

(
− ε2tn

2|S|+ εn

)
.

(13.4)

This is as expected: as the size of S increases, so does the above upper bound on
the probability that A fails to be an ε-approximation of S. Indeed, the next claim
shows that a random set A of size t = c d

ε2 , for a sufficiently large constant c, is
an ε-approximation of all sets S ∈ F with |S| ≤ n

log 1
ε

with high probability.

Claim 13.5. There exists a sufficiently large constant c such that with
probability at least 1 − e−100d, a uniform random set A ⊆ X of size
c d

ε2 is an ε-approximation, for ε ≤ 1
2 , of all sets of F of size at most

n
log 1

ε

.

Proof. The union bound together with Equation (13.4) implies
that A fails to be such an ε-approximation with probability at most

|F| · 2 exp

(
− ε2tn

2 n
log 1

ε

+ εn

)
≤ |F| · 2 exp

(
−

ε2t log 1
ε

2 + ε log 1
ε

)

≤ |F| · 2 exp

(
−1

3
ε2t log

1

ε

)
=

(
O

(
1

ε2
log

1

ε

))d

· εc d/3 ≤ e−100 d,

for t = c d
ε2 , where c is a sufficiently large constant, and ε ≤ 1

2 . �
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3. Large sets of F : It remains to deal with the sets of F of size greater than
n

log 1
ε

.

For a set S ∈ F with |S| = Ω(n), Equation (13.4) implies that

Pr [A fails to be an ε-approximation of S] ≤ 2 exp

(
− ε2tn

2|S|+ εn

)
= e−Θ(ε2t).

Having to use the union bound over all
(
O
(

1
ε2 log

1
ε

))d
sets of F forces

us to set t = Ω
(

d
ε2 log

1
ε

)
and the additional logarithmic term re-

appears in the size of A.

However, in this worst-case scenario—when considering sets of size Ω (n) in F—it
is clear that these sets have a lot of elements of X in common. Towards this we
recall the following packing statement:

Theorem 5.8. Let F =
{
S1, . . . , Sm

}
be a set system on a set X of n

elements, with VC-dim(F) ≤ d. Let δ ∈ [n] be an integer such that for every
1 ≤ i < j ≤ m, we have

∣∣Δ(Si, Sj)
∣∣ ≥ δ (that is, the size of the symmetric

difference between every pair of sets of F is at least δ). Then |F| ≤ 2
(
8en
δ

)d
.

We will use Theorem 5.8 to show that there are few sets that are ‘basic’ and
that all other sets can be derived, with small modifications, from these basic sets.
Thus we will apply the union bound in two separate scenarios: on the basic sets
which could have large sizes but are few in number, and the other ‘modification’
sets, which could be many but will have small size.

Before we present the proof of Theorem 13.2, we illustrate the above ideas by a
short proof showing that a uniform random sample A of size Θ

(
d
ε2 log log

1
ε

)
is an

ε-approximation of F with constant probability.

For a parameter η ≥ εn to be fixed later, let P be a maximal subset of F such
that the size of the symmetric difference between every pair of sets of P is at

least η. Theorem 5.8 implies that |P| = O

((
8e n
η

)d)
. By the maximality of

P, for any S ∈ F \ P there exists a set FS ∈ P such that |Δ(S, FS) | < η.
Define

G =
{
S \ FS : S ∈ F \ P

} ⋃ {
FS \ S : S ∈ F \ P

}
.

Note that |G| ≤ 2 |F| =
(
O
(

1
ε2

log 1
ε

))d
by Equation (13.3) and each set of

G has size less than η. Each S ∈ F can be ‘derived’ from a set of P to-
gether with two sets of G—that is, S = FS − (FS \ S) + (S \ FS). Therefore
if A is a ε

3
-approximation of both P and G, then A is an ε-approximation of

F (see Claim 13.6). Thus the probability that a uniform random sample A
of size t fails to be an ε-approximation of F can be upper bounded, using
Equation (13.4), by

Pr
[
A is not an

ε

3
-approx. of P

]
+ Pr

[
A is not an

ε

3
-approx. of G

]
≤ |P| · 2 exp

(
− ε2tn

9 (2n+ (ε/3)n)

)
+ |G| · 2 exp

(
− ε2tn

9 (2η + (ε/3)n)

)

≤ O

((
8en

η

)d
)

· 2 exp
(
− ε2t

21

)
+

(
O

(
1

ε2
log

1

ε

))d

· 2 exp
(
− ε2tn

21 η

)
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Setting η = n

log 1
ε

and t = c · d
ε2

log log 1
ε
for a sufficiently large constant c,

= O

((
8e log

1

ε

)d
)

· 2 exp
(
−
c d log log 1

ε

21

)

+

(
O

(
1

ε2
log

1

ε

))d

· 2 exp
(
−
c d(log 1

ε
)(log log 1

ε
)

21

)
<

1

2
.

Thus A is an ε-approximation of size Θ
(

d
ε2

log log 1
ε

)
with probability at least

1
2
.

The proof of the main theorem improves the above bound by using the thematic idea
of partitioning F into a logarithmic number of levels instead of just two; then the
error becomes a geometric series, and we get rid of the logarithmic term completely.
We will need the following decomposition claim whose proof follows immediately
from the definition of ε-approximations (and is similar to the proof of Lemma 12.5).

Claim 13.6. Let X be a set of n elements and A ⊆ X such that A is an ε1-
approximation of S1 and an ε2-approximation of S2. Then

(1) If S1 ∩ S2 = ∅, then A is a (ε1 + ε2)-approximation of S1 ∪ S2.
(2) If S1 ⊆ S2, then A is a (ε1 + ε2)-approximation of S2 \ S1.

Proof of Theorem 13.2. The proof is divided into three stages.

Initial random sample: Given (X,F), we first take a uniform random sample
A′ ⊆ X of sufficient size so that A′ is an ε

2 -approximation of F with constant

probability. Theorem 12.3 implies that we can take |A′| = Θ
(

d
ε2 log

1
ε

)
. Then

it suffices to show that a uniform random sample A ⊆ A′ of size t = C2
d
ε2 is

an ε
2 -approximation of F|A′ with constant probability (see Lemma 12.5). For

notational convenience we simply assume that X = A′, n = |A′| and so by
Lemma 4.3,

|F| ≤
(

e |X|
d

)d

=

(
O

(
1

ε2
log

1

ε

))d

.

Partitioning F into levels: We construct a series of maximal packings, as fol-
lows. Let k be a parameter to be fixed later. For each i = 1, . . . , k, let

Pi : a maximal subset of F such that the size of the symmetric differ-
ence between every pair of sets of Pi is at least

n
2i .

By first constructing P1, then P2 by starting with P1 and adding sets to it and
so on, we can assume that P1 ⊆ P2 ⊆ · · · ⊆ Pk

1. Theorem 5.8 implies that

|Pi| = O

((
8en

n/2i

)d
)

= O
(
(8e)

d
2di
)

.

Set Pk+1 = F .

1Forcing inclusion is done to minimize the number of cases one has to consider in the proof.
The whole argument works even when Pi is not a subset of Pi+1.
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For each i ∈ [1, k], the maximality of Pi implies that for each S ∈ Pi+1

there exists a set FS ∈ Pi such that |Δ(S, FS)| < n
2i . For i = 1, . . . , k

define the sets

Ai =
{
S \ FS : S ∈ Pi+1

}
and Bi =

{
FS \ S : S ∈ Pi+1

}
.

Note that each S ∈ Ai ∪ Bi satisfies |S| < n
2i . Furthermore,

|Ai|, |Bi| ≤ |Pi+1| = O
(
(8e)d 2d(i+1)

)
for i ∈ [1, k − 1],

while |Ak|, |Bk| ≤ |F|.
Here one can see the tradeoff clearly: as i increases, the number of sets
in Ai,Bi increase, while the size of each set decreases.

We set the parameter k such that the sets in Ak ∪Bk have size at most εn. That
is,

k =

⌈
log

1

ε

⌉
.

Define

εi =
ε

30

√
i

2i
.

Note that

(13.7)

∞∑
j=1

√
j

2j
=

2√
2
+

∞∑
j=3

√
j

2j
≤

√
2 +

√
3

8

∞∑
i=0

(√
2

3

)i

≤ 5,

where the second step uses that for j ≥ 3,

√
(j+1)/2j+1√

j/2j
=
√

1
2
+ 1

2j
≤
√

2
3
.

Lemma 13.8. For C2 ≥ 1 sufficiently large, A is simultaneously an
(i) ε

20 -approximation of all sets of P1, and
(ii) εi-approximation of all the sets in Ai ∪ Bi, for i = 1 . . . k − 1, and
(iii) ε

20 -approximation of all sets in Ak ∪ Bk,

with probability at least 1− 3e−100 d.

Proof. (i) By the union bound and Equation (13.4), the probability that A
fails to be an ε

20 -approximation of P1 can be upper bounded as

|P1| · 2 exp
(
− (ε/20)2nt

2n + (ε/20)n

)
= O

(
(16 e)d

)
· exp

(
− ε2t

400 · 3

)
= O

(
(16 e)

d
)
· e−Ω(C2d) ≤ e−100 d,

for C2 sufficiently large.
(ii) As each set of Ai ∪Bi has size less than n

2i , A fails to be an εi-approximation
of a fixed S ∈ Ai ∪ Bi with probability at most

2 exp

(
− ε2int

2|S|+ εin

)
≤ 2 exp

⎛
⎝−

i
900 2i ε

2nt

2n
2i + ε

30

√
i
2i n

⎞
⎠ = exp

(
−Ω

(
iε2t

1 +
√
2i i ε

))

= exp

(
−Ω

(
iε2t

1 +
√

(1/ε) log(1/ε) ε

))
= exp

(
−Ω

(
iε2t
))

.
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Using the union bound, the probability of failure can be upper bounded as

k−1∑
i=1

|Ai ∪ Bi| · exp
(
−Ω

(
iε2t
))

=

k−1∑
i=1

O
(
(8e)

d
2d(i+1)

)
· e−Ω(C2di) ≤ e−100 d,

for a sufficiently large C2, as the summation is upper bounded by a geometric
series.
(iii) As |Ak∪Bk| ≤ 2|F| and each set has size less than n

2i ≤ εn, this follows from
Claim 13.5, for C2 sufficiently large. �

Chaining: Next we show that each set S ∈ F can be written in terms of sets in
P1, A1, . . . ,Ak, B1, . . . ,Bk.

Lemma 13.9. For each j ∈ [1, k] and S ∈ Pj+1, there exist a set I ∈ P1 and sets

A1 ∈ A1, A2 ∈ A2, . . . , Aj ∈ Aj and B1 ∈ B1, B2 ∈ B2, . . . , Bj ∈ Bj

such that Ai ∩ Bi = ∅ for all i = 1, . . . , j and

S =

(
· · ·
((

(I − B1 + A1)− B2 + A2

)
− B3 + A3

)
· · · − Bj + Aj

)
.(13.10)

Furthermore, if A is an ε0-approximation of all the sets of P1 and simultane-
ously an εi-approximation of Ai ∪ Bi for all i = 1, . . . , k, then A is also an
(ε0 + 2ε1 + 2ε2 + · · ·+ 2εj)-approximation of all the sets of Pj+1.

Proof. As S ∈ Pj+1, there exists FS ∈ Pj is such that |Δ(S, FS) | < n
2j ,

and further we can write

S = FS + (S \ FS)− (FS \ S) = FS + Aj − Bj ,

where Aj ∈ Aj and Bj ∈ Bj . We can again write FS ∈ Pj as an addi-
tion/subtraction of sets in Aj−1 and Bj−1. Continuing like this recursively, any
set S ∈ Pj+1 can be written as addition of j sets of Ai and subtraction of j sets
of Bi, ending up at some set I ∈ P1. This gives Equation (13.10).
The proof of the second part proceeds by induction on j and Claim 13.6. �

We now conclude the proof of Theorem 13.2: Lemma 13.8 and Lemma 13.9 together
imply that with probability at least 1− 3e−100 d, A is an ε′-approximation of each
S ∈ F = Pk+1, where

ε′ ≤ ε

20
+

(
2

k−1∑
i=1

ε

30

√
i

2i

)
+

ε

20
≤ ε

10
+

(
ε

15
·

∞∑
i=1

√
i

2i

)
≤ ε

2
,

where the last step follows from Equation (13.7). �

In the proof of Theorem 13.2 we omitted the precise relation between the size of the
random sample and the probability that it is an ε-approximation—we simply wanted
a uniform random sample to be an ε-approximation with constant probability. By
introducing this probability as a parameter in the sample size and re-working the
above proof, we arrive at the following theorem (we omit its proof as we will give
the proof of a more general result, Theorem 14.3, later).
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Theorem 13.11. Let (X,F) be a set system with VC-dim(F) ≤ d and ε, γ > 0 be
two given parameters. Then a uniform random sample A ⊆ X of size

c ·
(

d

ε2
+

1

ε2
log

1

γ

)
is an ε-approximation of F with probability at least 1−γ, where c ≥ 1 is an absolute
constant independent of X, F and d.
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[Mat95a] J. Matoušek, Tight upper bounds for the discrepancy of half-spaces, Discrete Comput.
Geom. 13 (1995), no. 3-4, 593–601, DOI 10.1007/BF02574066. MR1318799

[Tal94] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab. 22
(1994), no. 1, 28–76. MR1258865

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.

https://arxiv.org/abs/2008.08970
https://arxiv.org/abs/2008.08970
https://www.ams.org/mathscinet-getitem?mr=1824457
https://www.ams.org/mathscinet-getitem?mr=1318799
https://www.ams.org/mathscinet-getitem?mr=1258865


2. NEAR-OPTIMAL BOUNDS VIA PARTITIONING 193

2. Near-Optimal Bounds via Partitioning

From him [Alexandre Grothendieck] and his example, I have also learned
not to take glory in the difficulty of a proof: difficulty means we have
not understood. The ideal is to be able to paint a landscape in which the
proof is obvious. I admire how often he succeeded in reaching this ideal.

Pierre Deligne

We now improve the upper bound on the size of ε-approximations of the primal set
system induced by half-spaces in R

d.

Theorem 13.1. Let P be a set of n points in R
d and ε ∈

(
0, 1

2

]
a given parame-

ter. Then there exists an ε-approximation of size C3

(
1
ε2 log

1
ε

) d
d+1 of the primal set

system R induced on P by half-spaces in R
d, where C3 is a constant depending on

d.

With additional work, the logarithmic term can also be removed (see discus-

sion).

This improves the previous upper bound of O
(

d
ε2

)
of Theorem 13.2. However the

price we pay for this improvement is that the ε-approximation, while still a random
sample of X, will no longer be a uniform random sample. This is necessary—
as stated in the previous section, the bound of Theorem 13.2 is optimal if one is
restricted to taking a uniform random sample.

Overview of ideas. For simplicity consider the case when X is a unit cube in R
d,

say X = [0, 1]
d
. Then our goal is to construct a small set A ⊆ [0, 1]

d
such that for

any half-space h+,

|h+ ∩ A| = vol
(
h+ ∩ X

)
· t ± ε t,

where t = |A|.
A natural first try is to partition [0, 1]

d
into t smaller cubes by a uniform t

1
d ×· · ·×t

1
d

grid. Note that each small cube has side-length 1
t1/d

and volume 1
t . Now let A be

the t centers of these cubes (in fact, pick any one point from each of the t small
cubes).

For any fixed half-space h+, the ‘error’ of approximating vol (h+ ∩ X) ·t by |h+∩A|
comes from the cubes intersecting the bounding hyperplane h of h+. Since any

hyperplane can only intersect O
(
t1−

1
d

)
cubes in a grid, we have

|h+ ∩ A| = vol
(
h+ ∩ X

)
· t ± O

(
t1−

1
d

)
= vol

(
h+ ∩ X

)
· t ± O

(
1

t
1
d

)
t.

Setting t = Θ
(

1
εd

)
implies that A is an ε-approximation, of size Θ

(
1
εd

)
. Of course,

the size of A is too big.

The above bound can be improved by the following idea (called jittered sampling
in computer graphics literature):

instead of the centers, let A be a set constructed by picking a point
uniformly at random from each small cube.
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Then Chernoff’s bound implies that, with high probability, each half-space h+ has

error Õ
(√

t1−1/d
)
from the cubes intersecting h, giving

|h+ ∩ A| = vol
(
h+ ∩ X

)
· t ± Õ

(√
t1−

1
d

)
= vol

(
h+ ∩ X

)
· t ± Õ

(
1

t
d+1
2d

)
t.

Setting t = Θ̃
(

1
ε2

) d
d+1 implies that A is an ε-approximation of the desired size.

h+

We outline the Chernoff bound calculation. Let vol′
(
h+ ∩X

)
be the volume

of h+∩X from the cubes which intersect h and let A′ ⊆ A be the points chosen

from these O
(
t1−

1
d

)
cubes. See figure where the points of A′ are drawn. Let

Δ be the error of approximation due to these cubes; that is,

|h+ ∩ A′| = vol′
(
h+ ∩X

)
· |A′| ± Δ

= vol′
(
h+ ∩X

)
· |A′|

(
1± Δ

vol′ (h+ ∩X) · |A′|

)
.

Since E
[
|h+ ∩A′|

]
= vol′

(
h+ ∩X

)
· |A′|, the probability that the above fails

for a fixed h+ can be upper bounded using Chernoff’s bound by

exp

(
−Ω

(
Δ2

|A′|

))
= exp

(
−Ω

(
Δ2

t1−1/d

))
.

Setting Δ = Θ
(√

t1−1/d
)
implies that a fixed h+ has error O

(√
t1−1/d

)
with

positive probability; increasing t by a multiplicative logarithmic term and using

the union bound gets this probability small-enough so that each possible half-

space has error Õ
(√

t1−1/d
)
, completing the outline.

To extend this idea for an arbitrary point set in R
d, we will need a partitioning

analog of the uniform grid. That is the wonderful Matoušek’s simplicial partition
theorem, whose statement we recall.

Theorem 9.5. Let P be a set of n points in R
d and t ∈

[
2, n

2

]
a given integer

parameter. Then there exists a partition {P1, . . . , Pt} of P with |Pi| =
⌊
n
t

⌋
for

i = 1, . . . , t−1, such that any hyperplane in R
d intersects the convex-hull of at

most C5 · t1−
1
d sets of this partition. Here C5 is a constant depending only on

d.

The proof of Theorem 13.1, which we now present in detail, follows pretty much

along the lines of the proof for [0, 1]
d that is outlined above.
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Proof of Theorem 13.1. Let R be the primal set system induced on P by
half-spaces in R

d. As before2 it suffices to first take an ε
2 -approximation A′ of size

O
(

d
ε2

)
of R—say using Theorem 13.2—and then return an ε

2 -approximation of the

set system (A′,R|A′). Thus one can assume that |P | = n = Θ
(

d
ε2

)
. We will also

assume that d ≥ 2.

When d = 1, a set of Θ
(
1
ε

)
points of P , constructed by picking every εn-th

point of P as ordered from left to right, is an ε-approximation for the set

system induced by intervals.

Let t = C3

(
d
ε2 log

1
ε

) d
d+1 , with the constant C3 to be fixed later; the choice of this

value of t will become clear later in the proof. The algorithm to construct an
ε-approximation A ⊆ P is the following.

Epsilon-Approximation Algorithm for Half-spaces
(
P ⊂ R

d, ε > 0
)
.

Apply Theorem 9.5 to P with parameter t to get Ξ =
{
P1, . . . , Pt

}
.

A = ∅.
for i = 1, . . . , t do

add a point chosen uniformly at random from Pi to A.

return A.

We will argue that the set A of size t is an ε-approximation of R with constant
probability. For technical simplicity we will assume that t is an integer and n is a
multiple of t; thus each set of Ξ has size precisely n

t .

Let h+ be a half-space in R
d, with bounding hyperplane h. For A to be an ε-

approximation of h+ ∩ P , we require

|h+ ∩ A| = |h+ ∩ P | t
n

± ε t.

A set Pi ∈ Ξ that is completely contained in h+ is ‘perfectly represented’
by A, in the sense that if h+ only contained points of P from such sets,

then |h+ ∩ A| = |h+∩P |
(n/t) = |h+∩P | t

n .

The error is thus due to the sets of Ξ whose convex-hull intersects the
hyperplane h. Denote these sets by P1, . . . , Pm and let

P h = h+ ∩ (P1 ∪ · · · ∪ Pm) .

Let Ah be the m points of A chosen from the sets P1, . . . , Pm. See figure
where the points of Ah are drawn in solid.

The following statement is intuitive; for completeness, we give the proof.

Lemma 13.12. A is an ε-approximation of h+ ∩ P if

∣∣h+ ∩ Ah
∣∣ = |P h|

(n/t)

(
1± εn

|P h|

)
.

2See Lemma 12.5.
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h+

P1

P2

P3

P4

Proof. Let t′ be the number of sets of Ξ completely contained in h+. Setting

ζh to be a positive real such that
∣∣h+ ∩ Ah

∣∣ = |Ph|
(n/t) (1± ζh), we have

∣∣h+ ∩ A
∣∣ = |h+ ∩ Ah|+ t′ =

|P h|
(n/t)

(1± ζh) + t′ =

(
|P h|
(n/t)

+ t′
)
± |P h|ζh

(n/t)

=

(
t′ nt + |P h|

)
· t

n
± |P h| · ζh · t

n
=

|h+ ∩ P | · t
n

± |P h| · ζh · t
n

.

For A to be an ε-approximation of h+ ∩ P , we require

|P h| · ζh · t
n

≤ ε · t, and hence ζh ≤ εn

|P h| .

�

The key point here is that εn
|Ph| is not too small, as |P h| is not too large:

|P h| ≤ m · n

t
≤ C5 t1−

1
d · n

t
=

C5 n

t
1
d

, by Theorem 9.5.

For the probability calculations, we will need the following tail bound.

Lemma 13.13. For any parameter ζ > 0,

Pr

[∣∣h+ ∩ Ah
∣∣ 
= |P h|

(n/t)
(1± ζ)

]
≤ 2 exp

(
− ζ2

2 + ζ

|P h|
n/t

)
.

Proof. Let pi =
|h+∩Pi|

|Pi| be the probability that the point chosen from Pi lies

in h+. As

E
[ ∣∣h+ ∩ Ah

∣∣ ] = m∑
i=1

pi =
m∑
i=1

|h+ ∩ Pi|
|Pi|

=
m∑
i=1

|h+ ∩ Pi|
(n/t)

=
|P h|
(n/t)

,(13.14)

and the m elements are chosen independently, the required statement follows from
Chernoff’s bound (Corollary 1.23). �
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Lemmas 13.12 and 13.13 together imply an upper bound on the probability that A
fails to be an ε-approximation of h+ ∩ P :

Pr

[∣∣h+ ∩ Ah
∣∣ 
= |P h|

(n/t)

(
1± εn

|P h|

)]
≤ 2 exp

⎛
⎜⎝−

(
εn

|Ph|

)2
2 + εn

|Ph|
· |P h|
(n/t)

⎞
⎟⎠

= 2 exp

(
− ε2nt

2|P h|+ εn

)

≤ 2 exp

⎛
⎝− ε2nt

2 C5 n

t
1
d

+ εn

⎞
⎠

= 2 exp

(
− ε2t

d+1
d

2C5 + ε t
1
d

)
.

Recalling that t = C3

(
d
ε2 log

1
ε

) d
d+1 ,

≤ 2 exp

⎛
⎝−

C
d+1
d

3 d log 1
ε

2C5 + C
1
d
3

(
d εd−1 log 1

ε

) 1
d+1

⎞
⎠

≤ 2 exp

⎛
⎝−

C
d+1
d

3 d log 1
ε

2C5 + C
1
d
3

⎞
⎠

≤ 2 exp

(
− C3

4C5
d log

1

ε

)
,

where the second-to-last step uses the fact that d εd−1 log 1
ε ≤ 1 for d ≥ 2 and ε ≤ 1

2 .

On the other hand, the number of distinct subsets of X induced by half-spaces in
R

d can be upper bounded using Equation (1.13) by

2
d∑

i=0

(
n

i

)
≤ 2

(e n

d

)d
= 2

(
e ·Θ

(
d
ε2

)
d

)d

=

(
O

(
1

ε

))2d

.

Using the union bound over all distinct subsets induced by half-spaces,

Pr
[
A is not an ε-approximation of R

]
=

(
O

(
1

ε

))2d

· 2 exp
(
− C3

4C5
d log

1

ε

)
<

1

2
,

for a sufficiently large constant C3 depending only on C5.

This concludes the proof of Theorem 13.1. �
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Bibliography and discussion. The elegant proof presented here is due
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tions of ε-approximations we saw in Chapter 12 (see also Matheny and
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CHAPTER 14

Epsilon-Approximations: Relative Case

Chapter 13 introduced the notion of an ε-approximation and presented upper
bounds on sizes of ε-approximations of geometric and combinatorial set systems.
We now consider other notions of approximations.

Given a set system (X,F) and a target sample size t, our goal is to construct a set A
of size t that minimizes the error of approximating each S ∈ F . That is, we would
like to prove upper bounds on the value of η for which the following inequality can
be satisfied by A for all S ∈ F :

|S ∩ A| =
|S| t
n

± η =
|S|t
n

(
1± η

n

|S|t

)
.

For a uniform random A of size t, we have E [|S ∩ A|] = |S|t
n and thus η is the

additive error beyond the expectation. The value of η is guided by two technical
considerations.

Tail bounds: One of the main methods of constructing approximations is
via random sampling—if A is a uniform random sample of X of size t, then
Chernoff’s bound (Corollary 1.24) implies the following.

Fact 14.1. Let S ⊆ [n] and A a uniform random subset of [n] of size t. Then

Pr

[
|S ∩ A| �= |S| t

n
± η

]
≤ 2 exp

⎛
⎝−

η2n2

|S|2t2

2 + ηn
|S|t

· |S|t
n

⎞
⎠

= 2 exp

(
− η2n

2|S|t+ ηn

)
.

Fact 14.1 thus prohibits η from being too small for uniformly sampled ap-
proximations.

Chaining: A key property used in the proof of Theorem 12.8 to get the bound
of O

(
d
ε2

)
for ε-approximations was that ε-approximations are additive—that

is, if A is an ε1-approximation of a set S1 and an ε2-approximation of S2, then
A is an (ε1 + ε2)-approximation of S1 ∪ S2. This allowed us to ‘decompose’
the analysis into a logarithmic number of sub-problems (see the proof of
Theorem 13.2).

In this chapter we will consider two other notions of approximations that are pos-
sible within these constraints, the main one being that of relative (ε, δ)-approxima-
tions.

To see the intuition behind relative (ε, δ)-approximations, recall that for A to be an

ε-approximation of F , each S ∈ F must satisfy the property |S∩A| = |S| |A|
|X| ±ε |A|.

As the error margin ε |A| is independent of the size of S, the probability that a
uniform random sample A satisfies the above property for a set S decreases with

199
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the size of |S|. In fact, when |S| = Θ(εn) one can show that a random sample A

of size Θ̃
(
d
ε

)
suffices with high probability (see the proof of Claim 13.5). It is the

other extreme—when |S| = Ω(n)—that forces us to set |A| = Ω
(

1
ε2

)
.

Therefore a more fine-tuned notion of approximation is to specify two error
margins—an absolute error, and a relative error that increases with |S| when
|S| = Ω(εn).

A first try is to require, for each S ∈ F , that

|S ∩A| = |S| |A|
|X| ± max

{
|S|
|X| , ε

}
|A|.

Working this out using Fact 14.1 indeed shows that a uniform random sampleA

of size Θ̃
(
d
ε

)
satisfies the above for each S ∈ F . However, note that when |S|

|X| ≥
ε, the error term |S|

|X| |A| is as large as the main first term of the R.H.S. above!

Thus we will scale the entire error term by another user-given parameter,

denoted by δ > 0.

This brings us to the notion of a relative (ε, δ)-approximation.

Definition 14.2. Given a finite set system (X,F) and parameters 0 < δ, ε ≤ 1, a
set A ⊆ X is a relative (ε, δ)-approximation of F if for each S ∈ F ,

|S ∩ A| = |S| |A|
|X| ± δ ·max

{
|S| |A|
|X| , ε · |A|

}
.

Equivalently, dividing by |A| gives∣∣∣∣ |S||X| −
|S ∩ A|
|A|

∣∣∣∣ ≤ δ ·max

{
|S|
|X| , ε

}
.

In particular,

|S ∩ A| =

⎧⎪⎨
⎪⎩
(1± δ) |S| |A|

|X| if |S| ≥ ε |X|,

|S| |A|
|X| ± δ ε otherwise.

The main theorem of this chapter, and the most general statement on approxima-
tions presented in this text, is the following.

Theorem 14.3. There exists a positive constant C4 such that the following is true.
Let (X,F) be a finite set system with VC-dim (F) ≤ d and let 0 < δ, ε, γ ≤ 1

2 be
given parameters. Then a uniform random sample A ⊆ X of size at least

C4 ·
(

d

ε δ2
ln

1

ε
+

1

εδ2
ln

1

γ

)
is a relative (ε, δ)-approximation of F with probability at least 1− γ.

We remark that Theorem 14.3 implies earlier bounds on ε-nets and ε-approximations
for set systems with VC-dim (F) ≤ d:

ε-nets: Let N be a relative
(
ε, 1

2

)
-approximation, of size O

(
d
ε
log 1

ε

)
by The-

orem 14.3. Then for any S ∈ F with |S| ≥ εn,

|S ∩N | = |S||N |
n

± 1

2
max

{
|S||N |

n
, ε · |N |

}
≥ |S||N |

n
− |S||N |

2n
> 0.

That is, N is an ε-net of F .
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ε-approximations: Let A be a relative
(
1
2
, ε
)
-approximation, of size O

(
d
ε2

)
by Theorem 14.3. Then for any S ∈ F ,

|S ∩ A| = |S||A|
n

± εmax

{
|S||A|
n

,
1

2
|A|
}

=
|S||A|
n

± ε|A|.

That is, A is an ε-approximation of F .
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1. Relative and Sensitive Approximations

Yes, some people are brighter than others but I really believe that most
people can really get to quite a good level in mathematics if they’re pre-
pared to deal with these more psychological issues of how to handle the
situation of being stuck.

Andrew Wiles

Let (X,F) be a finite set system, with n = |X|. Recall the notion of relative
(ε, δ)-approximations.

Definition 14.2. Given a finite set system (X,F) and parameters 0 < δ, ε ≤ 1,
a set A ⊆ X is a relative (ε, δ)-approximation of F if for each S ∈ F ,

|S ∩A| = |S| |A|
|X| ± δ ·max

{
|S| |A|
|X| , ε · |A|

}
.

Equivalently, dividing by |A| gives∣∣∣∣ |S||X| −
|S ∩ A|
|A|

∣∣∣∣ ≤ δ ·max

{
|S|
|X| , ε

}
.

In particular,

|S ∩A| =

⎧⎪⎨
⎪⎩
(1± δ) |S| |A|

|X| if |S| ≥ ε |X|,

|S| |A|
|X| ± δ ε otherwise.

As an (εδ)-approximation is a relative (ε, δ)-approximation, since

εδ ≤ δ max

{
|S|
|X| , ε

}
,

Theorem 13.2 implies the existence of a relative (ε, δ)-approximation of size O
(

d
ε2δ2

)
.

A direct calculation shows that this bound can be improved.

We will need the following statement.

Lemma 14.4. Given (X,F), let A′ ⊆ X be a relative
(
ε, δ

3

)
-approximation of F .

Further let A ⊆ A′ be a relative
(
ε, δ

3

)
-approximation of (A′,F|A′). Then A is a

relative (ε, δ)-approximation of (X,F).

Proof. Set t′ = |A′| and t = |A|. Then for each S ∈ F ,

|S ∩ A′| = |S|t′
n

± δ

3
max

{
|S|t′
n

, εt′
}

, and

|(S ∩ A′) ∩ A| = |S ∩ A′| t
t′

± δ

3
max

{
|S ∩ A′| t

t′
, εt

}
.
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Since (S ∩ A′) ∩ A = S ∩ A, the above two statements together imply that |S ∩ A|
is

=

(
|S|t′
n ± δ

3 max
{

|S|t′
n , εt′

})
t

t′
± δ

3
max

⎧⎨
⎩
(

|S|t′
n ± δ

3 max
{

|S|t′
n , εt′

})
t

t′
, εt

⎫⎬
⎭

=
|S|t
n

± δ

3
max

{
|S|t
n

, εt

}
± δ

3
max

{
|S|t
n

± δ

3
max

{
|S|t
n

, εt

}
, εt

}

=
|S|t
n

± δ

3

(
max

{
|S|t
n

, εt

}
±max

{(
1 +

δ

3

)
|S|t
n

,

(
1 +

δ

3

)
εt

})

=
|S|t
n

± δ

3

(
2 +

δ

3

)
max

{
|S|t
n

, εt

}
.

As δ
3

(
2 + δ

3

)
≤ δ, A is a relative (ε, δ)-approximation of F . �

We now come to the first main theorem of this section.

Theorem 14.5. Let (X,F) be a finite set system with VC-dim (F) ≤ d and 0 <
δ, ε ≤ 1

2 be given parameters. Let A ⊆ X be a uniform random subset of X of size

c · d

εδ2
log

1

ε δ
,

where c > 0 is a sufficiently large constant. Then A is a relative (ε, δ)-approximation
of F with probability at least 1

2 .

Proof. The first step is to get rid of the dependence on n. By Theorem 13.11,
a uniform random sample A′ of size Θ

(
d

ε2δ2

)
is a ε δ

3 -approximation of F with

probability at least 3
4 . Thus it suffices to prove that given a set system (X,F) with

|X| = Θ

(
d

ε2δ2

)
and |F| = O

((
1

ε2δ2

)d
) (

by Lemma 4.3
)
,

a uniform random sample A ⊆ X of size

t = c · d

εδ2
log

1

ε δ
,

for a sufficiently large constant c, is a relative
(
ε, δ

3

)
-approximation of F with prob-

ability at least 3
4 . Then Lemma 14.4 would complete the proof of Theorem 14.5.

We will need the following upper bound on the probability that A fails to be a
relative (ε, δ)-approximation for a fixed set.

Lemma 14.6. For a fixed S ∈ F and a uniform random sample A ⊆ X of size t,

Pr
[
A is not a relative (ε, δ)-approximation of S

]
≤ 2 exp

(
−εδ2t

3

)
.

Proof. We consider two cases.

|S| < εn: Then δmax
{

|S| t
n , εt

}
= δεt. By Fact 14.1 with η = δεt,

Pr
[
A is not a relative (ε, δ)-approximation of S

]
≤ 2 exp

(
− δ2ε2t2 n

2|S|t + εδtn

)

≤ 2 exp

(
− δ2ε2t2 n

2εnt + εδtn

)
= 2 exp

(
− δ2εt

2 + δ

)
≤ 2 exp

(
−δ2εt

3

)
.
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|S| ≥ εn: In this case δmax
{

|S| t
n , ε t

}
= δ |S|t

n . By Fact 14.1 with η = δ |S|t
n ,

Pr
[
A is not a relative (ε, δ)-approximation of S

]
≤ 2 exp

(
−

δ2 |S|2t2
n2 n

2|S|t + δ |S|t
n n

)

≤ 2 exp

(
−

δ2 |S|t
n

2 + δ

)
≤ 2 exp

(
−δ2εt

3

)
, since |S| ≥ εn.

�

Finally, by the union bound and Lemma 14.6,

Pr
[
A is not a relative

(
ε,

δ

3

)
-approximation of F

]
≤ |F| · 2 exp

(
−εδ2t

27

)

= O

((
1

ε2δ2

)d
)

· 2 exp
(
−εδ2t

27

)
≤ 1

4
,

by setting t = c
εδ2 log

(
1

ε2δ2

)d
for a sufficiently large constant c.

Taking into account the earlier failure probability for A′, we conclude that A is a
relative (ε, δ)-approximation of F with probability at least 1

2 . �

Observe that Theorem 14.5 states the existence of a relative (ε, δ)-approxima-

tion whose size depends superlinearly on 1
δ
. Thus it is reasonable to hope that

the factor log 1
δ
in it can be removed using chaining, in a manner similar to

the proof of Theorem 13.2. Indeed this is the case, and will be the subject of

the next section.

We conclude this chapter by presenting another notion of approximation, called
sensitive ε-approximations .

Let A be a uniform random sample of X of size t. Recall the following.

Fact 14.1. Let S ⊆ [n] and A a uniform random subset of [n] of size t. Then

Pr

[
|S ∩ A| �= |S| t

n
± η

]
≤ 2 exp

⎛
⎝−

η2n2

|S|2t2

2 + ηn
|S|t

· |S|t
n

⎞
⎠

= 2 exp

(
− η2n

2|S|t+ ηn

)
.

For this probability of failure to be less than 1, we need

η2n

2|S|t + ηn
=

1
2|S|t
η2n + 1

η

= Ω(1) .

Or equivalently,
2|S|t
η2n

+
1

η
= O (1) ,

which is satisfied if η = Ω

(
max

{√
|S|t
n

, 1

})
= Ω

(√
|S|t
n

+ 1

)
.
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In particular, setting η = 1
2

(√
|S|t
n + 1

)
(the constant 1

2 is somewhat arbitrary

here), we arrive at the following constraint:

|S ∩ A| = |S| t
n

± 1

2

(√
|S| t
n

+ 1

)
=

|S| t
n

±
√

t

2

(√
|S|
n

+
1√
t

)
.

Equivalently, dividing by t gives∣∣∣∣ |S|n
− |S ∩ A|

t

∣∣∣∣ ≤ 1

2
√

t

(√
|S|
n

+
1√
t

)
.

Parameterizing this statement with respect to ε by setting ε = 1√
t
, we arrive at the

notion of a sensitive ε-approximation.

Definition 14.7. Given a finite set system (X,F) and a parameter 0 < ε ≤ 1, a
set A ⊆ X is a sensitive ε-approximation of F if for each S ∈ F ,∣∣∣∣ |S||X| −

|S ∩ A|
|A|

∣∣∣∣ ≤ ε

2

(√
|S|
|X| + ε

)
.

Equivalently, multiplying by |A| gives

|S ∩ A| = |S| |A|
|X| ± ε |A|

2

(√
|S|
|X| + ε

)
.

Observe that a sensitive ε-approximation N of F is also an ε′-net, for any ε′ > ε2:

For any S ∈ F with |S| > ε2 n,

|S ∩ N | = |S| |N |
n

± ε |N |
2

(√
|S|
n

+ ε

)
>

|S| |N |
n

− ε|N |
√

|S|
n

> 0,

where the second step uses ε <
√

|S|
n .

Thus the lower bound of Ω
(

d
ε2 log

1
ε

)
for the size of a ε2-net (Lemma 11.12) implies

a lower bound of Ω
(

d
ε2 log

1
ε

)
for the size of any sensitive ε-approximation. The

following theorem gives the matching upper bound.

Theorem 14.8. There exists a positive constant C10 such that the following is true.
Let (X,F) be a finite system with VC-dim(F) ≤ d. For given parameters 0 < ε ≤ 1

2
and γ ∈ (0, 1), let A ⊆ X be a subset of size at least

C10

ε2

(
d log

1

ε
+ log

1

γ

)
chosen uniformly at random. Then A is a sensitive ε-approximation of F with
probability at least 1− γ.

Proof. Let A be a random sample of X of size t. We first need an upper
bound on the probability that A fails to be a sensitive ε-approximation for a fixed
set.

Lemma 14.9. For a fixed S ∈ F and a uniform random sample A ⊆ X of size t,

Pr
[
A is not a sensitive ε-approximation of S

]
≤ 2 exp

(
−ε2t

10

)
.
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Proof. We consider two cases.

|S| < ε2n: Then εt
2

(√
|S|
n + ε

)
≥ ε2t

2 and so applying Fact 14.1 with η = ε2t
2 ,

Pr
[
A is not a sensitive ε-approx. of S

]
≤ 2 exp

(
− ε4t2 n/4

2ε2nt + ε2tn/2

)

= 2 exp

(
−ε2t

10

)
.

|S| ≥ ε2n: In this case εt
2

(√
|S|
n + ε

)
≥ εt

2

√
|S|
n and so applying Fact 14.1 with

η = εt
2

√
|S|
n ,

Pr
[
A not a sensitive ε-approx. of S

]
≤ 2 exp

⎛
⎝−

ε2t2 |S|
n n/4

2|S|t + εt
√

|S|
n n/2

⎞
⎠

= 2 exp

⎛
⎝− ε2t/4

2 + ε
√

n
|S|/2

⎞
⎠ ≤ 2 exp

(
−ε2t

10

)
.

�

Lemma 14.9 together with the union bound implies that a uniform random sam-
ple of size t fails to be a sensitive ε-approximation with probability at most |F| ·
2 exp

(
− ε2t

10

)
, which implies that

a uniform random sample of size at least 10
ε2 ln 2|F|

γ is a ε-sensitive ap-

proximation of F with probability at least 1− γ.

Now one can complete the proof via induction, along the lines of the proof of
Theorem 12.31. Let T (ε, γ) be a positive integer such that a uniform random
sample of size at least T (ε, γ) is a sensitive ε-approximation of F with probability
at least 1−γ. We will prove that for a large-enough constant C10, we have T (ε, γ) ≤
C10

ε2

(
d log 1

ε + log 1
γ

)
.

We will need the following fact that is easy to verify:

if A′ is a sensitive ε
2 -approximation of F and furthermore A is a sensitive

ε
4 -approximation of F|A′ , then A is a sensitive ε-approximation of F .

As a uniform random sample A′ ⊆ X of size T
(
ε
2 , γ

2

)
is a sensitive ε

2 -approximation
of F with probability at least 1− γ

2 (induction hypothesis), and a uniform random

sample A ⊆ A′ of size at least 10
(ε/4)2

ln 2|F|A′ |
(γ/2) is a sensitive ε

4 -approximation of F|A′

1Alternatively, similar to the proof of Theorem 14.5, we could also first take an ε
2
-

approximation of (X,F) to get rid of the dependence on |X| and then apply the union bound.
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with probability at least 1− γ
2 , we have

T (ε, γ) ≤ |A| = 10

(ε/4)
2 ln

2|F|A′ |
(γ/2)

≤ 10

(ε/4)
2 ln

2

(
eT( ε

2 ,
γ
2 )

d

)d

(γ/2)

≤ C10

ε2

(
d log

1

ε
+ log

1

γ

)
,

for a large-enough constant C10 > 1. �

Another proof is via relative (ε, δ)-approximations, for appropriate values of ε

and δ, by applying the more general Theorem 14.3 (see discussion).

Bibliography and discussion. The notion of sensitive approximations
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2. Improved Bounds for Relative Approximations

Mathematics is like a flight of fancy, but one in which the fanciful turns
out to be real and to have been present all along. Doing mathematics has
the feel of fanciful invention, but it is really a process for sharpening our
perception so that we discover patterns that are everywhere around . . . To
share in the delight and the intellectual experience of mathematics—to
fly where before we walked—that is the goal of mathematical education.

William Thurston

The main theorem of this section improves upon Theorem 14.5 by a multiplicative
factor of log 1

δ .

Theorem 14.3. There exists a positive constant C4 such that the following is true.
Let (X,F) be a finite set system with VC-dim (F) ≤ d and let 0 < δ, ε, γ ≤ 1

2 be
given parameters. Then a uniform random sample A ⊆ X of size at least

C4 ·
(

d

ε δ2
ln

1

ε
+

1

εδ2
ln

1

γ

)
is a relative (ε, δ)-approximation of F with probability at least 1− γ.

Overview of ideas. Recall the notion of relative (ε, δ)-approximations.

Definition 14.2. Given a finite set system (X,F) and parameters 0 < δ, ε ≤ 1,
a set A ⊆ X is a relative (ε, δ)-approximation of F if for each S ∈ F ,

|S ∩A| = |S| |A|
|X| ± δ ·max

{
|S| |A|
|X| , ε · |A|

}
.

Equivalently, dividing by |A| gives∣∣∣∣ |S||X| −
|S ∩ A|
|A|

∣∣∣∣ ≤ δ ·max

{
|S|
|X| , ε

}
.

In particular,

|S ∩A| =

⎧⎪⎨
⎪⎩
(1± δ) |S| |A|

|X| if |S| ≥ ε |X|,

|S| |A|
|X| ± δ ε otherwise.

The proof of Theorem 14.3 uses chaining, pretty much following the proof of The-
orem 13.2—with one subtlety. As the goal is to remove a factor of log 1

δ from the
bound of Theorem 14.5, a natural first try is to apply chaining on δ. That is, show
the existence of a small number of set systems on X—say F1, . . . ,Ft—such that
each set of F can be ‘derived’ from a combination of t sets, one from each Fi. Then
it suffices to show, using an appropriate analog of Claim 13.6, that if a uniform
random sample A is a relative (ε, δi)-approximation of each (X,Fi)—the δi’s being
chosen so that δ1 + · · ·+ δt is at most δ—then A is a relative (ε, δ)-approximation
of (X,F).

The problem with this approach is that Claim 13.6 does not hold for the

error function δmax
{

|S|
|X| , ε

}
. That is, given S1 ⊆ S2 ⊆ X, if A is a

relative (ε, δ1)-approximation of S1 and a relative (ε, δ2)-approximation
of S2, then A need not be a relative (ε, O (δ1 + δ2))-approximation of
S2\S1. This happens when |S2\S1| is much smaller than min {|S1|, |S2|}.
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The trick is to instead do chaining on the parameter ε, since the dependence on ε in
the error function does not involve |S|. We then proceed precisely as in the proof
of Theorem 13.2 and calculations will show that with probability at least 1 − γ,

A has total error at most δmax
{

|S|
n + c1ε, c2ε

}
for each S ∈ F2, for two absolute

constants c1 and c2. Since

δ ·max

{
|S|
n

+ c1ε, c2ε

}
≤ δ ·max

{
2 |S|
n

, 2 c1ε, c2ε

}

≤ 2δ ·max

{
|S|
n

,
(
c1 +

c2
2

)
ε

}
,

we arrive at a relative
((

c1 +
c2
2

)
ε, 2δ

)
-approximation of F .

Of course one can re-do the entire calculation with δ′ = δ
2 and ε′ = ε

(c1+ c2
2 )

to get a

relative (ε, δ)-approximation. However, for notational convenience, we will simply
do the calculations with parameters ε, δ and end up with a relative (O (ε) , O (δ))-
approximation.

We first recall the useful tail bound.

Fact 14.1. Let S ⊆ [n] and A a uniform random subset of [n] of size t. Then

Pr

[
|S ∩ A| �= |S| t

n
± η

]
≤ 2 exp

⎛
⎝−

η2n2

|S|2t2

2 + ηn
|S|t

· |S|t
n

⎞
⎠

= 2 exp

(
− η2n

2|S|t+ ηn

)
.

Proof of Theorem 14.3. The analysis can be divided into three stages.

1. From X to A′. Given (X,F), let A′ ⊆ X be a uniform random sample of
sufficient size such that A′ is a εδ

3 -approximation of F with probability at least 1− γ
2 .

Note that A′ is also a relative
(
ε, δ

3

)
-approximation of F . Recall the following:

Lemma 14.4. Given (X,F), let A′ ⊆ X be a relative
(
ε, δ

3

)
-approximation of

F . Further let A ⊆ A′ be a relative
(
ε, δ

3

)
-approximation of (A′,F|A′). Then

A is a relative (ε, δ)-approximation of (X,F).

Thus it suffices to show that a uniform random sample A ⊆ A′ of size at least

t = C4 ·
(

d

εδ2
ln

1

ε
+

1

εδ2
ln

1

γ

)
=

C4

εδ2
ln

1

εdγ
,

where C4 is a sufficiently large constant whose value will be fixed later, is a relative(
ε, δ

3

)
-approximation of F|A′ with probability at least 1− γ

2 .

2That is,
∣∣∣ |S|
|X| −

|S∩A|
|A|

∣∣∣ ≤ δmax
{

|S|
n

+ c1ε, c2ε
}
.
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To avoid additional notations we will simply assume that X = A′, and so by
Theorem 12.3 we have

|X| = n =
9C1

ε2δ2

(
d ln

3

εδ
+ ln

2

γ

)
≤ 27C1d

ε3δ3

(
1 +

1

d
ln

2

γ

)
≤ 27C1d

ε3δ3
exp

(
1

d
ln

2

γ

)
,

|F| ≤
(

e|X|
d

)d

≤
(
27eC1

ε3δ3

)d

exp

(
ln

2

γ

)
=

(
27eC1

ε3δ3

)d
2

γ
,

where the first step in the bound on |F| follows from Lemma 4.3.

2. Constructing small set systems. Set k = �log 1
δ � and for each i ∈ [1, k],

let Pi : a maximal εn
2i -packing of (X,F).

That is, the size of the set symmetric difference between any pair of sets in Pi is at
least εn

2i . Set Pk+1 = F .

For any i ∈ [1, k] and S ∈ Pi+1, the maximality of Pi implies that there exists a
set FS ∈ Pi such that |Δ(S, FS)| < εn

2i (FS could be the set S itself). Define

Ai =
{
S \ FS : S ∈ Pi+1

}
and Bi =

{
FS \ S : S ∈ Pi+1

}
,

where each set in Ai ∪ Bi has size less than εn
2i . Furthermore, by Theorem 5.8,

for i ∈ [1, k − 1] : |Ai|, |Bi| ≤ |Pi+1| = O

(
(8e)d

(
2i+1

ε

)d
)

and |Ak|, |Bk| ≤ |F|.

Let
εi =

√
i

2i
ε.

Note that

(14.10)
∞∑
j=1

√
j

2j
=

2√
2
+

∞∑
j=3

√
j

2j
≤

√
2 +

√
3

8

∞∑
i=0

(√
2

3

)i

≤ 5,

where the second step uses that for j ≥ 3,

√
(j+1)/2j+1√

j/2j
=
√

1
2
+ 1

2j
≤
√

2
3
.

Claim 14.11. For a sufficiently large constant C4, with probability at least 1− γ
2 ,

A is simultaneously

(i) a relative (ε, δ)-approximation of P1, and
(ii) a relative (ε, δ)-approximation of Ak ∪ Bk, and
(iii) a relative (εi, δ)-approximation of Ai ∪ Bi, i ∈ [1, k − 1].

Proof. (i) Applying Lemma 14.6, the probability of failure is at most

|P1| · 2 exp
(
−εδ2t

3

)
= O

((
32e

ε

)d
)

· 2 exp
(
−εδ2t

3

)

= O

((
32e

ε

)d
)

· 2 exp
(
−

C4 ln
1

εdγ

3

)

= O

((
32e

ε

)d
)

· 2
(
εdγ
)C4/3 ≤ γ

6
,

for a sufficiently large constant C4.
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(ii) We have |Ak|, |Bk| ≤ |F| and each set in Ak ∪ Bk has size at most εn
2k

≤ εδn.

Thus δmax
{

|S|t
n , εt

}
= δεt and by applying Fact 14.1 with η = δεt, the probability

of failure is at most

2|F| · 2 exp
(
− δ2ε2t2 · n
2εδn · t + δεt · n

)
= 4|F| · exp

(
−δεt

3

)
= 4|F| · exp

(
−

C4 ln
1

εdγ

3δ

)

≤ 4

(
27 e C1

ε3δ3

)d
2

γ
·
(
εdγ
)C4/3δ ≤ γ

6
,

for a sufficiently large constant C4.

(iii) For any i ∈ [1, k − 1] and S ∈ Ai ∪ Bi, we have |S| < εn
2i ≤ εin. Thus

δmax
{

|S|t
n , εit

}
= δεit and by applying Fact 14.1 with η = δεit, the probability of

failure for a fixed S ∈ Ai ∪ Bi is at most

2 exp

(
− δ2ε2i t

2 · n
2|S| · t + δεit · n

)
≤ 2 exp

(
−

δ2 t i
2i ε2

2ε/2i + δ
√

i/2i ε

)

= 2 exp

(
− δ2 t i ε

2 + δ
√

i2i

)
≤ 2 exp

(
− δ2 t i ε

2 + δ
√

log(1/δ) · (1/δ)

)

≤ 2 exp

(
−

C4 i ln 1
εd γ

3

)
.

The probability that A fails to be a relative (εi, δ)-approximation of some Ai ∪ Bi

is at most

k−1∑
i=1

|Ai ∪ Bi| · 2 exp
(
−

C4 i ln 1
εd γ

3

)
≤ 4

k−1∑
i=1

O

((
16 e 2i

ε

)d
)(

εdγ
)C4 i/3

≤ γ

12

k−1∑
i=1

(2ε)
id ≤ γ

6
,

for a sufficiently large constant C4. �

3. Chaining. Let S ∈ F . There exists a set Sk ∈ Pk with Ak = S \ Sk ∈ Ak

and Bk = Sk \ S ∈ Bk such that S = (Sk \ Bk) ∪ Ak. Thus∣∣∣∣ |S|n
− |S ∩ A|

t

∣∣∣∣ =
∣∣∣∣∣ | (Sk \ Bk) ∪ Ak|

n
−

|
( (

Sk \ Bk

)
∪ Ak

)
∩ A|

t

∣∣∣∣∣
Since Bk ⊆ Sk and Sk ∩ Ak = ∅,

=

∣∣∣∣
(
|Sk|
n

− |Bk|
n

+
|Ak|
n

)
−
(
|Sk ∩ A|

t
− |Bk ∩ A|

t
+

|Ak ∩ A|
t

)∣∣∣∣
≤
∣∣∣∣ |Sk|

n
− |Sk ∩ A|

t

∣∣∣∣+
∣∣∣∣ |Ak|

n
− |Ak ∩ A|

t

∣∣∣∣+
∣∣∣∣ |Bk|

n
− |Bk ∩ A|

t

∣∣∣∣
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Using Claim 14.11 (ii),

≤
∣∣∣∣ |Sk|

n
− |Sk ∩ A|

t

∣∣∣∣+ δmax

{
|Ak|
n

, ε

}
+ δmax

{
|Bk|
n

, ε

}

=

∣∣∣∣ |Sk|
n

− |Sk ∩ A|
t

∣∣∣∣+ 2 δε, as |Ak|, |Bk| ≤ εn.

The above argument can now be repeated to upper bound
∣∣∣ |Sk|

n − |Sk∩A|
t

∣∣∣. That is,
one can write Sk in terms of a set Sk−1 ∈ Pk−1, Ak−1 ∈ Ak−1, Bk−1 ∈ Bk−1 and
so on until we reach a set S1 ∈ P1. Using Claim 14.11 (iii), we arrive at

≤
∣∣∣∣ |S1|

n
− |S1 ∩ A|

t

∣∣∣∣+ 2δ

k−1∑
j=1

εj + 2δε ≤
∣∣∣∣ |S1|

n
− |S1 ∩ A|

t

∣∣∣∣+ 12δε,

where the last step follows from Equation (14.10). Using Claim 14.11 (i) as well as

the fact that |S1| ≤ |S|+
∑k

j=1 |Bi| ≤ |S|+
∑∞

j=1
εn
2j ≤ |S|+ 2εn,

≤ δmax

{
|S1|
n

, ε

}
+ 12δε ≤ δ

(
|S|
n

+ 2ε

)
+ 12δε

≤ δ

(
|S|
n

+ 14ε

)
≤ 2δmax

{
|S|
n

, 14ε

}
.

This concludes the proof. �
Bibliography and discussion. The basic idea of the proof fol-
lows [LLS0114b], with an earlier use of this idea in the important pa-
per [Mat95a]. The presentation given in the text is from [CM21].
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abs/2008.08970, 2021. arXiv:2008.08970. url: https://arxiv.org/abs/2008.08970.
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10.1006/jcss.2000.1741. MR1824457
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CHAPTER 15

Epsilon-Approximations: Functional Case

Given a set P of n points in R
d and a parameter ε > 0, let A be an ε-approximation

of the primal set system induced on P by balls in R
d. Then clearly A can be used

to approximate P ‘combinatorially’ with respect to balls:

Let Pq,r = Ball (q, r) ∩ P be the set of points of P contained in the ball
of radius r centered at q; similarly set Aq,r = Ball (q, r) ∩ A.

Then for any q ∈ R
d and r > 0, |Pq,r| can be approximated by |Aq,r| · |P |

|A| ,

since by the definition of ε-approximations,

|Aq,r| =
|Pq,r| |A|

|P | ± ε|A| or equivalently,

|Pq,r| = |Aq,r| ·
|P |
|A| ± ε|P |.(15.1)

The new idea in this chapter is the observation that since for any q ∈ R
d, Equa-

tion (15.1) holds for every radius r, the set A can also be used to approximate the
sum of distances from q to the points of P . In particular, here is another property
that holds for A: for any q ∈ R

d and r > 0,∣∣∣∣∣
∑

p∈Pq,r
dist (p, q)

n
−
∑

p∈Aq,r
dist (p, q)

|A|

∣∣∣∣∣ ≤ 3εr.(15.2)

To see the intuition for Equation (15.2), we sketch the proof for a weaker bound of
3
√

εr.

q

Pi

(1−√
)i+1r

(1−√
)ir

P0

r

Recall that we say A is an ε-approximation of a set P ′ ⊆ P if |P ′∩A| = |P ′| |A|
|P | ±ε|A|.
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214 15. EPSILON-APPROXIMATIONS: FUNCTIONAL CASE

Partition Pq,r into disjoint sets P0, P1, . . ., where p ∈ Pi if and only if

dist (p, q) ∈
((

1−
√
ε
)i+1

r,
(
1−

√
ε
)i

r
]
.

That is, Pi is the set of points of P lying in the region

Ball
(
q,

(
1−

√
ε
)i

r
) ∖

Ball
(
q,

(
1−

√
ε
)i+1

r
)
.

Now the sum of distances of the points of A to q can be approximated by summing
up over the Pi’s:( ∞∑

i=0

(
1−

√
ε
)i+1

r · |Pi ∩A|
)

<
∑

p∈Aq,r

dist (p, q) ≤
( ∞∑

i=0

(
1−

√
ε
)i

r · |Pi ∩ A|
)

.

We remark that we only need to do the above sum till index i = 1√
ε
ln 1

ε
, as after

that the average sum of distances is most εr in any case. Using the fact that A is a
2ε-approximation of each Pi (by Claim 13.6),( ∞∑

i=0

(
1−

√
ε
)i+1

r

( |Pi| |A|
n

− 2ε|A|
))

<
∑

p∈Aq,r

dist (p, q) ≤

( ∞∑
i=0

(
1−

√
ε
)i

r

( |Pi| |A|
n

+ 2ε|A|
))

(
1−

√
ε
) ( ∞∑

i=0

(
1−

√
ε
)i ( |Pi|

n
− 2ε

))
<

∑
p∈Aq,r

dist (p, q)

r |A|
≤

( ∞∑
i=0

(
1−

√
ε
)i ( |Pi|

n
+ 2ε

))
.

Using the fact that 2ε
∑∞

i=0

(
1−

√
ε
)i

= 2ε · 1
1−(1−

√
ε)

= 2
√
ε,

(
1−

√
ε
) ((

1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)
− 2

√
ε

)
<

∑
p∈Aq,r

dist (p, q)

r |A|
≤

(
1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)
+ 2

√
ε.

Similarly approximating
∑

p∈Pq,r
dist (p, q) over the Pi’s gives

(
1−

√
ε
) ( ∞∑

i=0

(
1−

√
ε
)i

r |Pi|
)

<
∑

p∈Pq,r

dist (p, q) ≤

( ∞∑
i=0

(
1−

√
ε
)i

r |Pi|
)

.

Dividing by rn,

(
1−

√
ε
) (

1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)
<

∑
p∈Pq,r

dist (p, q)

rn
≤

(
1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)
.

These together imply the desired bound:∣∣∣∣∣
∑

p∈Pq,r
dist (p, q)

r n
−

∑
p∈Aq,r

dist (p, q)

r |A|

∣∣∣∣∣ ≤ 2
√
ε+

√
ε

(
1

n

∞∑
i=0

(
1−

√
ε
)i |Pi|

)

< 2
√
ε+

√
ε

(
1

n

∞∑
i=0

|Pi|
)

≤ 3
√
ε.
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15. EPSILON-APPROXIMATIONS: FUNCTIONAL CASE 215

As we will see later, the improvement to 3εr presented later in this chapter follows

with more precise calculations.

Consider now another application of the same idea on a slightly more complicated
distance function where the point q is replaced by a set of k points. For any set X
of k points in R

d and p ∈ P , define

dist (p, X) = min
q∈X

dist (p, q) .(15.3)

Further let
PX,r = {p ∈ P : dist (p, X) ≤ r} .

Observe that PX,r is the set of points of P that lie in the union of the k balls of
radius r centered at the points of X. Denote this union by Ball (X, r).

As earlier, our goal is to estimate, for any given X ∈
(
R

d
)k

and r ≥ 0, the expression∑
p∈PX,r

dist(p, X).

Not surprisingly, if A is an ε-approximation of the set system induced on P by the
union of k balls, then one can show that∣∣∣∣∣

∑
p∈PX,r

dist (p, X)

n
−
∑

p∈AX,r
dist (p, X)

|A|

∣∣∣∣∣ ≤ 3εr.

The first result of this chapter is a more general statement which implies both the
above two instances.

The second result is its application to an algorithmic problem central to several
domains: the k-median clustering problem, where given a set P of points in R

d and
an integer parameter k > 0, the goal is to partition the points of P into k clusters
based on certain geometric criteria.
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216 15. EPSILON-APPROXIMATIONS: FUNCTIONAL CASE

1. A Functional View of Approximations

A common error of judgment among mathematicians is the confusion
between telling the truth and giving a logically correct presentation. The
two objectives are antithetical and hard to reconcile. Most presentations
obeying the current Diktats of linear rigor are a long way from telling
the truth; any reader of such a presentation is forced to start writing on
the margin, or deciphering on a separate sheet of paper.

The truth of any piece of mathematical writing consists of realiz-
ing what the author is “up to”; it is the tradition of mathematics to do
whatever it takes to avoid giving away this secret.

Gian-Carlo Rota

Recall the following statement.

Let P be a set of n points in R
d. Each p ∈ P defines the function

dist (p, X) = min
q∈X

dist (p, q) ,

where X is a finite set of points in R
d.

Then for any positive integer k and ε > 0, there exists an ε-approximation
A ⊆ P such that for any set X of k points in R

d and r ∈ R
+,∣∣∣∣∣

∑
p∈PX,r

dist (p, X)

n
−
∑

p∈AX,r
dist (p, X)

|A|

∣∣∣∣∣ ≤ 3εr,(15.4)

where PX,r = {p ∈ P : dist (p, X) ≤ r} and AX,r = A ∩ PX,r.

Note that the role of each p ∈ P is captured by the function dist (p, ·). We now prove
Equation (15.4) in an abstract setting where dist (p, ·) is replaced by an arbitrary
function gp : X → R

+, where X is a given domain. That is,

set of all k-tuples of points in R
d −→ a domain X ,

set of n functions dist (p, ·), p ∈ P −→ set G of n functions from X to R
+,

PX,r = {p ∈ P : dist(p, X) ≤ r} −→ GX,r =
{
g ∈ G : g (X) ≤ r

}
.

The main theorem of this section states and proves the analog of Equation (15.4)
in this abstract setting for a set G of n functions.

Theorem 15.5. Let G = {g1, . . . , gn} be a set of n functions over a domain X 1,
where gi : X → R

+. Define the set system (G,F), with

F =
{
GX,r : X ∈ X and r ∈ R

+
}

, where GX,r =
{
g ∈ G : g (X) ≤ r

}
.

Let A ⊆ G be an ε-approximation of F , for a given parameter ε > 0. Then for any
X ∈ X and r ∈ R

+, setting AX,r = A ∩ GX,r, we have∣∣∣∣∣
∑

g∈GX,r
g (X)

|G| −
∑

g∈AX,r
g (X)

|A|

∣∣∣∣∣ ≤ 3εr.

To visualize Theorem 15.5, consider the case when X = R. The figure illustrates
an example of five functions g1, . . . , g5. In this example, the set GX,r is simply the
set of functions lying below the point (X, r).

1X need not be finite. In the previous example, X was the set of all k-tuples of points in R
d.
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X

g1

g2

g3

g4

g5

{g1, g2, g3, g4}

{g3, g4}

Before we proceed to the proof, we illustrate the versatility of Theorem 15.5 by
showing a specific consequence.

Let P be a set of n points in R
d and X the set of all k-tuples of points in

R
d. Additionally, for each p ∈ P we are given a function fp : X → R

+.
Set

G = {fp : p ∈ P} .

For each X ∈ X , let rX be the smallest value for which GX,r = G. That
is,

rX = max
p∈P

fp(X).

Applying Theorem 15.5 to P and G, we arrive at the following.

Corollary 15.6. Let P be a set of n points in R
d and k a positive

integer. Further each p ∈ P has an associated function

fp :
(
R

d
)k → R

+.

These functions define a set system (P,R), with

R =
{

PX,r : X ∈
(
R

d
)k

and r ∈ R
+
}

,

where PX,r =
{
p ∈ P : fp (X) ≤ r

}
.

Let A be an ε-approximation of R. Then for any X ⊆ R
d with |X| = k,

we have∣∣∣∣
∑

p∈P fp (X)

|P | −
∑

p∈A fp (X)

|A|

∣∣∣∣ ≤ 3εrX = 3εmax
p∈P

fp(X).

Note that for the case where fp(X) = dist(p, X), R is precisely the
primal set system induced on P by the union of k equal-radius balls in
R

d.

Overview of ideas. For a fixed X ∈ X and r ∈ R
+, we need to relate the

quantities ∑
g∈GX,r

g(X) and
∑

g∈AX,r

g(X).
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As earlier, one way to proceed is to partition GX,r into disjoint sets G0, G1, . . .,
where

Gi =

{
g ∈ G : g (X) ∈

(
(1− ε)i+1 r, (1− ε)i r

]}
.

Then all the functions in Gi have approximately the same value on X, and so one
can approximately bound the summation of functions in Gi in terms of |Gi|, and
the summation of functions in A ∩ Gi in terms of |A ∩ Gi|.
However, we present a different proof based on an elegant trick: we sort the func-
tions in GX,r by increasing g (X) values, and rewrite each of the above two sum-
mations as sums of the interval lengths between two consecutive function values in
the sorted order. Concretely,

let GX,r = {g1, . . . , gt}, sorted by increasing g (X) values.

Then any interval

Ci = gi (X)− gi−1 (X)

is ‘contributed’ in
∑

g∈GX,r
g(X) by precisely the functions {gi, . . . , gt} (see fig-

X

r

g0 = 0

g1

g3{
g2

g4

g5

g3(X) − g2(X)

ure). Summing over all consecutive intervals, and using the fact that A is an
2ε-approximation of each {gi, . . . , gt}, we get the required bound.

In the formal proof one has to be a little careful though, as multiple functions might
have the same value on X.

Proof of Theorem 15.5. Fix any X ∈ X and r ∈ R
+. Sort the functions in

GX,r by increasing g (X) values, and partition GX,r into groups along this order:

GX,r = G1 ∪ · · · ∪ Gm,

where all the functions in Gi, i ∈ [m], have the same value on X. Note that
m ≤ |GX,r|. Set

G≥i = Gi ∪ · · · ∪ Gm.

As A is an ε-approximation of the sets G1 ∪ · · · ∪ Gi for all i ∈ [m],
Claim 13.6 (2) implies the following.

Claim 15.7. For each i ∈ [m], A is a 2ε-approximation of G≥i.
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Now we sum up the functions in GX,r and AX,r by summing up over the differences
between values of adjacent functions. For each i ∈ [m], fix an arbitrary function
gi ∈ Gi and let g0 = 0. Then∑

g∈GX,r

g (X) =

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣G≥i

∣∣, and

∑
g∈AX,r

g (X) =

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣A ∩ G≥i

∣∣.
Thus the required expression∣∣∣∣∣

∑
g∈GX,r

g (X)

n
−
∑

g∈AX,r
g (X)

|A|

∣∣∣∣∣
is upper bounded by∣∣∣∣∣
(

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣G≥i

∣∣
n

)
−
(

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣A ∩ G≥i

∣∣
|A|

)∣∣∣∣∣
≤

m∑
i=1

(
gi (X)− gi−1 (X)

)
·
∣∣∣∣ |G≥i|

n
− |A ∩ G≥i|

|A|

∣∣∣∣
≤

m∑
i=1

(
gi (X)− gi−1 (X)

)
· 2ε ≤ 2εr,

where the second-to-last step used Claim 15.7. �
Bibliography and discussion. The material in this section is from
[FL11] (with some simplifications). The size of the ε-approximation in
Theorem 15.5 depends on a parameter called the pseudo-dimension, which
is a generalization of the notion of VC-dimension for general functions
(see [HP11, Chapter 7] for details).

[FL11] D. Feldman and M. Langberg, A unified framework for approximating and clustering
data, STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing,
ACM, New York, 2011, pp. 569–578, DOI 10.1145/1993636.1993712. MR2932007

[HP11] S. Har-Peled, Geometric approximation algorithms, Mathematical Surveys and Mono-
graphs, vol. 173, American Mathematical Society, Providence, RI, 2011, DOI
10.1090/surv/173. MR2760023

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.

https://www.ams.org/mathscinet-getitem?mr=2932007
https://www.ams.org/mathscinet-getitem?mr=2760023


220 15. EPSILON-APPROXIMATIONS: FUNCTIONAL CASE

2. Application: Sensitivity and Coresets for Clustering

Elegant algorithms are easy to program correctly, as well as being
efficient. A clever algorithm that is clean and elegant is much more
likely to be used than a messy one. When people understand how an
algorithm works, which is much more likely with an elegant algorithm,
they are more likely to have confidence in the results it produces.

Also, elegant solutions are much easier to generalize, to extend to
other problems. My goal is to find general approaches and solutions,
not ad hoc tricks.

Robert Tarjan

Given a set P of n points in R
d, the k-median problem asks to compute a set X of

k points that minimizes the cost function2

Cost(P, k) = min
X⊆R

d

|X|=k

Cost(P, X), where Cost(P, X) =
∑
p∈P

dist(p, X).

One approach towards solving this problem is to first compute a smaller
set A that ‘approximates’ P with respect to Cost(P, X). That is, for
every set X of k points in R

d we would like Cost(P, X) to be approxi-
mately equal to Cost(A, X) (scaled up appropriately). Then the original
problem on P is reduced to finding an X minimizing Cost(A, X)—an
easier problem if |A| is much smaller than |P |.

This leads to the following definition.

Definition 15.8. Given a set P of n points in R
d and a parameter ε > 0, a set

A ⊆ R
d together with a weight function w : A → R is an ε-coreset for the k-median

problem on P if for every X ⊆ R
d of k points,

(15.9)
∑
p∈A

dist (p, X) · w (p) = (1± ε) ·
∑
p∈P

dist (p, X) .

Our goal then is to construct an ε-coreset for the k-median problem. We will prove
two main theorems, the first of which is the following.

Theorem 15.10. Let P be a set of n points in R
d and k ∈ Z

+, ε > 0 be two given
parameters. Define

S =
∑
p∈P

sup
Y⊆R

d

|Y |=k

dist(p, Y )∑
q∈P dist(q, Y )

.

Then there exists an ε-coreset A ⊆ P of size O
(

S2 d k log k
ε2

)
for the k-median prob-

lem on P .

The size of the ε-coreset in Theorem 15.10 relies on the seemingly mysterious quan-
tity S; however its proof will demonstrate that S ‘falls out’ naturally when con-
structing coresets using ε-approximations. There do exist good upper bounds on S
but using techniques and ideas outside the scope of this text (see discussion).

2Recall that dist (p,X) = minq∈X dist (p,X).
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2. APPLICATION: SENSITIVITY AND CORESETS FOR CLUSTERING 221

Our second main result shows that the dependency on S can be removed if one is
also given an approximate solution B.

Theorem 15.11. Let P be a set of n points in R
d and k ∈ Z

+, ε > 0 be two given
parameters. Further let B ⊆ R

d be a set of points and C ≥ 1 such that

Cost(P, B) ≤ C · Cost(P, k).

Then there exists an ε-coreset for the k-median problem on P of size

O

(
C2 d k log k

ε2
+ |B|

)
.

Note that |B| could be larger than k. Furthermore B is only a C-approximation to
Cost(P, k), where C can be large, even a function of k and n. Theorem 15.11 shows
that this approximate solution is already sufficient to get a small ε-coreset for P .

Overview of ideas. The proof of Theorems 15.10 and 15.11 rely on the following
two insights. Let X be any set of k points in R

d.

Relation to ε-approximations: Rewrite Equation (15.9) to get∣∣∣∣∣∣
∑
p∈P

dist (p, X)−
∑
p∈A

dist (p, X) · w (p)

∣∣∣∣∣∣ ≤ ε ·
∑
p∈P

dist (p, X) .

This resembles the notion of ε-approximations. Indeed, applying Corollary 15.6 to
P with functions fp (X) = dist (p, X) for each p ∈ P , an ε-approximation A ⊆ P
of the set system induced on P by the union of k balls in R

d satisfies∣∣∣∣∣∣
∑
p∈P

dist(p, X)−
∑
p∈A

dist(p, X)
|P |
|A|

∣∣∣∣∣∣ ≤ 3 ε · |P | ·max
p∈P

dist(p, X).

The set A would be an O (ε)-coreset, with weight function w(p) = |P |
|A| , if for each

X,

|P | ·max
p∈P

dist (p, X) = O

⎛
⎝∑

q∈P

dist (q, X)

⎞
⎠ ,

or equivalently, if for each p and each X,

dist (p, X) = O

(∑
q∈P dist (q, X)

|P |

)
.

This is not the case, of course—each distance cannot be upper bounded by the
average distance for all X ⊆ R

d.

Weighted ε-approximations: The condition dist(p,X)∑
q∈P dist(q,X) = O( 1

|P | ) suggests

that one should construct an ε-approximation according to a weight distribu-
tion, which can then be set depending on the relative values of dist (p, ·). This
idea, sometimes called importance sampling, is thematically very similar to the
idea in Theorem 8.20. Specifically, consider the following weighted version of
Corollary 15.6.
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Lemma 15.12. Let P be a set of n points in R
d and k a positive integer. For each

p ∈ P we are given a rational weight mp and a function fp :
(
R

d
)k → R

+. These
functions define a set system (P,R) with

R =
{
PX,r : X ⊆ R

d, |X| = k and r ∈ R
}

, where PX,r =
{
p ∈ P : fp (X) ≤ r

}
.

Then given ε > 0 there exists a multiset A ⊆ P of size O
(

VC-dim(R)
ε2

)
such that

for any X ∈
(
R

d
)k
,∣∣∣∣∣∣

∑
p∈P fp(X)∑
p∈P mp

−
∑

p∈A
fp(X)
mp

|A|

∣∣∣∣∣∣ ≤ 3ε

(
max
p∈P

fp(X)

mp

)
.(15.13)

Proof. By scaling up, we can assume that each mp is an integer. Let
P ′ be the set constructed by adding mp copies of each p ∈ P to P ′, where

each copy of p is assigned the function
fp(X)

mp
. By applying Corollary 15.6 to

P ′, there exists a set A such that for all X ∈
(
R

d
)k
,∣∣∣∣∣

∑
p′∈P ′ fp′(X)

|P ′| −
∑

p′∈A fp′(X)

|A|

∣∣∣∣∣ ≤ 3ε

(
max
p′∈P ′

fp′(X)

)
.(15.14)

Noting that
∑

p′∈P ′ fp′(X) =
∑

p∈P fp(X), Equation (15.14) is equivalent

to Equation (15.13).
Finally, as the VC-dimension is unchanged by adding duplicate elements,

Theorem 13.2 implies that |A| = O
(

VC-dim(R)

ε2

)
. �

In the proof of Theorems 15.10 and 15.11 we will set the parameters mp, fp (·) and
ε′ such that an ε′-approximation A given by Lemma 15.12 can be used to construct
the required ε-coreset.

Given our preparation, the proof of our first main result is immediate.

Theorem 15.10. Let P be a set of n points in R
d and k ∈ Z

+, ε > 0 be two given
parameters. Define

S =
∑
p∈P

sup
Y⊆R

d

|Y |=k

dist(p, Y )∑
q∈P dist(q, Y )

.

Then there exists an ε-coreset A ⊆ P of size O
(

S2 d k log k
ε2

)
for the k-median prob-

lem on P .

Proof. Set fp(X) = dist(p, X) for each p ∈ P and let mp be the weight of
p ∈ P . These weights will be set later and normalized so that

∑
p∈P mp = 1.

Further let ε′ > 0 be a parameter to be set later.

Let A be an ε′-approximation given by Lemma 15.12 applied to P with weights mp

and functions fp (·). That is, for each set X of k points in R
d, A satisfies∣∣∣∣∣∣

∑
p∈P

dist(p, X)−
∑
p∈A

dist(p, X) · 1

|A|mp

∣∣∣∣∣∣ ≤ 3ε′
(
max
p∈P

dist(p, X)

mp

)
.(15.15)
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For A to be an ε-coreset, the right-hand side of the above inequality must

be upper bounded by ε ·
∑

p∈P dist(p,X). The natural choice is to set mp =
dist(p,X)∑

q∈P dist(q,X)
for each p ∈ P and ε′ = ε

3
. However mp must be independent of

X, as A must work for all choices of X! Considering the worst-case bound for

mp over all choices of X leads to the notion of the sensitivity of a point.

Definition 15.16. The sensitivity of each p ∈ P with respect to {fp : p ∈ P} is
defined to be

s(p) = sup
Y⊆R

d

|Y |=k

fp(Y )∑
q∈P fq(Y )

.

Let S =
∑

p∈P s (p) and set

fp(X) = dist(p, X) and mp =
s (p)

S
3.

From Equation (15.15),∣∣∣∣∣∑
p∈P

dist(p, X)−
∑
p∈A

dist(p, X) · 1

|A|mp

∣∣∣∣∣ ≤ 3ε′ · S ·
(
max
p∈P

dist(p, X)

s(p)

)
The R.H.S., after substituting for s(p) and multiplying/dividing by

∑
q∈P dist (q, X):

3ε′S
∑
q∈P

dist (q, X) ·

⎛
⎜⎜⎝max

p∈P

dist(p,X)∑
q∈P dist(q,X)

supY⊆R
d

|Y |=k

dist(p,Y )∑
q∈P dist(q,Y )

⎞
⎟⎟⎠ ≤ 3ε′S

⎛
⎝∑

q∈P

dist (q, X)

⎞
⎠ .

Setting ε′ = ε
3S implies that A is an ε-coreset where each p ∈ A is assigned the

weight 1
|A|mp

.

Note that A is an ε-approximation of the set system induced on P by the union of
k balls in R

d; that is, the set system induced by the k-fold union of balls in R
d.

Lemma 10.3 and Theorem 11.6 implies that the VC-dimension of this set system is

Θ (dk log k) and thus |A| = O
(

S2dk log k
ε2

)
by Lemma 15.12. �

We remark here that to compute A above, we need to compute the weights

mp for each p ∈ P . This, together with the problem of deriving good upper

bounds on the total sensitivity S, is a non-trivial algorithmic problem by itself

(see discussion).

3The division by S is just to get
∑

p mp = 1.
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Theorem 15.11. Let P be a set of n points in R
d and k ∈ Z

+, ε > 0 be two given
parameters. Further let B ⊆ R

d be a set of points and C ≥ 1 such that

Cost(P, B) ≤ C · Cost(P, k).

Then there exists an ε-coreset for the k-median problem on P of size

O

(
C2 d k log k

ε2
+ |B|

)
.

Proof. Given B, set the parameters for each p ∈ P as follows:

fp(X) = dist(p, X)− dist(closest(p, B), X) + dist (p, B) ,

mp =
dist(p, B)∑
q∈P dist(q, B)

,

where closest (p, Q) = argminq∈Q dist (p, q) denotes the closest point in Q to p.
Note that fp (X) is non-negative4 due to triangle inequality:

dist(closest(p, B), X) ≤ dist (closest(p, B), p) + dist(p, X).

Applying Lemma 15.12 with fp and mp set above and noting that
∑

p∈P mp = 1,

we get an ε′-approximation A such that for any X ⊆ R
d of k points,∣∣∣∣∣∑

p∈P

(
dist(p, X)− dist(closest(p, B), X) + dist (p, B)

)
−

∑
p∈A

(
dist (p, X)− dist (closest (p, B) , X) + dist (p, B)

)
· 1

|A|mp

∣∣∣∣∣
≤ 3ε′

(
max
p∈P

dist(p, X)− dist(closest(p, B), X) + dist (p, B)

mp

)
.

Using the fact that∑
p∈P

dist(p, B) =
∑
p∈A

(
dist(p, B)

∑
q∈P dist(q, B)

|A| dist(p, B)

)
=
∑
p∈A

dist(p, B)
1

|A|mp
,

we arrive at∣∣∣∣∣
⎛
⎝∑

p∈P

dist(p, X)

⎞
⎠−

⎛
⎝∑

p∈P

dist(closest(p, B), X)

⎞
⎠

−

⎛
⎝∑

p∈A

dist(p, X)
1

|A|mp

⎞
⎠+

⎛
⎝∑

p∈A

dist(closest(p, B), X)
1

|A|mp

⎞
⎠∣∣∣∣∣

≤ 3ε′
(
max
p∈P

dist(p, X)− dist(closest(p, B), X) + dist (p, B)

mp

)
.(15.17)

R.H.S.: Using a consequence of triangle inequality, that

dist(p, X)− dist(closest(p, B), X) ≤ dist(p, closest(p, B)) = dist(p, B),

4Indeed, the additive term dist (p,B) is present in fp(X) just to make fp(X) non-negative
so that one can apply Lemma 15.12. Conceptually we only need fp(X) = dist(p,X) −
dist (closest(p,B), X).
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as well as substituting the value of mp, the R.H.S. of Equation (15.17) is at most

3ε′ max
p∈P

2 dist(p, B)
dist(p,B)∑

q∈P dist(q,B)

= 6ε′
∑
p∈P

dist(p, B)

≤ 6ε′ · C · Cost (P, k) ≤ 6ε′C
∑
p∈P

dist(p, X).

L.H.S.: For each b ∈ B, let Pb be the set of points of P whose closest point in B
is b. Then the L.H.S. of Equation (15.17) becomes∣∣∣∣∣

⎛
⎝∑

p∈P

dist(p, X)

⎞
⎠−

(∑
b∈B

|Pb| · dist(b, X)

)
−

⎛
⎝∑

p∈A

dist(p, X)
1

|A|mp

⎞
⎠(15.18)

+

⎛
⎝∑

b∈B

∑
p∈Pb∩A

dist(b, X)
1

|A|mp

⎞
⎠∣∣∣∣∣.

We’re done—set ε′ = ε
6C and return A ∪ B as our ε-coreset, with weights dictated

by Equation (15.18):

p ∈ A : w(p) =
1

|A|mp
.

b ∈ B : w(b) = |Pb| −
∑

p∈A∩Pb

1

|A|mp
.

�
We remark that to compute the set A one again needs to compute the weights

mp for all p ∈ P . However this time it is easier as we are also given the set B.

Bibliography and discussion. The beautiful application of this section
is from [FL11]. See [VX12] for upper bounds on sensitivity for a variety
of optimization problems. There are many interesting variations, improve-
ments and applications of the basic ideas presented in this section (e.g.,
see [HV20]). We refer the reader to the surveys [AHPV07,Phi18] for
more information on coresets.
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tance sampling is nearly optimal, STOC ’20—Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, ACM, New York, 2020, pp. 1416–1429.
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ometry. CRC Press, 2018. pp. 1269–1286.

[VX12] K. R. Varadarajan and X. Xiao. On the sensitivity of shape fitting problems. Pro-
ceedings of the IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2012. pp. 486–497.
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CHAPTER 16

A Summary of Known Bounds

This chapter lists the current-best bounds for

(1) the VC-dimension and the shallow-cell complexity,
(2) sizes of ε-nets, and
(3) sizes of ε-approximations

of many basic geometric set systems.

227
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228 16. A SUMMARY OF KNOWN BOUNDS

1. LIST: Complexity of Geometric Set Systems

The art of doing mathematics is finding that special case that contains
all the germs of generality.

David Hilbert

This section lists the VC-dimension and shallow-cell complexity of several geometric
set systems. First we define/recall some definitions.

Geometric set systems. A given family of geometric objects gives rise to
two types of set systems: primal and dual.

Definition 1.11. Given a set P of points in R
d and a (possibly infinite) family

R of geometric objects in R
d, the primal set system induced on P by R is{

O ∩ P : O ∈ R
}
.

Definition 1.12. Given a set R of geometric objects in R
d, the dual set system

induced on R by R
d is defined as{

Rp : p ∈ R
d}, where Rp =

{
R ∈ R : R � p

}
.

Geometric objects. We list some common geometric objects.

Pseudo-disks: A finite set O of objects in R
2 are called pseudo-disks if each

object in O is a simply connected region of R2 bounded by a simple closed
Jordan curve and the boundaries of any two objects in O cross at most twice.
The notion of pseudo-disks is a generalization of that of disks. It arises
naturally in situations when the geometry of the boundary is irrelevant and
one only cares about the combinatorics of the arrangement of objects. The
key combinatorial property of pseudo-disks that carries over from disks is
that the complexity of the union of any set of n pseudo-disks is at most
6n − 12 (see Claim 1.10). This implies that the shallow-cell complexity of
pseudo-disks and disks is the same within constant factors.

Homothets: Given an object K ⊆ R
d, a homothet of K is a set of the form

α ·K+a, where α ∈ R
+ and a ∈ R

d. Here α is a scaling factor while a is the
translation vector. A translate of K is a homothet with α = 1. For a convex
object K in R

2, a set of n homothets of K form a set of pseudo-disks.

Fat objects: A triangle Δ in R
2 is called α-fat, α ∈

[
0, π

3

]
, if each angle of

Δ is at least α.

VC-dimension and shallow-cell complexity. Recall these notions.

Definition 4.2. The VC-dimension of a set system (X,F), denoted by VC-dim(F),
is the size of the largest Y ⊆ X for which |F|Y | = 2|Y |. We say that such a Y is
shattered by F .

For a family R of geometric objects in R
d—e.g., the family of all half-spaces in

R
d—the VC-dimension of R is defined to be the VC-dimension of the primal set

system
(
R

d,R
)
.

Definition 4.4. A set system (X,F) has shallow-cell complexity ϕF(·, ·) if for any
positive integer k and any finite Y ⊆ X, the number of sets in F|Y of size at most
k is upper bounded by |Y | · ϕF

(
|Y |, k

)
.
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For a family R of geometric objects in R
d—e.g., the family of all half-spaces—the

shallow-cell complexity of R is defined to be the shallow-cell complexity of the
primal set system

(
R

d,R
)
.

1.1. Dual set systems. The notion of VC-dimension of an abstract set sys-
tem (X,F) was motivated by considering primal set systems. One can also consider
the VC-dimension of the set system dual to (X,F):

Definition 16.1. Given (X,F), its dual set system is defined as (F ,F∗), with

F∗ = {Fx : x ∈ X} , where Fx = {F ∈ F : F � x} .

The VC-dimension of (F ,F∗) is the size of the largest F ′ ⊆ F such that for all
F ′′ ⊆ F ′, there exists an element of X contained in all sets of F ′′ and no set of
F ′ \F ′′. Pictorially, in the Venn diagram induced by F ′ on X, all 2|F

′| cells contain
at least one point of X.

1.2. k-fold unions and intersections. Finally, recall the notion of k-fold
union of set systems.

Definition 10.1. Given a set system (X,F) and an integer k ≥ 1, the k-fold union
of F , denoted by Fk, is the set system obtained by adding the union of at most k
sets of F to Fk. That is,

Fk =
{

Ri1 ∪ · · · ∪ Rik : Rij ∈ F for all 1 ≤ j ≤ k
}

.

As the k sets need not be distinct, we have F ⊆ Fk. Similarly one can define k-fold
intersections of a given set system.

We now present two tables summarizing the VC-dimension and shallow-cell com-
plexity for several common geometric set systems.
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Primal set systems
Objects O mϕ (m,k) VC-dimension

R

Intervals O (mk) 2
t-fold union

of intervals O
(
mtkt

)
2t [Blu+89]

R
2

Lines O(m2) for k ≥ 2 2

Halfplanes O(mk) [CS8916a] 3
Homothets

of a convex body O(mk2 + k3) [AU1616a] 3 [NT1016a]
Axis-aligned

rectangles O(m2k2) 4
Bottomless axis

aligned rectangles O(mk2) 3

Disks O(mk2) [CS8916a] 3

Pseudo-disks O(mk2) [BPR1316a] 3 [BPR1316a]
t-fold union

of half-spaces O(mtkt) 2t+ 1 [Blu+89]
t-fold intersection

of half-spaces O(mtkt) 2t+ 1 [Blu+89]

Triangles (t = 3) O(m3k3) 7

Convex sets O(mk) ∞
R
3

Half-spaces O(mk2) [CS8916a] 4

Balls O(m2k2) 4
t-fold union

of half-spaces O(mtk2t) 4t
t-fold intersection

of half-spaces O(mtk2t) 4t
Homothets

of a convex body O(mk) [NT1016a] ∞ [NT1016a]

R
d

Half-spaces O
(
m
d/2�k�d/2


)
[CS8916a] d+ 1

Balls O
(
m
(d+1)/2�k�(d+1)/2
) [CS8916a] d+ 1

Axis-aligned boxes O
(
mdkd

)
2d [Blu+89]

t-fold union
of half-spaces O

(
mt
d/2�kt�d/2


)
Θ(d · t log t) [CMK19]

t-fold intersection
of half-spaces O

(
mt
d/2�kt�d/2


)
Θ(d · t log t) [CMK19]

Table 1. The table lists the bounds on VC-dimension and
shallow-cell complexity for the primal set system induced by com-
mon geometric set systems. The constants in the asymptotic no-
tation may depend on d.
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Dual set systems
Objects O mϕ(m,k) VC-dimension

R

Intervals m 2

R
2

Lines Θ(m2) 2

Halfplanes Θ(mk) [CS8916a] 3
Homothets of

a convex body O (mk) 3 [NT1016a]
Axis-aligned

rectangles Θ(m2) 4

Disks O(mk) 3

Pseudo-disks O(mk) [BPR1316a] O(1) [BPR1316a]
α-fat

triangles O(mk log∗ m
k

+ mk
α

log2 1
α
) [Aro+14] 7

Objects with union

complexity f(·) O
(
f

(
m
k

)
k2

)
[Sha91] O(1)

t-fold union
of half-spaces O(mtkt) 2t+ 1 [Blu+89]

t-fold intersection
of half-spaces O(mtkt) 2t+ 1 [Blu+89]

R3

Half-spaces O(mk2) 4

Balls O(m2k) 4
Axis-aligned

cubes O(m2k) [Boi+98] O(1)
t-fold union

of half-spaces O(mtk2t) 4t
t-fold intersection

of half-spaces O(mtk2t) 4t

R
d

Half-spaces O
(
m
d/2�k�d/2


)
[CS8916a] d+ 1

Balls O
(
m�d/2
k
d/2�

)
d+ 1

t-fold union
of half-spaces O

(
mt
d/2�kt�d/2


)
Θ(d · t log t) [CMK19]

t-fold intersection
of half-spaces O

(
mt
d/2�kt�d/2


)
Θ(d · t log t) [CMK19]

Table 2. The table lists the bounds on VC-dimension and
shallow-cell complexity for the dual set system induced by common
geometric set systems. The constants in the asymptotic notation
may depend on d.

Bibliography and discussion. There is a long history of work on im-
proving the various bounds listed in this section. It would be overwhelming
to cite all the papers involved in these bounds. We have thus attempted
to cite only the latest relevant papers. We refer the reader to the nice
‘geometric hypergraph zoo’ at Eötvös Loránd University for a database of
properties of many geometric objects.
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2. LIST: Epsilon-Nets

I think it’s rarely about what you actually learn in class . . . it’s mostly
about things that you stay motivated to go and continue to do on your
own.

Maryam Mirzakhani

As any good teacher knows, the methods of instruction and the range of
material covered are matters of small importance as compared with the
success in arousing the natural curiosity of the students and stimulating
their interest in exploring on their own.

Noam Chomsky

This section lists the state-of-the-art bounds for ε-net sizes of geometric set systems.

All upper bounds except one follow directly from the bounds on the shallow-cell
complexity of the set system together with Theorem 6.2 or Theorem 8.11, both of
which we first recall.

Theorem 6.2. Let (X,F) be a finite set system with shallow-cell complexity
ϕF (·, ·) and with VC-dim (F) ≤ d. Then for any ε ∈

(
0, 1

2

)
there exists an

ε-net of F of size

O

(
d

ε
+

1

ε
logϕF

(
16d

ε
, 48d

))
.

Theorem 8.11. Let (X,F) be a set system on n elements and a ∈ (1, 2),
b ∈ R

+ be parameters such that the shallow-cell complexity of F , ϕF (·, ·), is
(a, b)-well-behaved. Let ε > 0 be a given parameter and set c1 = exp

( √
2√

2−
√
a

)
and c2 = b + 2

a
a−1 . Note that c1, c2 ≥ 1. Then there exists a procedure to

compute an ε-net N of F such that each p ∈ X is present in N with probability

O
(c1 c2

εn
+

c1
εn

lnϕF

( c1 n
2t

,
εn

2t

))
,

where t is the largest integer in
[
0, log εn

c2

]
such that for all i < t,

(8.11)

√
8 ln
(
εn
2i

· ϕF
(
c1n
2i

, εn
2i

))
εn
2i

≤ 1

2
.

Furthermore, let w : X → R be weights on the elements of X, with W =∑
p∈X w (p). Then there exists an ε-net of F of total weight

O
(
W
( c1 c2

εn
+

c1
εn

lnϕF

( c1 n
2t

,
εn

2t

)))
.

The exception is the ε-net size bound of O
(
1
ε log log

1
ε

)
of the primal system induced

by axis-aligned rectangles in the plane. This follows immediately by Theorem 6.2
together with Theorem 4.17.

The algorithm in Chapter 7 computes an ε-net of these sizes, in expectation.
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Objects O P/D Upper bound Lower bound

R

Intervals P/D
⌊
1
ε

⌋ ⌊
1
ε

⌋
R
2

Lines P/D 2
ε
log 1

ε
[HW87] 1

80ε

(
log 1

ε

log log 1
ε

) 1
2

[BS20]

Half-spaces P/D 2
ε
− 1 [HW87] 2

ε
− 2 [KPW92]

Homothets of
a convex body P/D O

(
1
ε

)
[PR08] Ω

(
1
ε

)
Axis-aligned

rectangles P O
(
1
ε
log log 1

ε

)
[AES10] Ω

(
1
ε
log log 1

ε

)
[PT13]

Axis-aligned

rectangles D 5
ε
log 1

ε
[HW87] 1

9 ε
log 1

ε
[PT13]

Bottomless axis
aligned rectangles P O

(
1
ε

)
Ω

(
1
ε

)
Disks P 13.4

ε
[Bus+16] 2

ε
− 2 [HW87]

Pseudo-disks P/D O
(
1
ε

)
[PR08] Ω

(
1
ε

)
Triangles P 7

ε
log 1

ε
[HW87] 1

80ε

(
log 1

ε

log log 1
ε

) 1
2

[BS20]

Fat triangles D O
(
1
ε
log log∗ 1

ε

)
[Aro+14] Ω

(
1
ε

)
Objects with union

complexity f (·) D O
(
1
ε
log

(
ε · f

(
1
ε

)))
[AES10] Ω

(
1
ε

)
Convex sets P |X| − ε |X| |X| − ε |X|

R
3

Half-spaces P/D O
(
1
ε

)
[Mat92] 2

ε
− 2 [KPW92]

Balls P/D O
(
1
ε
log 1

ε

)
Ω

(
1
ε

)
Homothets of

convex bodies P |X| − ε |X| |X| − ε |X| [NT10]

Convex sets P |X| − ε |X| |X| − ε |X|
R
d

Half-spaces P/D d
ε

(
log 1

ε
+ o (1)

)
[KPW92]


d/2�−1
9

1
ε
log 1

ε
[KMP16]

Balls P d+1
ε

(
log 1

ε
+ o (1)

)
[KPW92]


d/2�−1
9

1
ε
log 1

ε
[KMP16]

Convex sets P |X| − ε |X| |X| − ε |X|

Table 3. The table lists ε-net sizes for the most common geomet-
ric set systems. The column ‘P/D’ specifies whether the set system
is primal or dual. The constants in the asymptotic notation may
depend on d.

Bibliography and discussion. We refer the reader to the text [Cha00]
for efficient algorithms to construct ε-nets for several geometric set systems.
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3. LIST: Epsilon-Approximations

It reminds me of an anecdote about André Weil who at some point had
some problems with elliptic operators so he invited a great expert in the
field and he gave him the problem. The expert sat at the kitchen table
and solved the problem after several hours. To thank him, André Weil
said ‘when I have a problem with electricity I call an electrician, when I
have a problem with ellipticity I use an elliptician’.

Alain Connes

We now turn towards sizes of ε-approximations for combinatorial and geometric set
systems.

Upper bounds. We first recall the notion of discrepancy, and restate Theo-
rem 12.9.

Definition 12.7. Given a set system (X,F) and a two-coloring χ : X →
{−1, 1}, define the discrepancy of a set R ⊆ X with respect to χ as

discχ (R) =

∣∣∣∣∣∑
p∈R

χ (p)

∣∣∣∣∣ ,
and the discrepancy of F with respect to χ as

discχ (F) = max
R∈F

discχ (R) .

The discrepancy of F is then defined to be

disc (F) = min
χ:X→{−1,1}

discχ (F) .

Theorem 12.9. Let (X,F) be a finite set system with X ∈ F and let f (·) be a
function such that disc (F|Y ) ≤ f (|Y |) for all Y ⊆ X. Then for every integer
t ≥ 0, there exists a set A ⊆ X of size

⌈
n
2t

⌉
such that A is an ε-approximation

of F , where

ε =
2

n

(
f(n) + 2f

(⌈n
2

⌉)
+ · · ·+ 2t−1f

(⌈ n

2t−1

⌉))
.

In particular, if there exists a constant c > 1 such that f (2m) ≤ 2
c
f (m) for all

m ≥
⌈

n
2t

⌉
, then there exists an ε-approximation of F of size

⌈
n
2t

⌉
, and where

ε = Θ

(
2t

n
f
(⌈ n

2t

⌉))
.

The best upper bounds on sizes of ε-approximations are derived by applying The-
orem 12.9 using upper bounds on combinatorial discrepancy of the corresponding
set system.

• For a set system (X,F) with |X| = n and VC-dim (F) ≤ d, we have

disc (F) = O
(
n

1
2−

1
2d

)
.

Thus we apply Theorem 12.9, with f (n) = O
(
n

1
2−

1
2d

)
and the value of t

with

2t

n

( n

2t

) 1
2−

1
2d

= Θ(ε) =⇒ 2t = Θ
(
ε

2d
d+1 n

)
,
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to get the existence of an O (ε)-approximation of size

O
( n

2t

)
= O

(
1

ε
2d

d+1

)
.

• For a set system (X,F) with |X| = n, such that the VC-dimension of the
dual set system (F ,F∗) is at most d, we have

disc (F∗) = O
(
n

1
2−

1
2d

√
log n

)
.

Thus we apply Theorem 12.9, with f (n) = O
(
n

1
2−

1
2d

√
log n

)
and the

value of t such that

2t

n

( n

2t

) 1
2−

1
2d √

log n = Θ(ε) =⇒ 2t = Θ

⎛
⎝ ε

2d
d+1(

log 1
ε

) d
d+1

n

⎞
⎠ ,

to get the existence of an O (ε)-approximation of size

O
( n

2t

)
= O

(
1

ε
2d

d+1

(
log

1

ε

) d
d+1

)
.

• The primal set system induced by half-spaces in R
d has VC-dimension

at most d, and thus the previous case implies an ε-approximation of size

O
(
n
2t

)
= O

(
1

ε
2d

d+1

)
.

• The primal set system induced by balls in R
d has VC-dimension d+1, and

thus applying the discrepancy bound based on its VC-dimension would
give an ε-approximation of sub-optimal size O

(
1/ε2(d+1)/(d+2)

)
. Instead,

as the VC-dimension of the dual set system is d, applying the discrepancy
bound for the dual set system gives an ε-approximation of size

O
( n

2t

)
= O

(
1

ε
2d

d+1

(
log

1

ε

) d
d+1

)
.

Lower bounds. The upper bounds on ε-approximation sizes given in the table are
tight except for the cases where there is a logarithmic term present, in which case
it is known to be tight up to some logarithmic term.

The lower bounds for geometric set systems follow from lower bounds on the so-
called Lebesgue discrepancy for the corresponding systems. We sketch a proof
for the case of half-spaces in R

d, which relies on the following beautiful result of
Alexander [Ale90], stated without proof, on the Lebesgue discrepancy of half-
spaces.

Theorem 16.2. Let C = [0, 1]d denote the unit hypercube in R
d. Then

for any set A ⊂ C of size t, there exists a half-space h+ in R
d such that∣∣∣∣h+ ∩ A

∣∣− t vol
(
h+ ∩ C

)∣∣ = Ω
(
t
1
2−

1
2d

)
.
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Objects P/D ε-Approximations Discrepancy

(X,F)

VC-dim(F) ≤ d 1

ε
2d

d+1

[MWW9316c] n
1
2
− 1

2d [Mat95a]

(X,F)

VC-dim(F∗) ≤ d 1

ε
2d

d+1

(log 1
ε
)

d
d+1 [MWW9316c] n

1
2
− 1

2d
√
logn [MWW9316c]

Rd

Half-spaces P/D 1

ε
2d

d+1

[MWW9316c] n
1
2
− 1

2d [Mat95a]

Balls P 1

ε
2d

d+1

(log 1
ε
)

d
d+1 [MWW9316c] n

1
2
− 1

2d
√
logn [MWW9316c]

Balls D 1

ε
2d

d+1

[MWW9316c] n
1
2
− 1

2d [Mat95a]

Axis-aligned

boxes P 1
ε
· logd−

1
2 1

ε
[MWW9316c] logd−

1
2 n [Nik17]

Table 4. The table lists the approximation sizes for the most com-
mon geometric set systems. The column ‘P/D’ specifies whether
the set system is primal or dual. All bounds are in asymptotic
notation, though to save space we omit the ‘O (·)’ notation (the
omitted constants can depend on d).

Equivalently, ∣∣∣∣ |h+ ∩ A|
t

− vol
(
h+ ∩ C

)∣∣∣∣ = Ω

(
1

t
1
2+

1
2d

)
.(16.3)

Theorem 16.2 immediately implies a lower bound on ε-approximations for the pri-
mal set system R induced on C by half-spaces in R

d: for the R.H.S. of Equa-
tion (16.3) to be at most ε, it must be that

1

t
1
2+

1
2d

= O (ε) =⇒ t = Ω

((
1

ε

) 2d
d+1

)
.

By choosing points from a fine-enough grid in C, the same lower bound applies for
the finite case, as we now outline.

Fix a real

δ = o

(
1

t
1
2
+ 1

2d

)
,

and let G be a uniform grid in C = [0, 1]d where each cell has side-length δ
and let X be a set of n = 1

δd
points, one from each cell of G (arbitrarily).

Let A ⊆ X be an ε-approximation of the primal set system induced on X by
half-spaces in R

d, and set t = |A|.
Let h+ be the half-space obtained by applying Theorem 16.2 to A, and so∣∣∣∣∣

∣∣h+ ∩ A
∣∣

t
− vol

(
h+ ∩ C

)∣∣∣∣∣ = Ω

(
1

t
1
2
+ 1

2d

)
.(16.4)

As each hyperplane in R
d intersects O

(
1

δd−1

)
cells of G, we have∣∣h+ ∩X

∣∣ = n · vol
(
h+ ∩ C

)
±O

(
1

δd−1

)
,

=⇒ vol
(
h+ ∩ C

)
=

∣∣h+ ∩X
∣∣

n
±O (δ) .
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The above, together with Equation (16.4) and our choice of δ, implies that∣∣∣∣∣
∣∣h+ ∩A

∣∣
t

−
∣∣h+ ∩X

∣∣
n

∣∣∣∣∣ = Ω

(
1

t
1
2
+ 1

2d

)
−O (δ) = Ω

(
1

t
1
2
+ 1

2d

)
,

and the required lower bound on the size of A follows as earlier.

The other lower bounds follow in a similar manner.

Bibliography and discussion. A nice table with many upper and lower
bounds on both combinatorial and Lebesgue discrepancy can be found
in [Mat99, Appendix A].
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[Mat02] J. Matoušek. Lectures in Discrete Geometry. Springer, 2002.
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[Mat95b] J. Matoušek, Approximations and optimal geometric divide-and-conquer, J. Comput.

System Sci. 50 (1995), no. 2, 203–208, DOI 10.1006/jcss.1995.1018. 23rd Symposium
on the Theory of Computing (New Orleans, LA, 1991). MR1330253
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(≤ k)-sets, 4

k-fold union, intersection, 144, 158, 229

balls in R
d, 223

lower bound for general systems, 158

relation to epsilon-nets, 157

VC-dimension upper bound, 145

k-median

cost function, 220
definition, 220

k-median problem, 215

k-tuples of points, 216

Alexander’s theorem, 237

algorithms

epsilon-approximations for general case,
173

epsilon-approximations for half-spaces,
195

epsilon-approximations for VC set
systems, 177

epsilon-nets for shallow-cell complexity,
101, 108

iterative for epsilon-nets, 94

linear-sized epsilon-nets, 102

merge-and-reduce, 183

weak epsilon-nets for convex sets, 134
weighted general shallow-cell complexity,

122

weighted linear shallow-cell complexity,
116

alterations technique, 37, 42

cuttings, 45, 49

disks, 40

epsilon-net algorithm, 101

epsilon-nets for shallow-cell complexity,
97

AM-GM inequality, 17

approximation of distances, 213

arithmetic progressions, 143

averaging technique
k-Delaunay graphs, 1

anchored rectangles, 72

epsilon-nets for VC systems, 91

level sets for disks (dual), 7

level sets for disks (primal), 5

level sets for half-spaces, 9

Markov’s inequality, 15

packing theorem, 80

tail bounds, 16

union complexity, 68

balls in Rd, 213

binomial theorem, 17

approximations, 19

boxes

k-fold union, 158

dual set system, 159

canonical objects, 35, 96

disks, 4, 34, 39, 47

halfplanes, 34, 39

rectangles, 31

trapezoids, 46

centerpoints, 133

centerpolytope, 133

for all subsets, 134

use for weak epsilon-nets, 134

centroids, 140

chaining, 199

intuition, 185

charging scheme, 116

with permutations, 120

Chernoff’s bound, 13, 92

asymmetry, 19

proof, 16

clustering, 215

combinatorial approximation of points, 213

convex-hull, 135

convexity

center polytope, 133

points in convex position, 137

polytopes, 131

shrinking, 138

volume, 139

coresets, 220

definition, 220

literature, 225

sensitivity, 223
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cuttings
inside a simplex, 50
optimality, 44
segments, 44, 47, 54
shallow cuttings, 51, 78
simplices, 50
uses for divide-and-conquer, 55

decomposition
trapezoidal, 46
triangles, 45

discrepancy
balls (dual), 238
balls (primal), 238
books, 183
bound for VC systems, 179
boxes, 238
chaining, 192
combinatorial, definition, 178, 236
combinatorial, for half-spaces, 182
connection to lower bounds for

approximations, 239
dual set systems, 237
geometric, 155, 237
half-spaces, 238

Lebesgue, 237
optimal bounds, 236

discretization, 94
distance decomposition, 214
distributions

negatively associated, 12
duality, 77

epsilon-approximation
a first calculation, 172
algorithm for general case, 173
definition, 172, 185
for general functions, 216
functional, 216
general case, 172
half-spaces, 193
intuition, 171
VC-dimension, 186
weighted, 221

epsilon-approximations
additivity lemma, 174, 186
chaining for VC set systems, 186
composition properties, 189
discrepancy proof for VC bound, 180
experimental evaluation, 198
inductive proof, 174
lower bounds, 237
optimal bound for half-spaces, 182
relation to discrepancy, 178, 236
using jittered sampling, 193
VC bound via discrepancy, 178
VC original theorem, 174

epsilon-net
anchored rectangles, 24

bounded degree, 38

boxes in R
d, 26, 29

disks, 31, 37, 39, 57, 58

general set system, 26, 38

general set systems, 38

half-spaces, 139

halfplanes, 24

history, 89

intervals, 23

linear shallow-cell complexity, 115

lower bound abstract case, 167

lower bound dual boxes, 168

lower bound half-spaces, 168

optimality of VC-dimension bound, 89

rectangles in R
2, 31

shallow-cell complexity, 96

shallow-cell complexity theorem, 90, 96,
233

triangles, 46

VC-dimension, 91

weak convex, 131

weak convex in R
2, 132

weak convex theorem, 132

weighted, 22, 113, 115

weighted disks (primal), 115

epsilon-nets

balls, 234

bottomless rectangles (primal), 234

convex sets, 234

disks (primal), 234

fat triangles (primal), 234

half-spaces, 234

homothets, 234

inductive proof for VC-dimension, 176

intervals, 234

iterative constructions, 94

lines, 234

pseudo-disks (primal), 234

rectangles (dual), 234

rectangles (primal), 234

triangles (primal), 234

union complexity (dual), 234

fat triangles, 228

finite differencing, 218

forbidden induced subgraph problem, 52

ghost sampling, 94

graphs

k-Delaunay, 1

boundary of union of disks, 7

Delaunay, 4, 5

planar, 1, 7, 46

unit distance, 61, 82

grid

non-uniform, 29

uniform, 238

Grünbaum’s inequality, 140
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half-space depth, 139

half-spaces
arrangement, 9

Haussler’s packing theorem, 75, 80
Helly’s theorem

convex sets, 133

rectangles, 152
homothets, 228

jittered sampling, 193

Kövári-Sós-Turán theorem, 52

level of points

half-spaces, 9
level sets, 4

disks (dual), 7
disks (primal), 4, 40
functions, 216

half-spaces (dual), 9, 50
half-spaces (primal), 9

rectangles (primal), 70
trapezoids, 47, 49

linear programming, 21, 35
books, 129

rounding, 128
weighted hitting set, 128

list

epsilon-approximations, 236
epsilon-nets, 233

properties of geometric set systems, 228
lower bounds

k-fold union, intersection for general
systems, 145

abstract epsilon-nets, 167
basic idea for epsilon-nets, 143, 167

direct probabilistic construction, 168
dual boxes epsilon-nets, 168

half-spaces epsilon-nets, 168
weak epsilon-nets, 137

Markov’s inequality, 15, 33, 35
proof, 15

minimum hitting set problem
definition, 21

NP-hard, 21
weighted, 128

nearest-neighbor queries, 89
non-uniform sampling, 114

oracles, 107, 108
orthogonal functions, 155

packing statements
geometric set systems, 207

half-spaces in R
d, 77

Haussler’s packing theorem, 80

maximal, 98
maximal packings, 103

shallow-cell complexity, 85
use for chaining epsilon-approximations,

188
use for epsilon-nets, 96
use for relative epsilon-approximations,

210
VC-dimension, 85, 188

Pascal’s identity, 53
polytope approximation, 138

history, 140
proof, 138

prefix, 151
probability distribution

Bernoulli, 106
binomial, 11
negative binomial, 106
without replacement, 12

pseudo-dimension of functions, 219
pseudo-disks, 228

quotes
Alain Connes, 236
Alexandre Grothendieck, 96
Andrew Wiles, 202
David Hilbert, 228

David Mumford, 138
Elizabeth Anscombe, 158
Franz Kafka, 167
George Pólya, 121
Gian-Carlo Rota, 31, 103, 216
Gil Kalai, 4
Hans Frauenfelder, 77
Henri Poincaré, 108
Herman Chernoff, 11
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Israel Gelfand, 39
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Joel Spencer, 80
John Barrow, 162
Maryam Mirzakhani, 233
Matt Stoller, 178
Michael Atiyah, 128, 186
Noam Chomsky, 233
Noam Elkies, 91
Norbert Wiener, 44
Oded Goldreich, 67
Philip Anderson, 174
Pierre Deligne, 193

Robert Tarjan, 220
Timothy Gowers, 145
William Thurston, 23, 52, 60, 85, 115,

208

Ramsey theory, 143
rectangles

k-fold union (dual), 150
binary representation, 151
lifting, 160
lower bound for epsilon-nets, 150
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orthogonal system, 152

parity argument, 153

relative epsilon-approximation

chaining for VC set systems, 208

composition properties, 202, 209

definition, 200, 202, 208

first bound, 203

relation to (ν, α)-samples, 207

relation to epsilon-approximations, 201

relation to epsilon-nets, 200

sensitive epsilon-approximation

bound for VC set systems, 205

definition, 205

intuition, 204

lower bound, 205

separators, 55

sequence, 91

set system

anchored rectangles in R
2 (primal), 24

disks (primal), 31, 90

disks in R
2 (primal), 21, 23

downward-facing half-spaces, 9

half-spaces in R
2 (primal), 24

half-spaces in R
d (dual), 9

half-spaces in R
d (primal), 8

induced by simplices, 163

intervals (primal), 24

products, 159

rectangles in R
2 (dual), 150

rectangles in R
2 (primal), 31

rectangles in R
d (primal), 26, 29

sine curves (primal), 143

triangles, 44

set systems

dual, 8, 228

primal, 8, 228

projection, 57

shallow-cell complexity, 58, 67, 85, 89, 96,
115, 228

k-fold union of intervals, 230

anchored rectangles, 70, 72

balls, 230

bottomless rectangles, 230

convex sets, 230

disks (dual), 67

disks (primal), 67, 230

half-spaces k-fold intersection, 230

halfplanes, 230

halfspaces k-fold union, 230

homothets of a convex body, 230

intervals, 230

lines, 230

pseudo-disks, 228

pseudo-disks (primal), 230

rectangles, 70, 230

set systems (dual), 67

triangles, 230

well-behaved, 59

shifting, 61, 63

simplicial partition theorem, 134, 194

construction algorithms, 198

history, 137

use for epsilon-approximations, 194

spatial partitioning, 89

symmetric difference, 61, 75

tail bounds, 11, 199

threshold structures, 171

transformations

dualizing points, 163

lifting boxes, 162

paraboloid lift of points, 9

rectangle products, 160

stretching points, 162

union

balls, 215

union complexity, 68

disks, 7, 69

dual set systems, 68

epsilon-nets, 103

rectangles, 69

upper bound theorem

convex polytopes, 9

VC-dimension, 58, 63, 157, 228

k-fold union of intervals, 230

abstract k-fold union, 145

balls, 65, 230

bottomless rectangles (primal), 230

convex sets, 131, 230

disks, 230

dual, 229

dual boxes k-fold union, 158

dual rectangles k-fold union, 150

half-spaces, 65

half-spaces k-fold intersection, 230

half-spaces k-fold union, 162, 230

halfplanes, 230

history, 66

homothets of a convex body, 230

hyperplanes, 64

induced by simplices, 163

intervals, 230

lines, 230

orthants k-fold union, 162

polynomials, 65

pseudo-disks, 230

rectangles (primal), 230

triangles, 230

Venn diagram, 229

weighted

epsilon-approximations, 221

epsilon-nets, 113, 115
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Zarankiewicz problem, 52
K2,2 proof, 53
inductive proof, 53
segments in R

2, 52
simplices in Rd, 54
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