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Abstract. The geometric hitting set problem is one of the basic geometric com-
binatorial optimization problems: given a set P of points, and a set D of geomet-
ric objects in the plane, the goal is to compute a small-sized subset of P that hits
all objects in D. In 1994, Bronniman and Goodrich [6] made an important con-
nection of this problem to the size of fundamental combinatorial structures called
ε-nets, showing that small-sized ε-nets imply approximation algorithms with cor-
respondingly small approximation ratios. Finally, recently Agarwal-Pan [5] showed
that their scheme can be implemented in near-linear time for disks in the plane.
This current state-of-the-art is lacking in three ways. First, the constants in cur-
rent ε-net constructions are large, so the approximation factor ends up being more
than 40. Second, the algorithm uses sophisticated geometric tools and data struc-
tures with large resulting constants. Third, these have resulted in a lack of avail-
able software for fast computation of small hitting-sets. In this paper, we make
progress on all three of these barriers: i) we prove improved bounds on sizes of ε-
nets, ii) design hitting-set algorithms without the use of these data-structures and
finally, iii) present dnet, a public source-code module that incorporates both of
these improvements to compute small-sized hitting sets and ε-nets efficiently in
practice.

Keywords: Geometric Hitting Sets, Approximation Algorithms, Computational
Geometry.

1 Introduction

The minimum hitting set problem is one of the most fundamental combinatorial opti-
mization problems: given a range space (P,D) consisting of a set P and a set D of
subsets of P called the ranges, the task is to compute the smallest subset Q ⊆ P that
has a non-empty intersection with each of the ranges in D. This problem is strongly
NP-hard. If there are no restrictions on the set system D, then it is known that it is NP-
hard to approximate the minimum hitting set within a logarithmic factor of the optimal.
The problem is NP-complete even for the case where each range has exactly two points
since this problem is equivalent to the vertex cover problem which is known to be NP-
complete. A natural occurrence of the hitting set problem occurs when the range space
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D is derived from geometry – e.g., given a set P of n points in R2, and a setD of m tri-
angles containing points of P , compute the minimum-sized subset of P that hits all the
triangles in D. Unfortunately, for most natural geometric range spaces, computing the
minimum-sized hitting set remains NP-hard. For example, even the (relatively) simple
case where D is a set of unit disks in the plane is strongly NP-hard [10].

Given a range space (P,D), a positive measure µ on P (e.g., the counting measure),
and a parameter ε > 0, an ε-net is a subset S ⊆ P such that D ∩ S 6= ∅ for all D ∈ D
with µ(D ∩ P ) ≥ ε · µ(P ). The ε-net theorem [9] implies that for a large family of
geometric hitting set systems (e.g., disks, half-spaces, k-sided polytopes, r-admissible
set of regions in Rd) there exists an ε-net of size O(d/ε log d/ε). For certain range
spaces, one can even show the existence of ε-nets of size O(1/ε) – an important case
being for disks in R2 [12]. In 1994, Bronnimann and Goodrich [6] proved the following
interesting connection between the hitting-set problem, and ε-nets: if one can compute
an ε-net of size c/ε for the ε-net problem for (P,D) in polynomial time, then one can
compute a hitting set of size at most c · OPT for (P,D), where OPT is the size of
the optimal (smallest) hitting set, in polynomial time. Until very recently, the best
algorithms based on this observation, referred to as rounding techniques, had running
times of Ω(n2), and it had been a long-standing open problem to compute a O(1)-
approximation to the hitting-set problem for disks in the plane in near-linear time. In
a recent break-through, Agarwal-Pan [5] presented the first near-linear algorithm for
computing O(1)-approximations for hitting sets for disks.

The limitation of the rounding technique – that it cannot give a PTAS – was over-
come using an entirely different technique: local search [11,4]. It has been shown that
the local search algorithm for the hitting set problem for disks in the plane gives a
PTAS. Unfortunately the running time of the naive algorithm to compute a (1 + ε)-
approximation is O(nO(1/ε2)). Based on local search, an Õ(n2.34) time algorithm was
proposed [7] yielding an (8 + ε)-approximation.

Our Contributions

All approaches towards approximating geometric hitting sets for disks have to be eval-
uated on the questions of computational efficiency as well as approximation quality.
In spite of all the progress, there remains a large gap – mainly due to the ugly trade-
offs between running times and approximation factors. The breakthrough algorithm of
Agarwal-Pan [5] suffers from two main problems:

– It rounds via ε-nets to design a Õ(n)-time algorithm, but the constant in the approx-
imation depends on the constant in the size of ε-nets, which are large. For disks in
the plane, the current best size of ε-net is at least 40/ε [12], yielding at best a
40-approximation algorithm. Furthermore, there is no implementation or software
solution available that can even compute such ε-nets efficiently.

– It uses sophisticated data-structures that have large constants in the running time.
In particular, it uses the O(log n + k)-time algorithm for range reporting for disk
ranges in the plane (alternatively, for halfspaces in R3) as well as a dynamic data-
structure for maintaining approximate weighted range-counting under disk ranges
in polylogarithmic time. We have not been able to find efficient implementations of
any of these data-structures.
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It will turn out that all ideas for an efficient practical solution for the geometric hitting
set problem for disks are unified by one of the basic structures in the study of planar
geometry: Delaunay triangulations. Delaunay triangulations will be the key structure
for computing these improved ε-nets, and the Delaunay structures already computed
for constructing these nets will turn out to be crucial in computing small-sized hitting
sets. More precisely, our contributions are:

1. Constructing small ε-nets (Section 2). We show that the sample-and-refine approach
of Chazelle-Friedman [8] together with additional structural properties of Delaunay
triangulation results in ε-nets of surprisingly low size:

Theorem 1. Given a set P of n points in R2, there exists an ε-net under disk ranges of
size at most 13.4/ε. Furthermore it can be computed in expected time O(n log n).

The algorithm is simple to implement. We have implemented it, and present the sizes of
ε-nets for various real-world data-sets; the results indicate that our theoretical analysis
closely tracks the actual size of the nets.

2. Engineering a hitting-set algorithm (Section 3). Together with the result of Agarwal-
Pan, this immediately implies:

Corollary 1. For any δ > 0, one can compute a (13.4+ δ)-approximation to the mini-
mum hitting set for (P,D) in time Õ(n).

We then present a modification of the algorithm of Agarwal-Pan that does not use any
complicated data-structures – just Delaunay triangulations, ε-nets and binary search
(e.g., it turns out that output sensitive range reporting is not required). This comes with
a price: although experimental results indicate a near-linear running time, we have been
unable to theoretically prove that the algorithm runs in expected near-linear time.

3. Implementation and experimental evaluation (Section 4). We present dnet, a public
source-code module that incorporates all these ideas to efficiently compute small-sized
hitting sets in practice. We give detailed experimental results on both synthetic and
real-world data sets, which indicates that the algorithm computes, on average, a 1.3-
approximation in near-linear time. This surprisingly low approximation factor com-
pared to the proven worst case bound is the result of fine tuning the parameters of the
algorithm.

Due to lack of space, most of the proofs are left for the full paper.

2 A Near Linear Time Algorithm for Computing ε-nets for Disks
in the Plane

Through a more careful analysis, we present an algorithm for computing an ε-net of
size 13.4

ε , running in expected near linear time. The method, shown in Algorithm 1,
computes a random sample and then solves subproblems involving subsets of the points
located in pairs of Delaunay disks circumscribing adjacent triangles in the Delaunay
triangulation of the random sample. The key to improved bounds is i) using additional
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structural properties of Delaunay triangulations, and ii) new improved constructions of
ε-nets for large values of ε. The presented algorithm can be extended to handle the case
when the ε-net is with respect to a measure on the point set taking only rational values.

Let ∆(abc) denote the triangle defined by the three points a, b and c. Dabc denotes
the disk through a, b and c, while Dabc denotes the halfspace defined by a and b not
containing the point c. Let c(D) denote the center of the disk D.

Let Ξ(R) be the Delaunay triangulation of a set of points R ⊆ P in the plane.
We will use Ξ when R is clear from the context. For any triangle ∆ ∈ Ξ , let D∆

be the Delaunay disk of ∆, and let P∆ be the set of points of P contained in D∆.
Similarly, for any edge e ∈ Ξ , let ∆1

e and ∆2
e be the two triangles in Ξ adjacent to e,

and Pe = P∆1
e

⋃
P∆2

e
. If e is on the convex-hull, then one of the triangles is taken to be

the halfspace whose boundary line is supported by e and not containing R.

Algorithm 1: Compute ε-nets
Data: Compute ε-net, given P : set of n points in R2, ε > 0 and c0.

1 if εn < 13 then
2 Return P

3 Pick each point p ∈ P into R independently with probability c0
εn

.
4 if |R| ≤ c0/2ε then
5 restart algorithm.

6 Compute the Delaunay triangulation Ξ of R.
7 for triangles ∆ ∈ Ξ do
8 Compute the set of points P∆ ⊆ P in Delaunay disk D∆ of ∆.

9 for edges e ∈ Ξ do
10 Let ∆1

e and ∆2
e be the two triangles adjacent to e, Pe = P∆1

e
∪ P∆2

e
.

11 Let ε′ = ( εn
|Pe| ) and compute an ε′-net Re for Pe depending on the cases below:

12 if 1
2
< ε′ < 1 then

13 compute using Lemma 1.

14 if ε′ ≤ 1
2

then
15 compute recursively.

16 Return
(⋃

eRe
)
∪R.

In order to prove that the algorithm gives the desired result, the following lemma
regarding the size of an ε-net will be useful. Let f(ε) be the upper bound of the size of
the smallest ε-net for any set P of points in R2 under disk ranges.

Lemma 1. For 2
3 < ε < 1, f(ε) ≤ 2, and for 1

2 < ε ≤ 2
3 , f(ε) ≤ 10. In both cases the

ε-net can be computed in O(n log n) time.

Call a tuple ({p, q}, {r, s}), where p, q, r, s ∈ P , a Delaunay quadruple if int(∆(pqr))∩
int(∆(pqs)) = ∅ where int(·) denotes the interior of a set. Define its weight, denoted
W({p,q},{r,s}), to be the number of points of P inDpqr∪Dpqs. Let T≤k be the set of De-
launay quadruples of P of weight at most k and similarly Tk denotes the set of Delaunay
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quadruples of weight exactly k. Similarly, a Delaunay triple is given by ({p, q}, {r}),
where p, q, r ∈ P . Define its weight, denoted W({p,q},{r}), to be the number of points
of P in Dpqr ∪Dpqr. Let S≤k be the set of Delaunay triples of P of weight at most k,
and Sk denotes the set of Delaunay triples of weight exactly k. One can upper bound
the size of T≤k, S≤k and using it, we derive an upper bound on the expected number of
sub-problems with a certain number of points.

Lemma 2. If εn ≥ 13, E
[
|{e ∈ Ξ | k1εn ≤ |Pe| ≤ k2εn}|

]
≤ (3.1)c30

εek1c0
(k31c0+3.7k22).

Lemma 3. Algorithm COMPUTE ε-NET computes an ε-net of expected size 13.4/ε.

Proof. First we show that the algorithm computes an ε-net. Take any disk D with center
c containing εn points of P , and not hit by the initial random sample R. Increase its
radius while keeping its center c fixed until it passes through a point, say p1 of R.
Now further expand the disk by moving c in the direction p1c until its boundary passes
through a second point p2 of R. The edge e defined by p1 and p2 belongs to Ξ , and the
two extreme disks in the pencil of empty disks through p1 and p2 are the disksD∆1

e
and

D∆2
e
. Their union covers D, and so D contains εn points out of the set Pe. Then the net

Re computed for Pe must hit D, as εn = (εn/|Pe|) · |Pe|.

p1

p2

D

e

D

For the expected size, clearly, if εn < 13 then the
returned set is an ε-net of size 13

ε . Otherwise we
can calculate the expected number of points added
to the ε-net during solving the sub-problems. We
simply group them by the number of points in
them. Set Ei = {e | 2iεn ≤ |Pe| < 2i+1εn},
and let us denote the size of the ε-net returned by
our algorithm with f ′(ε). Then

E [f ′(ε)] = E[|R|] + E
[
|
⋃
e∈Ξ

Re|
]
=
c0
ε
+ E[|{e | εn ≤ |Pe| < 3εn/2}|] · f(2/3)

+E[|{e | 3εn/2 ≤ |Pe| < 2εn}|] · f
(
1

2

)
+
∑
i=1

E

[∑
e∈Ei

f ′
(
εn

|Pe|

)]
. (1)

Noting that E[
∑
e∈Ei

f ′( εn|Pe| ) | |Ei| = t] ≤ tE[f ′(1/2i+1)], we get

E

[∑
e∈Ei

f ′
(
εn

|Pe|

)]
= E

[
E[
∑
e∈Ei

f ′
(
εn

|Pe|

)
|Ei]

]
≤ E

[
|Ei| · E[f ′(1/2i+1)]

]
= E[|Ei|] · E[f ′(1/2i+1)] (2)

as |Ei| and f ′(·) are independent. As ε′ = εn
|Pe| > ε, by induction, assume E[f ′ (ε′)] ≤

13.4
ε′ . Then by using Lemma 1 and 2

E [f ′(ε)] ≤ c0
ε
+

(3.1) · c30(c0 + 8.34)

εec0
· 2 + (3.1) · c30((3/2)3c0 + 14.8)

εe3c0/2
· 10

+
∑
i

(3.1) · c30(23ic0 + 3.7 · 22i+2)

εec02i
· 13.4 · 2i+1 ≤ 13.4

ε
(3)
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by setting c0 = 12. ut

Lemma 4. Algorithm COMPUTE ε-NET runs in expected time O(n log n).

We have shown that the expected size of the returned ε-net is 13.4/ε. Furthermore,
by Markov’s inequality and repeatedly running the algorithm, an ε-net of size (1 + δ) ·
13.4/ε is returned in exptected time O(n/δ · log n) for any constant δ > 0. Setting δ
small enough finishes the proof of Theorem 1.

3 Engineering the Agarwal-Pan Algorithm

The Agarwal-Pan (AP) algorithm (shown in Algorithm 2) uses an iterative reweighing
strategy, where the idea is to assign a weight w(·) to each p ∈ P such that the total
weight of points contained in each D ∈ D is relatively high. It starts by setting w(p) =
1 for each p ∈ P . If there exists a disk D with small weight, it increases the weight
of the points in D until their total weight exceeds a threshold of cW/OPT, where c is
some constant and W =

∑
p∈P w(p) is the current total weight. If after any iteration,

all disks have weight above the threshold cW
2eOPT

, return a c
2eOPT

-net with respect to these
weights, ensuring that every disk is hit.

For the purpose of analysis, Agarwal and Pan conceptually divide the reweighings
into O(log n) phases, where each phase (except perhaps the last) performs Θ(OPT)
reweighings. The implementation of the AP algorithm requires two ingredients: A) a
range reporting data structure and B) a dynamic approximate range counting data struc-
ture. The former is used to construct the set of points to be reweighed and the latter
is required for figuring out whether a disk needs reweighing. As a pre-processing step,
the AP algorithm first computes a 1/OPT-net Q to be returned as part of the hitting
set. This ensures that the remaining disks not hit by Q contain less than n/OPT points.
Additionally they observe that in any iteration, if less than OPT disks are reweighed,
then all disks have weight more than cW

2eOPT
.

Algorithm 2: AP algorithm for computing hitting sets
Data: A point set P , a set of disks D, a fixed constant c, and the value of OPT.

1 Compute a (1/OPT)-net, Q, of P and remove disks hit by Q
2 Set w(p) = 1 for all p ∈ P
3 repeat
4 foreach D ∈ D do
5 if w(D) ≤ cW/OPT then
6 reweigh D repeatedly until the weight w(D) exceeds cW/OPT

7 flag = false
8 foreach D ∈ D do
9 if w(D) < (c/2e) ·W/OPT then flag = true

10 until flag = true
11 return Q along with a (c/2eOPT)-net of P with respect to w(·)
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The AP algorithm is simple and has a clever theoretical analysis. Its main draw-
back is that the two data structures it uses are sophisticated with large constants in the
running time. This unfortunately renders the AP algorithm impractical. Our goal is to
find a method that avoids these sophisticated data structures and to develop additional
heuristics which lead to not only a fast implementation but also one that generally gives
an approximation ratio smaller than that guaranteed by the theoretical analysis of the
AP algorithm. As part of the algorithm, we use the algorithm for constructing ε-nets
described in the previous section, which already reduces the approximation factor sig-
nificantly.

Removing A). Just as Agarwal and Pan do, we start by picking a c1/OPT-net, for some
constant c1. The idea for getting rid of range-reporting data-structure is to observe that
the very fact that a disk D is not hit by Q, when Q is an ε-net, makes it possible to
use Q in a simple way to efficiently enumerate the points in D. We will show that D
lies in the union of two Delaunay disks in the Delaunay triangulation of Q, which, as
we show later, can be found by a simple binary search. The resulting algorithm still has
worst-case near-linear running time.

Removing B). Our approach towards removing the dependence on dynamic approxi-
mate range counting data structure is the following: at the beginning of each phase we
pick a c2/OPT-netR, for some constant c2. The set of disks that are not hit byR are then
guaranteed to have weight at most c2W/OPT, which we can then reweigh during that
phase. While this avoids having to use data-structure B), there are two problems with
this: a) disks with small weight hit by R are not reweighed, and b) a disk whose initial
weight was less than c2W/OPT could have its current weight more than c2W/OPT in
the middle of a phase, and so it is erroneously reweighed.

Towards solving these problems, the idea is to maintain an additional set S which is
empty at the start of each phase. When a disk D is reweighed, we add a random point
of D (sampled according to the probability distribution induced by w(·)) to S. Addi-
tionally we maintain a nearest-neighbor structure for S, enabling us to only reweigh D
if it is not hit by R ∪ S. Now, if during a phase, there are Ω(OPT) reweighings, then as
in the Agarwal-Pan algorithm, we move on to the next phase, and a) is not a problem.
Otherwise, there have been less than OPT reweighings, which implies that less than
OPT disks were not hit by R. Then we can return R together with the set S consisting
of one point from each of these disks. This will still be a hitting set.

To remedy b), before reweighing a disk, we compute the set of points inside D,
and only reweigh if the total weight is at most c2W/OPT. Consequently we sometimes
waste O(n/OPT) time to compute this list of points inside D without performing a
reweighing. Due to this, the worst-case running time increases to O(n2/OPT). In prac-
tice, this does not happen for the following reason: in contrast to the AP algorithm, our
algorithm reweighs any disk at most once during a phase. Therefore if the weight of any
disk D increases significantly, and yet D is not hit by S, the increase must have been
due to the increase in weight of many disks intersected by D which were reweighed
before D and for which the picked points (added to S) did not hit D. Reweighing in
a random order makes these events very unlikely (in fact we suspect this gives an ex-
pected linear-time algorithm, though we have not been able to prove it).
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Algorithm 3: Algorithm for computing small-sized hitting sets.
Data: A point set P , a set of disks D, and the size of the optimal hitting set OPT.

1 Compute a (c1/OPT)-net Q of P and the Delaunay triangulation Ξ(Q) of Q.
2 foreach q ∈ Q do construct Ψ(Q)(q).
3 foreach D ∈ D do
4 if D not hit by Q then add D to D1. // using Ξ(Q)

5 P1 = P \Q.
6 foreach p ∈ P1 do set w(p) = 1.
7 repeat
8 Compute a (c2/OPT)-net, R, of P1 and the Delaunay triangulation Ξ(R) of R.
9 Set S = ∅, Ξ(S) = ∅.

10 foreach D ∈ D1 in a random order do
11 if D not hit by R ∪ S then // using Ξ(R) and Ξ(S)
12 foreach p ∈ D do set w(p) = w(p) + c3w(p). // using Ψ(Q)
13 Add a random point in D to S; update Ξ(S).

14 until |S| ≤ c4OPT

15 return {Q ∪R ∪ S}

See Algorithm 3 for the new algorithm (the data-structure Ψ(Q) will be defined
later).

Lemma 5. The algorithm terminates, Q∪R∪S is a hitting set, of size at most (13.4+
δ) · OPT, for any δ > 0.

Proof. By construction, if the algorithm terminates, then Q ∪ R ∪ S is a hitting-set.
Set c1 = 13.4 · 3/δ, c2 = 1/(1 + δ/(13.4 · 3)), c3 = δ/10000 and c4 = δ/3. By the
standard reweighing argument, we know that after t reweighings, we have:

OPT (1 + c3)
t

OPT ≤ n · (1 + c2c3
OPT

)t (4)

which solves to t = O(OPT logn
δ ). Each iteration of the repeat loop, except the last one,

does at least c4OPT reweighings. Then the repeat loop can run for at mostO(OPT logn
c4OPTδ ) =

O(log n/δ) times.
By Theorem 1, |Q| ≤ (13.4/c1)OPT, |R| ≤ (13.4/c2)OPT, and |S| ≤ c4OPT.

Thus the overall size is 13.4OPT ·
(
1/c1 + 1/c2 + c4/13.4

)
≤ (13.4 + δ) · OPT.

Algorithmic details. Computing an ε-net takesO(n log n) time using Theorem 1. Check-
ing if a disk D is hit by an ε-net (Q, R, or S) reduces to finding the closest point in the
set to the center of D, again accomplished in O(log n) time using point-location in
Delaunay/Voronoi diagrams Ξ(·). It remains to show how to compute, for a given disk
D ∈ D1, the set of points of P contained in D:

Lemma 6. Given a disk D ∈ D1, the set of points of P contained in D can be reported
in time O(n/OPT log n).
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4 Implementation and Experimental Evaluation

In this section we present experimental results for our algorithms implemented in C++
and running on a machine equipped with an Intel Core i7 870 processor (2.93 GHz)
and with 16 GB main memory. All our implementations are single-threaded, but we
note that our hitting set algorithm can be easily multi-threaded. The source code can
be obtained from the authors’ website 1. For nearest-neighbors and Delaunay triangula-
tions, we use CGAL. It computes Delaunay triangulations in expectedO(n log n) time.
To calculate the optimal solution for the hitting set problem we use the IP solver SCIP
(with the linear solver SoPlex). Creating the linear program is carried out efficiently by
using the Delaunay triangulation of the points for efficient range searching.

Datasets. In order to empirically validate our algorithms we have utilized several
real-world point sets. All our experiments’ point sets are scaled to a unit square. The
World dataset [3] contains locations of cities on Earth (except for the US) having around
10M records. For our experiments we use only the locations of cities in China having
1M records (the coordinates have been obtained from latitude and longitude data by
applying the Miller cylindrical projection). The dataset ForestFire contains 700K loca-
tions of wildfire occurrences in the United States [2]. The KDDCUP04Bio dataset [1]
(KDDCU for short) contains the first 2 dimensions of a protein dataset with 145K en-
tries. We have also created a random data set Gauss9 with 90K points sampled from 9
different Gaussian distributions with random mean and covariance matrices.

5 10 15

10

20

30

7

c0ε-
ne

ts
iz

e
m

ul
tip

lie
d

by
ε

ForestFire
China
KDDCU
Gauss9

Fig. 1. ε-net size multiplied by ε for the datasets, ε = 0.01 (left) and a subset of the ε-net for the
World dataset (right).

Sizes of ε-nets. Setting the probability for random sampling to 12
ε·n results in ap-

proximately 12
ε sized nets for nearly all datasets, as expected by our analysis. We note

however, that in practice setting c0 to 7 gives smaller size ε-nets, of size around 9
ε . See

Figure 1 for the dependency of the net size on c0 for ε = 0.01. It also includes an ε-net
calculated with our algorithm for a subset of the World data (red points denote the ε-net
and each pixel’s color is the logarithm of the number of disks it is contained in). See
Table 1 for the ε-net sizes for different values of ε while c0 is set to 7 and 12. This table

1 http://perso.esiee.fr/˜busn/#hittingsetApplication

http://perso.esiee.fr/~busn/#hittingsetApplication
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also includes the size of the first random sample (R), which shows that the number of
subproblems to solve increases as the random sample is more sparse.

Table 1. The size of the ε-net multiplied by ε (left value in a column for a fixed ε) and the size
of R, the first random sample multiplied by ε (right value in a column) for various point sets with
c0 = 7 or 12.

c0 = 7 c0 = 12

ε 0.2 0.1 0.01 0.001 0.2 0.1 0.01 0.001

China 7.8 6.6 8.3 6.1 8.28 6.80 8.426 7.090 14.2 14.2 10.6 10.6 12.33 12.33 12.152 12.138

ForestFire 7.4 7.4 8.3 7.3 8.46 7.46 8.522 6.892 13 13 11.6 11.6 12.01 12.01 12.103 12.077

KDDCU 7.4 7.4 8.4 7.4 8.31 7.29 8.343 6.989 10.2 10.2 9.8 9.8 11.65 11.57 12.006 11.978

Gauss9 7.4 5.8 7.8 7.6 8.00 7.18 8.100 6.882 9.8 9.8 12.0 12.0 11.61 11.43 11.969 11.965

Approximate hitting sets. For evaluating the practical usability of our approximate
hitting set algorithm we compare it to the optimal solution. Our algorithm needs a guess
for OPT, and so we run it with O(log n) guesses for the value of OPT . The parameters
are set as follows: c0 = 10, c1 = 30, c2 = 12, c3 = 2 and c4 = 0.6.

Our datasets only contain points and in order to create disks for the hitting set prob-
lem we have utilized two different strategies. In the first approach we create uniformly
distributed disks in the unit square with uniformly distributed radius within the range
[0, r]. Let us denote this test case as RND(r). In the second approach we added disks
centered at each point of the dataset with a fixed radius of 0.001. Let us denote this
test case by FIX(0.001). The results are shown in Table 2 for two values r = 0.1 and
r = 0.01. Our algorithm provides a 1.3 approximation on average. With small radius
the solver seems to outperform our algorithm but this is most likely due to the fact that
the problems become relatively simpler and various branch-and-bound heuristics be-
come efficient. With bigger radius and therefore more complex constraint matrix our
algorithm clearly outperforms the IP solver. Our method obtains a hitting set for all
point sets, while in some of the cases the IP solver was unable to compute a solution in
reasonable time (we terminate the solver after 1 hour).

Table 2. Hitting sets. From top to bottom, RND(0.1), RND(0.01).

# of
points

# of
disks

Q
size

R
size

S
size

# of
phases

IP
solution

dnet
solution

ap-
prox.

IP
time(s)

dnet
time(s)

China 50K 50K 367 809 604 11 1185 1780 1.5 60 12

ForestFire 50K 16K 43 85 224 11 267 352 1.3 54.3 6.9

KDDCU 50K 22K 171 228 786 11 838 1185 1.4 40.9 9.8

Gauss9 50K 35K 322 724 1035 11 1493 2081 1.4 52.5 11.7

China 50K 49K 673 1145 4048 11 4732 5862 1.2 4.5 14.5

ForestFire 50K 25K 162 268 1021 11 1115 1451 1.3 6.2 9.5

KDDCU 50K 102K 1326 2492 6833 11 8604 10651 1.2 12.5 22.2

Gauss9 50K 185K 2737 6636 9867 11 15847 19239 1.2 22.4 36.0
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In Table 3 we have included the memory consumption of both methods and statistics
for range reporting. It is clear that the IP solver requires significantly more memory
than our method. The statistics for range reporting includes the total number of range
reportings (calculating the points inside a disk) and the number of range reportings
when the algorithm doubles the weight of the points inside a disk (the doubling column
in the table). It can be seen that only a fraction of the computations are wasted since the
number of doublings is almost as high as the total number or range reportings. This in
fact shows that the running time of our algorithm is near-linear in n.

Table 3. Memory usage in MB (left) and range reporting statistics (right).

RND(0.01) RND(0.1) FIX(0.001)
IP dnet IP dnet IP dnet

China 243 21 4282 19 434 20

ForesFire 524 28 3059 18 5470 24

KDDCU 458 30 2999 23 175 22

Gauss9 569 33 3435 24 158 24

RND(0.01) RND(0.1) FIX(0.001)
total doubling total doubling total doubling

China 44014 43713 9406 9184 96335 95846

ForesFire 11167 11086 2767 2728 15648 15020

KDDCU 75448 75016 8485 8364 173147 173044

Gauss9 121168 120651 14133 13906 217048 217019

In order to test the scalability of our method compared to the IP solver we have
used the ForestFire and China dataset with limiting the number of points to 10K, 20K,
30K. . . and repeating exactly the same experiments as above (while increasing the
number of disks in a similar manner). In Figure 2 we plot the running time of the
methods. The solid lines represent the case RND(0.1) while the dashed ones denote
RND(0.01). One can see that as the number of points and disks increases our method
becomes more efficient even though for small instances this might not hold. It can be
seen that for the China dataset and RND(0.01) the IP solver is faster than our method
but after 500K points our method becomes faster. In Figure 2 the dotted line represents
the running time of our algorithm for FIX(0.001). In this case the IP running time is
not shown because the solver was only able to solve the problem with 10K points within
a reasonable time (for 20K and 30K points it took 15 and 21 hours respectively).

0 200 400 600
0

100

200

number of points (in thousands)

ru
n

tim
e(

s) IP-RND(0.1)

IP-RND(0.01)

dnet-RND(0.1)

dnet-RND(0.01)

dnet-FIX(0.001)

0 200 400 600
0

100

200

number of points (in thousands)

IP-RND(0.1)

IP-RND(0.01)

dnet-RND(0.1)

dnet-RND(0.01)

dnet-FIX(0.001)

Fig. 2. Different point set sizes for the ForestFire (left) and China (right) datasets.

We have varied the radius of the disks for the fixed radius case to see how the
algorithms behave. See Figure 3. With bigger radius the IP solver becomes very quickly
unable to solve the problem (for radius 0.002 it was unable to finish within a day),
showing that our method is more robust.
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Fig. 3. Different radii settings for the KDDCU (left) and China (right) datasets.

In order to test the extremes of our algorithm we have taken the World dataset con-
taining 10M records. Our algorithm was able to calculate the solution of theFIX(0.001)
problem of size around 100K in 3.5 hours showing that the algorithm has the potential
to calculate results even for extremely big datasets with a more optimized (e.g., multi-
threaded) implementation.
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