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Abstract

Showing the existence of ε-nets of small size has been the subject of investigation for almost 30
years, starting from the initial breakthrough of Haussler and Welzl (1987). Following a long line of
successive improvements, recent results have settled the question of the size of the smallest ε-nets
for set systems as a function of their so-called shallow-cell complexity.

In this paper we give a short proof of this theorem in the space of a few elementary paragraphs,
showing that it follows by combining the ε-net bound of Haussler and Welzl (1987) with a variant of
Haussler’s packing lemma (1991).

This implies all known cases of results on unweighted ε-nets studied for the past 30 years, starting
from the result of Matoušek, Seidel and Welzl (1990) to that of Clarkson and Varadajan (2007) to
that of Varadarajan (2010) and Chan, Grant, Könemann and Sharpe (2012) for the unweighted case,
as well as the technical and intricate paper of Aronov, Ezra and Sharir (2010).

1 Introduction

Given a set system (X,R) and any set Y ⊆ X, define the projection of R onto Y as the set system:

R|Y =
{
Y ∩R | R ∈ R

}
.

The VC dimension of R, denoted VC-dim(R), is the size of the largest Y ⊆ X for which R|Y = 2Y [31].
The Sauer-Shelah lemma [31, 29, 30] states that given a set system (X,R) with VC-dim(R) ≤ d, for any

set Y ⊆ X, we have |R|Y | = O
(
( e|Y |d )d

)
.

Epsilon nets. Given a set system (X,R) and a parameter ε > 0, an ε-net for R is a set N ⊆ X such
that N∩R 6= ∅ for all R ∈ R with |R| ≥ ε|X|. Epsilon-nets are fundamental combinatorial structures that
have found countless uses in approximation algorithms, discrete and computational geometry, discrepancy
theory, learning theory and other areas (see the books [6, 19, 20, 26] for a sample of their uses).

The systematic study of ε-nets was initiated by a beautiful result of Haussler and Welzl [15], who showed
that the size of ε-nets can be upper-bounded only as a function of 1

ε and the VC dimension of the given

set system; in particular, that there exist ε-nets of size O
(
d
ε log d

ε

)
. Together with an improvement [16],

we arrive at the following more general statement (see [13]).

Theorem A (Epsilon-net Theorem). Let (X,R) be a set system with VC-dim(R) ≤ d for some constant
d, and let ε > 0 be a given parameter. Then there exists an absolute constant ca > 0 such that a random
sample N constructed by picking each point of X independently with probability

ca ·

(
1

ε|X|
log

1

γ
+

d

ε|X|
log

1

ε

)
.
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is an ε-net for R with probability at least 1− γ.

The usefulness of the ε-net theorem in geometry follows from the fact that in many applications, the set
systems derived from geometric configurations typically have bounded VC dimension. Generally such
set systems can be classified as one of two types. Call (X,R) a primal set system if the base elements
in X are points in Rd, and the sets in R are defined by containment by some element from a family
O of geometric objects in Rd. In other words, R ∈ R if and only if there exists an object O ∈ O with
R = O ∩X. In such a case, we say that R is a primal set system induced by O. On the other hand, call
(S,R) a dual set system if the base set S is a finite set of geometric objects in Rd, and the sets in R are
defined by points; namely, R ∈ R if and only if there exists a point p ∈ Rd with R = {R′ ∈ S | p ∈ R′}.
In this case we say that R is the dual set system induced by S.

While the ε-net theorem guarantees the existence of an ε-net of size O
(
d
ε log 1

ε

)
for any set system with VC

dimension at most d (and this cannot be improved [16]), the past years have seen a steady series of results
showing the existence of even smaller nets for specific geometric set systems [7, 16, 21, 22, 18, 12, 3],
as well as cases where it is not possible [1, 27, 17]. An important step was taken by Clarkson and
Varadarajan [9], who made the connection between the sizes of ε-nets for dual set systems for a family
of geometric objects with its union complexity. The union complexity of a family of geometric objects
O, denoted κO(·), is obtained by letting κO(n) be the maximum number of faces of all dimensions that
the union of any n members of O can have. As κO(n) = Ω(n) for geometric set systems, it will be

convenient to define ϕO(n) = κO(n)
n . Clarkson and Varadarajan showed that if O has union complexity

κO(·), then the dual set system induced by O has ε-nets of size O
(
1
ε · ϕO( 1

ε )
)
. For the case where O is

a family of pseudo-disks in the plane, Ray and Pyrga [28] showed that the primal and dual set systems
induced by O have ε-nets of size O( 1

ε ). Next, Aronov et al. [2], improving on the result of Clarkson
and Varadarajan, showed that the dual set system induced by O has ε-nets of size O

(
1
ε logϕO( 1

ε )
)

(independently, Varadarajan [32] showed a slightly weaker bound). They also showed that the primal
set system induced by axis-parallel rectangles in the plane has ε-nets of size O

(
1
ε log log 1

ε

)
.

All these results pointed to the fact that the VC dimension of a set system was not fine enough to capture
the subtleties of the sizes of ε-nets. It turns out that a more precise characterization is via the shallow-cell
complexity of a set system. A set system (X,R) has shallow-cell complexity ϕR(·, ·) if for any Y ⊆ X,
the number of subsets in R|Y of size at most l is |Y | · ϕR(|Y |, l). Often when the dependency of ϕ(n, l)
on l is less important, we drop the second parameter: say that (X,R) has shallow-cell complexity ϕR(·)
if for any Y ⊆ X, the number of sets in R|Y of size at most l is |Y | · ϕR(|Y |) · lcR for some constant cR
(we will drop the subscript from the shallow-cell complexity functions when it is clear from the context).
Using the Clarkson-Shor probabilistic technique [8], it follows that if a family of objects O have union

complexity κO(n), then the dual set system induced by O has shallow-cell complexity O
(κO(n)

n

)
.

Improving on an earlier result of Varadarajan [33] that stated a slightly weaker result for the specific case
of the dual set systems induced by geometric objects, Chan et al. [4] showed the following very general
result which is the current state-of-the-art (and was shown to be tight recently in [17]).

Theorem B. Let (X,R) be a set system with shallow-cell complexity ϕ(·), where ϕ(n) = O(nd) for
some constant d. Then there exists a randomized procedure that adds each p ∈ X to N with probability
O
(

1
ε|X| logϕ( 1

ε )
)
, such that N is an ε-net1. In particular, there exists an ε-net of size O

(
1
ε logϕ( 1

ε )
)
.

The key in the above theorem, originating in the elegant work of Varadarajan [33], is that while the
points are added to N probabilistically, they are not added independently. In particular, this also implies
that given a weight function w : X → R+, and defining w(Y ) =

∑
p∈Y w(p) for any Y ⊆ X, there exists

an ε-net N for R with w(N) = O
(w(X)
ε|X| logϕ( 1

ε )
)
.

Packing lemma. In 1991 Haussler [14] proved the following interesting theorem.

Theorem C (Packing Lemma [14]). Let (X,P) be a set-system on n elements, with VC-dim(P) ≤ d
for some constant d. Let δ > 0 be an integer such that |∆(R,S)| ≥ δ for every distinct R,S ∈ P, where
∆(R,S) = (R \ S) ∪ (S \ R) is the symmetric difference between R and S. Then |P| = O

(
(n/δ)d

)
.

Furthermore, this bound is asymptotically tight.

1The bound stated in [33, 4] is in fact O
(
1
ε

logϕ(n)
)
. However the stated bound can be easily derived from this; see [17]

for details.
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Call such a collection P, where |∆(R,S)| ≥ δ for every R,S ∈ P, a δ-packing. A careful examination of
the proof yields a stronger statement (this was realized and formulated in [24]).

Theorem D. Let (X,P) be a set-system on n elements, with VC-dim(P) ≤ d for some constant d. Let
δ > 0 be an integer such that |∆(S,R)| ≥ δ for all distinct S,R ∈ P. Then

|P| ≤ 2 · E
[∣∣P|A∣∣],where A is a uniform random sample of X of size

4dn

δ
− 1.

Haussler’s proof, later simplified by Chazelle [5], is a short and stunning application of the probabilistic
method. The packing lemma has been the basis of recent results on packing statements for a variety of
geometric set systems (see [11, 25] for some results). It has been generalized to the so-called Clarkson-
Shor set systems (namely set systems R where ϕR(n, k) = O

(
nd1 · kd2

)
for some constants d1 and d2)

in [10]. This was further generalized in [24] to give the following statement, whose proof we include here
for completeness. Given (X,P), call P a (k, δ)-packing if a) |S| ≤ k for all S ∈ P, and b) |∆(S,R)| ≥ δ
for all distinct S,R ∈ P.

Theorem E (Shallow Packing Lemma). Let (X,P) be a (k, δ)-packing on n elements, for integers
k, δ > 0. If VC-dim(P) ≤ d and P has shallow-cell complexity ϕ(·, ·), then |P| ≤ 24dn

δ · ϕ
(
4dn
δ , 12dkδ

)
.

Proof. Let A ⊆ X be a random sample of size 4dn
δ − 1. Let P1 = {S ∈ P s.t. |S ∩ A| > 3 · 4dk/δ}.

Note that E[|S ∩ A|] ≤ 4dk/δ as |S| ≤ k for all S ∈ P. By Markov’s inequality, for any S ∈ P,
Pr[S ∈ P1] = Pr[|S ∩A| > 3 · 4dk/δ] ≤ 1/3. Thus

E
[
|P|A|

]
≤ E

[
|P1|

]
+ E

[
|(P \ P1)|A|

]
≤
∑
S∈P

Pr
[
S ∈ P1

]
+ |A| · ϕ

(
|A|, 12dk

δ

)
≤ |P|

3
+

4dn

δ
ϕ
(4dn

δ
,

12dk

δ

)
,

where the projection size of P\P1 to A is bounded by ϕ(·, ·). Now the bound follows from Theorem D.

Our result. Our proof combines ideas from partitioning [22, 28], packing [14, 5], random sampling [15,
16], and refinement [5] approaches. Interestingly, each of these previous approaches individually is
insufficient, but can be combined in a way that leads to the general theorem. In particular, we show
that the unweighted version of Theorem B—in fact a generalization of it in terms of ϕ(·, ·)—follows from
Theorem A and Theorem E (which, as its proof shows, follows from Theorem C). Furthermore, the proof
goes along the lines of the proof of the ε-net Theorem [15]: pick each point of X into a random sample

R with probability Θ
( logϕ(1/ε)

εn

)
. There are some ‘errors’ in the sampling but they can be easily fixed.

Theorem 1. Let (X,R), |X| = n, be a set system with VC-dim(R) = d and shallow-cell complexity
ϕ(·, ·), where ϕ(·, ·) is a non-decreasing function in the first variable. Then there exists an ε-net for R of
size O

(
1
ε logϕ

(
8d
ε , 24d

)
+ d

ε

)
. In particular, if R has shallow-cell complexity ϕ(·) and d is a constant,

then there exists an ε-net for R of size O
(
1
ε logϕ

(
1
ε

))
.

2 Proof of Theorem 1

For each integer i = 1 . . . dlog 1
ε e, compute the sets Ni and Mi as follows. Set εi = 2iε, δi = εin

2 , and
Ri =

{
S ∈ R | εi−1n ≤ |S| < εin

}
. Let Pi be any maximal (εin, δi)-packing of Ri. Construct a random

sample Ni by picking each point of X independently with probability

ca ·

(
1

(1/2) · εin
log

(
d · ϕ

(
8d

εi
, 24d

))
+

d

(1/2) · εin
log

1

(1/2)

)

For each S′ ∈ Pi, if S′ ∩Ni is not a 1
2 -net for Ri|S′ , add a 1

2 -net for (S′,Ri|S′) of size O(d) to Mi using
Theorem A. We claim that N =

⋃
i

(
Ni ∪Mi

)
is an ε-net for R. To see this, let S ∈ R with |S| ≥ εn,

and let j be the index such that S ∈ Rj . By the maximality of Pj , there exists a set S′ ∈ Pj such
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that |∆(S, S′)| = |S \ S′| + |S′ \ S| < δj ; as |S| ≥ 2j−1εn = δj , we get that |S ∩ S′| ≥ |S| − |S \ S′| >
δj −

(
δj − |S′ \ S|

)
≥ |S′ \ S|. Thus S is hit by the 1

2 -net for S′.

It remains to bound the expected size of N . Fix an index j ∈ {1, . . . , dlog 1
ε e}. By Theorem E, we have

|Pj | ≤ 24dn
δj
·ϕ
(

4dn
δj
,
12d·εjn
δj

)
= 48d

εj
·ϕ
(

8d
εj
, 24d

)
. By Theorem A, Nj fails to be a 1

2 -net for any fixed set

system
(
S ∈ Pj ,Rj |S

)
with probability at most 1

d·ϕ(8d/εj ,24d) . The expected size of Mj can be bounded

by

E
[
|Mj |

]
=
∑
S∈Pj

Pr
[
Nj is not a

1

2
-net for S

]
·
(

size of
1

2
-net for S

)
≤
∑
S∈Pj

1

d · ϕ (8d/εj , 24d)
·O (d) = O

(
d

εj

)
.

Thus we can conclude:

E[|N |] =

dlog 1
ε e∑

j=1

E
[
|Nj |+ |Mj |

]
=

dlog 1
ε e∑

j=1

O

(
1

εj
logϕ

(
8d

εj
, 24d

)
+
d

εj

)
= O

(
1

ε
logϕ

(
8d

ε
, 24d

)
+
d

ε

)
.

3 Conclusions

We have shown that, starting from the packing lemma of Haussler as well as the ε-net result of Haussler
and Welzl, one can derive in an elementary, short way the optimal bound on ε-nets. This in turn covers
all known results on unweighted ε-nets for primal and dual geometric set systems:

• O
(
1
ε

)
sized nets for primal set system induced by halfspaces in R2 and R3, as ϕ(n) = O(1) in this

case. This implies the results of [21, 22].

• O
(
1
ε

)
sized nets for primal and dual set systems induced by pseudo-disks in the plane, as ϕ(n) =

O(1) in this case. This implies the results of [28].

• O( 1
ε logϕ( 1

ε )
)

sized nets for the dual set system induced by objects in R2 of union complexity ϕ(·).
This implies the results in [9, 2].

• O
(
1
ε log log 1

ε

)
for the primal set system induced by axis parallel rectangles in the plane [2]. To

see this, consider the following system on a set of points X in the plane resulting from a binary
tree decomposition. Let l be a vertical line that divides X into two equal sized sets X1 and X2,
and add to R′ all possible ‘anchored’ rectangles with one edge lying on l. It is known that this
set system has ϕ(n) = O(1). Now recursively repeat on X1 and X2 to add further rectangles to
R′ till each set contains less than ε|X| elements. It is easy to see that the final set system (X,R′)
has ϕ(n) = log n, and that for any axis-parallel rectangle S in the plane, the highest level line l

intersected by S is unique, and so S contains at least ε|X|
2 points from one side of l. Thus a ε

2 -net
for R′ is an ε-net for R, of size O

(
1
ε logϕ( 1

ε )
)

= O
(
1
ε log log 1

ε

)
.

• Finally, the randomized algorithm for computing ε-nets given in the proof of Theorem 1 can be
easily derandomized using standard techniques due to Matoušek [23].
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