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Abstract

Tries (from retrieval) are one of the most popular data structures on words. They are pertinent to the
(internal) structure of stored words and several splitting procedures used in diverse contexts. The profile
of a trie is a parameter that represents the number of nodes (either internal or external) with the same
distance from the root. It is a function of the number of strings stored in a trie and the distance from
the root. Several, if not all, trie parameters such as height, size, depth, shortest path, and fill-up level
can be uniformly analyzed through the (external and internal) profiles. Although profiles represent one
of the most fundamental parameters of tries, they have hardly been studied in the past. The analysis of
profiles is surprisingly arduous, but once it is carried out it reveals unusually intriguing and interesting
behavior. We present a detailed study of the distribution of the profiles in a trie built over random strings
generated by a memoryless source. We first derive recurrences satisfied by the expected profiles and solve
them asymptotically for all possible ranges of the distance from the root. It appears that profiles of tries
exhibit several fascinating phenomena. When moving from the root to the leaves of a trie, the growth
of the expected profiles varies. Near the root, the external profiles tend to zero at an exponential rate,
and then the rate gradually rises to being logarithmic; the external profiles then abruptly tend to infinity,
first logarithmically and then polynomially; they then tend polynomially to zero again. Furthermore,
the expected profiles of asymmetric tries are oscillating in a range where profiles grow polynomially,
while symmetric tries are non-oscillating, in contrast to most shape parameters of random tries studied
previously. Such a periodic behavior for asymmetric tries implies that the depth satisfies a central limit
theorem but not a local limit theorem of the usual form. Also the widest levels in symmetric tries contain
a linear number of nodes, differing from the order n=

p
log n for asymmetric tries, n being the size of the

trees. Finally, it is observed that profiles satisfy central limit theorems when the variance goes unbounded,
while near the height they are distributed according to Poisson laws. As a consequence of these results we
find typical behaviors of the height, shortest path, fill-up level, and depth. These results are derived here
by methods of analytic algorithmics such as generating functions, Mellin transform, Poissonization and
de-Poissonization, the saddle-point method, singularity analysis, and uniform asymptotic analysis.
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1 Introduction

Tries are prototype data structures useful for many indexing and retrieval purposes. They were first proposed
by de la Briandais [9] in the late 1950s for information processing; Fredkin [28] suggested the current name
as it is part of retrieval. Tries are multiway trees whose nodes are vectors of characters or digits. Due to their
simplicity and efficiency, tries found widespread use in diverse applications including document taxonomy,
IP address lookup, data compression, dynamic hashing, partial-match queries, speech recognition, leader
election algorithms, and distributed hashing tables (see [30, 51, 55, 82]). In this paper, we are concerned
with probabilistic properties of the profiles of tries, where the profile of a tree is the sequence of numbers
each corresponding to the number of nodes with the same distance from the root. We discover several new
phenomena in the profiles of tries built over strings generated by a random memoryless source, and develop
asymptotic tools to describe them.

Structure and usefulness of tries. Tries are a natural choice of data structure when the input records involve
a notion of alphabets or digits. They are often used to store such data so that future retrieval can be made
efficient. Given a sequence of n words over the alphabet fa1; : : : ; amg, m � 2, we can construct a trie as
follows. If n D 0, then the trie is empty. If n D 1, then a single (external) node holding the word is allocated.
If n � 1, then the trie consists of a root (internal) node directing words to the m subtrees according to the first
alphabet of each word, and words directed to the same subtree are themselves tries (see [51, 55, 82] for more
details). For simplicity, we deal only with binary tries in this paper. Unlike other search trees such as digital
search trees and binary search trees where records or keys are stored at the internal nodes, the internal nodes
in tries are branching nodes used merely to direct records to each subtrie, with all records stored in external
nodes that are leaves of such tries. A trie has more internal nodes than external nodes (fixed to be n throughout
this paper), differing from almost all other search trees. In Figure 1 we plot a binary trie of five strings.

The simple organizing procedure used to construct tries and the general efficiency they achieve make
tries one of the most popular digital search trees. Since their invention, tries have found frequent use in
many computer science applications. For example, tries are widely used in algorithms for automatically
correcting words in texts (see [53]) and in algorithms for taxonomies and toolkits of regular language (see the
Ph. D. thesis [83]); they are also used to represent the event history in datarace detection for multi-threaded
object-oriented programs (see [6]); another example is the Internet IP address lookup problem (see [62, 77]),
where the search time for the IP address problem is directly related to the distribution of the fill-up level
(see below for a more precise definition) and other trie parameters. For applications to other problems in
searching, sorting, dynamic hashing, coding, polynomial factorization, Lempel-Ziv compression schemes,
and molecular biology, see [30, 82].

The structure of tries also has a close connection to several splitting procedures using coin-flipping; these
include algorithms for resolving collisions in multi-access (or broadcast) communication models, algorithms
for loser selection or leader election, etc.; see [45]. Thus most shape parameters in tries have direct interpre-
tations in terms of other related objects.

Random tries under the Bernoulli model. Throughout the paper, we write Bn;k to denote the number of
external nodes (leaves) at distance k from the root; the number of internal nodes at distance k from the root
is denoted by In;k . For simplicity, we will refer to Bn;k as the external profile and In;k as the internal profile.
Figure 1 shows a trie and its profiles.

In this paper we study the profiles of a trie built over n binary strings generated by a memoryless source.
More precisely, we assume that the input is a sequence of n independent and identically distributed random
variables, each being composed of an infinite sequence of Bernoulli random variables with mean p, where
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Figure 1: A trie of n D 5 records and its profiles: the circles represent internal nodes and rectangles holding
the records are external nodes.

0 < p < 1 is the probability of a “1” and q WD 1 � p is the probability of a “0”. The corresponding
trie constructed from these n bit-strings is called a random trie. This simple model may seem too idealized
for practical purposes; however, the typical behaviors under such a model often hold under more general
models such as Markovian or dynamical sources, although the technicalities are usually more involved; see,
for example, [8, 12, 15, 36].

The motivation of studying the profiles is multifold. First, they are fine shape measures closely connected
to many other cost measures on tries; some of them are indicated below. Second, they are also asymptotically
close to the profiles of suffix trees, which in turn have a direct combinatorial interpretation in terms of words;
see [37, 61, 81, 82] for more information and another interpretation in terms of urn models. Third, not
only are the analytic problems mathematically challenging, but the diverse new phenomena they exhibit are
highly interesting and unusual. Fourth, our findings imply several new results on other shape parameters (see
Section 8). Finally, most properties of random tries have also a prototype character and are expected to hold
for other varieties of digital search trees (and under more general random models), although the proofs are
generally more complicated.

Major cost measures on random tries. Due to the usefulness of tries, many cost measures, discussed
below, on random tries have been studied in the literature since the early 1970s, and most of these measures
can be expressed and analyzed through the profiles studied in this paper:

� depth: the distance from the root to a randomly selected node; its distribution is given by the expected
external profile divided by n; see [10, 12, 13, 21, 34, 37, 43, 54, 67, 74, 78, 79];

� total path length: the sum of distances between nodes and the root, or, equivalently,
P

j jIn;j ; see
[8, 11, 44, 60, 59, 73, 74, 75, 78];

� size: the total number of internal nodes, or
P

j In;j ; see [8, 35, 37, 46, 51, 59, 69, 70, 73, 74, 75];

� height: the length of the longest path from the root, or maxfj W Bn;j > 0g; see [8, 11, 12, 13, 14, 23,
27, 34, 66, 67, 80];

� shortest path: the length of the shortest path from the root to an external node, or minfj W Bn;j > 0g;
see [66, 67];
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� fill-up (or saturation) level: the largest full level, or maxfj W In;j D 2j g, where the levels of a tree
denote the sets of nodes with the same distance from the root; see [50];

� Horton-Strahler number and stack-size: certain notions of heights related to the traversal of tries; see
[4, 17, 56, 57, 58];

� distance of two randomly chosen nodes; see [1, 7];

� pattern occurrences in tries (including page usage or b-tries); see [23, 43, 46, 60, 74, 79];

� one-sided height (or leader election or loser selection); see [22, 39, 68, 84, 85].

The reader is referred to the book [82] and the papers [15, 38, 74] for a systematic treatment of several of
these quantities.

The general analytic context. The major difference between most previous study and the current paper is
that we are dealing with the asymptotics of bivariate recurrence, in contrast to univariate recurrences (with or
without maximization or minimization) addressed in the literature.

To be more precise, we observe that, by assumption of the model, the probability generating function
Pn;k.y/ WD E.yBn;k / of the external profile satisfies the recurrence

Pn;k.y/ D
X

0�j�n

�
n

j

�
pj qn�j Pj ;k�1.y/Pn�j ;k�1.y/ .n � 2I k � 1/ (1)

with the initial conditions Pn;k.y/ D 1 C ın;1ık;0.y � 1/ when either n � 1 and k � 0 or k D 0 and
n � 0, where ıa;b is the Kronecker symbol. Observe that this recurrence depends on two parameters n

and k, which makes the analysis quite challenging, as we will demonstrate in this paper. The probability
generating functions of the internal profile satisfy the same recurrence (1) but with different initial conditions;
see Section 6.

From (1), the moments of Bn;k and In;k (centered or not) are seen to satisfy a recurrence of the form

xn;k D an;k C

X
0�j�n

�
n

j

�
pj qn�j

�
xj ;k�1 C xn�j ;k�1

�
with suitable initial conditions, where an;k are known (either explicitly or inductively). A standard approach is
to consider the Poisson generating function Qfk.z/ WD e�z

P
n xn;kzn=n!, which in turn satisfies the functional

equation
Qfk.z/ D Qgk.z/C Qfk�1.pz/C Qfk�1.qz/

with a suitable Qgk.z/. This equation can be solved explicitly by a simple iteration argument and asymptotically
by using the Mellin transform (see [24, 82]). The final step is to invert from the asymptotics of the Poisson
generating function Qfk.z/ to recover the asymptotics of xn;k . This last step is guided by the Poisson heuristic,
which roughly states that

if a sequence fxngn is “smooth enough,” then xn � e�n
P

j�0 xj nj=j ! (2)

where xn � yn if limn!1 xn=yn D 1. Such a Poisson heuristic has appeared in diverse contexts under
different forms such as Borel summability and Tauberian theorems; it dates back at least to Ramanujan’s
Notebooks; see the book by Berndt [3, pp. 57–66] for more details. It is known as analytic de-Poissonization
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when justified by complex analysis and the saddle-point method, and was the subject of intensive analysis,
resulting in a robust solution presented in [38].

By means of the Poisson heuristic (2), we expect that �n;k � e�n
P

j�0 �j ;knj=j !. However, as we will
see, such a heuristic holds in our case when q2kn ! 0 but fails otherwise. The reason is that �n;k is too
small in this range. Also it should be mentioned that the asymptotic analysis of the above functional equation
is in general more intricate because we have an additional parameter k to be taken into account and we need
uniformity for our asymptotic approximations in k (varying with n) and in z (in some region in the complex
plane) in order to invert the results to obtain xn;k by suitable complex analysis.

Known results for profiles. As far as probabilistic properties of the profiles of random tries are concerned,
very little is known in the literature. Since the distribution of the depth Dn in random tries is given by
P.Dn D k/ D �n;k=n, where �n;k WD E.Bn;k/, the asymptotics of the expected profile �n;k for n ! 1

and varying k D k.n/ can be regarded as local limit theorems for Dn. Although many papers addressed
the limiting behaviors of the depth, none has dealt with the local limit theorem of Dn and the asymptotics
of �n;k for varying k. We will see in the last section that our result implies an unusual type of local limit
theorem for Dn. However, it should be mentioned that the central limit theorem for the depth was developed
in [13, 35, 36].

On the other hand, Pittel [67] showed that the distribution of the number of pairs of input-strings having
a common prefix of length at least k is asymptotically Poisson when k is close to the height. Devroye [14]
showed that

if
E.Bn;k/
p

n
!1; then

Bn;k

E.Bn;k/
! 1 in probabilityI

if E.In;k/!1; then
In;k

E.In;k/
! 1 in probability;

under very general assumptions on the underlying models (see also [15] for further refinements). These repre-
sent known results concerning profiles. We will see that convergence in probability in the two “if statements”
holds as long as the variance tends to infinity.

Sketch of the major phenomena. In the next section we present an in-depth discussion of our results. Here,
we briefly summarize our main findings. We focus mostly on the profiles of asymmetric tries (when p 6D q)
since the symmetric tries (when p D q D 1=2) are comparatively easier. We will first derive asymptotic
approximations to the average external profile �n;k for all ranges of k.

Our results show inter alia that for k � .1 � "/ log n= log.1=q/ the average profile �n;k is exponentially
small, where " > 0 is small. When k increases and lies in the range .log n� log log log nCO.1//= log.1=q/,
then �n;k decays to zero logarithmically until k > k� for a specific threshold k� in this range beyond
which �n;k suddenly grows unbounded at a logarithmic rate. The rate becomes polynomial ‚.n�/ for some
0 < � � 1 when

1

log.1=q/
.1C "/ log n � k �

2

log.1=.p2 C q2//
.1 � "/ log n:

Surprisingly enough, for this range of k an oscillating factor emerges in the expected profile behavior; that
is, E.Bn;k/ � G.logp=q pkn/nv=

p
log n, where G is a bounded periodic function. Such behavior is a con-

sequence of an infinite number of saddle-points appearing in the integrand of the associated Mellin integral
transform. This was first observed by Nicodème [61]. For larger values of k, these oscillations disappear
since the behavior of the expected profile is dominated by a polar singularity.
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Analogous results also hold for the internal profile. In addition, we prove that the variances of both profiles
are asymptotically of the same order as their expected values. This suggests a central limit theorem for both
external and internal profiles for a wide range of k. We show that this is indeed true; furthermore, we also
show that for k near the height the limiting distribution of the profiles becomes Poisson. Some of these results
were already anticipated in [64] and constitute the Ph.D. thesis of the first author [65].

Profiles of digital and non-digital log-trees. In passing, we observe that most random trees in the discrete
probability literature fall into two major categories according to their expected height being of order

p
n

(referred to as square-root trees for brevity) or of order log n (referred to as log trees), where n is the tree size.
While most random square-root trees were introduced in combinatorics and probability, the majority of log
trees arise from data structures and computer algorithms.

We can further classify log trees into “digital type” and “non-digital type” log trees, according to the
nature of construction (or search) of the tree. Profiles of non-digital type search trees of logarithmic height
for which binary search trees are representative have received much recent attention and are shown to exhibit
several interesting phenomena such as bimodality of the variance and multifaceted behaviors of the limiting
distributions; see [5, 19, 20, 29, 32] for more information. In contrast, profiles of digital type search trees
have not been as much addressed and most properties remain unknown; see [14, 15, 67] for tries and [2, 40]
for digital search trees. We will show that the limiting behaviors of the profiles are very different from those
of non-digital search trees. In particular, while in no range will the normalized profiles in random binary
search trees lead to asymptotic normality (in the sense of convergence in distribution), profiles of random
tries, when properly centered and normalized, all converge to the standard normal law when the variance
goes unbounded in the limit. As is often the case for proving asymptotic normality, we need more precise
asymptotic approximation to the variance, rendering our analysis more complicated.

Organization of the paper. The paper is organized as follows. In the next section, we present (rather
informally) a more detailed summary of our main findings. This section is to help the reader to comprehend
the richness of our results in their fullness but without resorting to rather abstruse mathematical formulations.
Sections 3–8 are devoted to precise formulations of our results. This paper contains two major parts: The
first, Section 3, develops the asymptotic tools we need for deriving the diverse asymptotic approximations to
the expected external profile �n;k . Most proofs of the second part (Sections 4–8) are then sketched because
they extend the same methods of proof as in the first part. Except for Sections 7 and 8, we assume p 6D q

throughout this paper. Among these sections, Section 4 derives the asymptotics of the variance of Bn;k ,
the corresponding results of convergence in distribution being given in Section 5. The internal profiles are
addressed in Section 6, and results for symmetric tries are given in Section 7. Consequences of our findings
are discussed in Section 8, where we establish typical behaviors of the height, the width, the shortest path, the
fill-up level, and the right-profile, as well as a rather atypical local limit theorem for the depth.

2 Summary of main results

In this section we discuss informally our main results. We focus here on describing the major phenomena
arising in the analysis of profiles rather than presenting the precise and complicated results to which we
devote the remaining sections of this paper.

Crucial to our analysis of the profiles is the asymptotics of the expected profiles. Not only are the results
fundamental and highly interesting, but the analytic methods we used are also of certain generality.
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From (1), we see that the expected external profile �n;k WD E.Bn;k/ satisfies the following recurrence

�n;k D

X
0�j�n

�
n

j

�
pj qn�j .�j ;k�1 C �n�j ;k�1/ (3)

for n � 2 and k � 1 with the initial values �n;0 D 0 for all n ¤ 1 and 1 for n D 1. Furthermore,
�0;k D 0; k � 0, and �1;k D 0 for k � 1, and equal to 1 when k D 0. Throughout we assume that
p > q D 1 � p unless stated otherwise.

The polynomial growth of �n;k . In Section 3, we solve asymptotically (3) for various ranges of k when
p 6D q; a crude description of the asymptotics of �n;k is as follows.

log�n;k

log n
!

8̂̂̂<̂
ˆ̂:

0; if ˛ � ˛1I

��C ˛ log.p�� C q��/; if ˛1 � ˛ � ˛2I

2C ˛ log.p2 C q2/; if ˛2 � ˛ � ˛3I

0; if ˛ � ˛3;

(4)

where

˛1 WD
1

log.1=q/
; ˛2 WD

p2 C q2

p2 log.1=p/C q2 log.1=q/
; and ˛3 WD

2

log.1=.p2 C q2//
(5)

are delimiters of ˛ WD limn k= log n (k D k.n/), and

� WD
1

log.p=q/
log

�
1 � ˛ log.1=p/
˛ log.1=q/ � 1

�
:

Note that ˛1 � ˛2; see Figure 2. The limiting estimate (4) gives a rough picture of �n;k as follows: �n;k

is of polynomial growth rate when ˛1 C " � ˛ � ˛3 � " and is smaller than any polynomial powers when
0 � ˛ � ˛1 � " and ˛ � ˛3 C ". Near the two boundaries ˛1 and ˛3, the behaviors of �n;k will undergo
phase changes from being sub-polynomial to being polynomial or the other way around.

More refined asymptotics. To derive more precise asymptotics of �n;k than the phase transitions (4) of the
polynomial order of �n;k , we divide all possible values of k into four overlapping ranges.

(I) Elementary range: 1 � k � ˛1.log n � log log log nCO.1//.

(II) Saddle-point range: ˛1.log n � log log log nCKn/ � k � ˛2.log n �Kn

p
log n/.

(III) Gaussian transitional range: k D ˛2 log nC o..log n/2=3/.

(IV) Polar singularity range: k � ˛2 log nCKn

p
log n,

where, throughout this paper, Kn � 1 represents a (generic) sequence tending to infinity.
More precisely, in Theorem 1 we prove that for k lying in range (I) the expected external profile �n;k first

decays exponentially fast (asymptotic to qkn.1� qk/n�1). Then, when k is around ˛1.log n� log log log nC

log.p=q � 1/Cm log.p=q// for some integer m � 0,

�n;k �
km

m!
pmqk�mne�npmqk�m

;

which is of order

�n;k D O

 
log log n

log��m n

!
;
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Figure 2: Left: Plot of ˛1, ˛2, and ˛3 (defined in (5)) as functions of p. Right: The (non-zero) limiting
order of log�n;k= log n plotted against ˛ D limn k= log n for p D 0:55; 0:6; : : : ; 0:9 (the spans of the curves
increase as p grows). The vertical lines represent the positions of ˛2 (to the right of which the curves are
straight lines); see (4).

for some � . Thus, for m < � the expected external profile decays only logarithmically, but for m � � it
increases logarithmically.

The behavior of �n;k in range (II) is described in Theorem 2. The situation becomes highly nontrivial and
interesting. More precisely, for ˛1.1C "/ log n � k � ˛2.1 � "/ log n, we find that

�n;k � G1

�
�I logp=q pkn

� p�q�.p�� C q��/p
2�˛n;k log.p=q/

�
n�1p
log n

;

where (˛n;k WD k= log n)

�1 D ��C ˛n;k log.p�� C q��/;

� D �
1

log.p=q/
log

�
�1 � ˛n;k log q

1C ˛n;k log p

�
;

and G1.�Ix/ is a periodic function. We plot in Figures 3 and 4 the periodic parts of G1.�1;x/ for a few values
of p and �, respectively. Analytically, these oscillations are consequences of an infinite number of saddle-
points appearing in the integrand of the associated Mellin transform of the expected profile, but visually they
look like certain sine waves due to the fact that the corresponding Fourier expansions involve the Gamma
function with increasing parameters, which decreases very fast along a fixed vertical line for an increasing
imaginary part, so that only a few terms dominate.

Finally, in Theorem 3 we prove that for k in range (IV)

�n;k � 2pqn2.p2
C q2/k�1

D
2pq

p2 C q2
n�2 ;

where �2 D 2 C ˛n;k log.p2 C q2/, and the periodic function disappears. In this region, the asymptotic
behavior of the expected profile is dictated by the expected number of pairs (of input-strings) having common
prefixes of length at least k. This property is analytically reflected by a polar singularity in the associated
Mellin transform. The asymptotics of �n;k in range (III) for k D ˛2 log n C o.log2=3 n/ are presented in
Theorem 4. In this transitional range, the saddle-point coalesces with the polar singularity, so we use the
Gaussian integral to describe the behavior of �n;k .
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Figure 3: The fluctuating part around the mean of the periodic function G1.�1Ix/ for p D

0:55; 0:65; : : : ; 0:95 and for x in the unit interval; its amplitude tends to zero when p ! 0:5C.
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Figure 4: The fluctuating part around the mean of the periodic function G1.�Ix/ for � 2 f�1:5; 3:5; 8:5g and
x 2 Œ0; 1�. The amplitude increases as � grows.
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Figure 5: The silhouettes of the expected external (left) and internal (right) profiles of an asymmetric trie
(p D 0:75). Note that the right subtrees of the asymmetric trie have more nodes than their left siblings since
p > 1=2. Also, the first few levels contain almost no external nodes, but are almost full of internal nodes.
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Figure 6: The silhouettes of the expected external and internal profiles of a symmetric; compare Figure 5.

In summary, our results roughly state that �n;k ! 0 when 1 � k � k� for some k� close to ˛1.log n �

log log log n C O.1//, and then �n;k tends abruptly to infinity at a logarithmic rate when k > k�. Such
an abrupt change has already been observed in the literature for the shortest path and the fill-up level (see
[50, 67]), but not much is known for �n;k beyond that. Then we show that �n;k grows polynomially when
k lies in the range ˛1.1C "/ log n � k � ˛3.1 � "/ log n, reaching the peak where it is of order n=

p
log n;

it decays at a slower rate afterwards until it tends to zero again when k � ˛3.log nCKn/. A salient feature
here is the presence of an oscillating function in the asymptotic approximation when p 6D q1. In Figure 5, a
plot of the rough silhouettes of �n;k is presented.

Asymptotics of the expected internal profile. The expected value of the internal profile E.In;k/ is dis-
cussed in Section 6. In particular, the expected internal profile is asymptotically equivalent to 2k for k �

˛0.log n � Kn

p
log n/, where ˛0 WD 2=.log.1=p/ C log.1=q//. When k � ˛2.log n C Kn

p
log n/, then

E.In;k/ � .p
2 C q2/E.Bn;k/=pq. Between these two ranges, it is again the infinite number of saddle-points

that yield the dominant asymptotic approximation. Unlike �n;k , an additional phase transition appears in the
asymptotics of the E.In;k/ when k D ˛0 log nC O.

p
log n/, reflecting the structural change of the internal

nodes from being asymptotically full to being of the same order as the number of external nodes. The silhou-
ettes of the expected internal profiles for a symmetric trie and an asymmetric (p D 0:75) trie are presented in
Figure 6.

Variance and limiting distributions. In Section 4 we deal with the variance of the profile. In particular,
in Theorem 7 we derive asymptotic approximations to the variance of the profile, which asymptotically turns
out to be of the same order as the expected value for all ranges of k � 1; namely, V.Bn;k/ D ‚.E.Bn;k//.
In fact, we show that V.Bn;k/ � E.Bn;k/ in range (I), for range (IV) V.Bn;k/ � 2E.Bn;k/, and in range
(II) (polynomial growth) the variance and the expected profile differ only by the oscillating functions. The

1The expected values of many shape characteristics of random tries often exhibit the asymptotic pattern: � F.logc n/n if
log p= log q is rational for some periodic function F and constant c expressible in terms of p, and � C n if log p= log q is irra-
tional; see [38, 74, 82]
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variance of the internal profile behaves almost identically to the variance of the external profile; roughly,
V.In;k/ D ‚.V.Bn;k// for all k. The methods used to derive these results are the same as those used in
Section 3.

We then prove, in Section 5, that both internal and external profiles, after proper normalization, are asymp-
totically normally distributed if and only if the variance tends to infinity (see Theorems 8 and 9). The limiting
distribution is Poisson when the variance remains bounded away from zero and infinity. In particular, we will
prove that when V.Bn;k/ D ‚.1/,

P
�
Bn;k D 2m

�
D
�m

0

m!
e��0 C o.1/ and P

�
Bn;k D 2mC 1

�
D o.1/;

where �0 WD pqn2.p2 C q2/k�1, while for V.In;k/ D ‚.1/, we find

P.In;k D m/ D
�m

1

m!
e��1 C o.1/ .m D 0; 1; : : : /;

where �1 WD n2.p2 C q2/k=2. These results hold for both symmetric and asymmetric tries, but the ranges
where the variances become unbounded are different.

Symmetric tries. For the symmetric case, we have ˛1 D ˛2 D 1= log 2. This means that the two ranges
separated by ˛2 coalesce into one for symmetric tries; see Figure 2. The analysis then becomes simpler as
shown in Section 7. An interesting property is that unlike for asymmetric tries, the fattest levels of profiles of
symmetric tries contain a linear number of nodes. The global picture of a random symmetric trie is roughly
as follows (˛1 D 1= log 2):

� When 1 � k � ˛1.log n � log log n C O..log n/�1//, each level is almost full of internal nodes
(In;k � 2k), the number of external nodes tending to zero; in particular, the variances of both profiles
tend to zero.

� When ˛1.log n � log log nCKn= log n/ � k � 2˛1.log n �Kn/, where Kn is any sequence tending
to infinity, the variances of both profiles tend to infinity, and we prove the asymptotic normality of both
profiles.

� When k D 2˛1.log nC O.1//, both profiles are asymptotically Poisson distributed, but Bn;k assumes
only even values.

� When k � ˛1.log nCKn/, then nodes appear very unlikely.

The last Section 8 describes some consequences of our main results. In particular, we point out a rather
unusual form of the local limit theorem for the depth due to the oscillating factor in the expected profile.
Then we apply our results to rederive typical behavior for the height, the shortest path, and the fill-up level.
Also, the width and the right-profile (counting only right branches and neglecting the left ones) are briefly
discussed.

This completes the summary of our main results. Precise formulations and proofs are presented in the
next five sections. Enjoy the reading!

3 Expected external profile

We derive asymptotic approximations to the expected external profile �n;k in this section, starting with a few
useful expressions for �n;k .
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Notation. Throughout this paper, p 2 Œ1=2; 1/ is fixed and q D 1�p. Let k D k.n/ and ˛ WD limn k= log n,
whenever the limit exists. The constants ˛1; ˛2, and ˛3 are defined in (5). For convenience, we also write

Ln WD log n; LLn WD log log n; LLLn WD log log log n:

The generic symbol " is always used to represent a suitably small constant whose value may vary from one
occurrence to another, and Kn denotes any sequence tending to infinity. The symbol f .n/ D ‚.g.n// means
that there are positive constants C and C 0 such that C jg.n/j � jf .n/j � C 0jg.n/j.

3.1 Exact expressions and integral representations

Let Mk.z/ WD
P

n�0 �n;kzn=n! denote the exponential generating function of �n;k and let QMk.z/ WD

e�zMk.z/ be the Poisson generating function.

Lemma 1. The Poisson generating function QMk.z/ satisfies the integral representation

QMk.z/ D
1

2� i

Z
.�/

z�s�.s C 1/g.s/
�
p�s
C q�s

�k ds (6)

for k � 1 and <.z/ > 0, where � denotes the Gamma function, g.s/ WD 1� 1=.p�s C q�s/, and
R
.�/ stands

for the integral
R �Ci1
��i1 . The integral with � > �2 is absolutely convergent for <.z/ > 0.

Proof. By taking the derivative with respect to y on both sides of (1) and then substituting y D 1, we see that
�n;k satisfies the recurrence (3) with the initial conditions �n;k D ın;1ık;0 when either n � 1 and k � 0 or
k D 0 and n � 0. Note that

�n;1 D n
�
pqn�1

C qpn�1
�

.n � 2/:

It follows that
Mk.z/ D eqzMk�1.pz/C epzMk�1.qz/ .k � 2/;

with M1.z/ D z.peqz C qepz � 1/. Thus QMk.z/ satisfies

QMk.z/ D QMk�1.pz/C QMk�1.qz/: (7)

Iterating this equation yields

QMk.z/ D
X

0�j<k

�
k � 1

j

�
QM1.p

j qk�1�j z/; (8)

from which (6) follows since the Mellin transform

M �
1 .s/ D

Z 1
0

zs�1 QM1.z/dz

of QM1.z/ D pze�pz C qze�qz � ze�z equals

M �
1 .s/ D �.s C 1/.p�s

C q�s
� 1/;

where <.s/ > �2, and the Mellin transform of M1.p
j qk�1�j z/ is p�sj q�s.k�1�j/M �

1
.s/ (see [24, 82]).

To justify the absolute convergence of the integral, we apply the Stirling formula for the Gamma function
(with complex parameter)

�.s C 1/ D
p

2�s
� s

e

�s �
1CO

�
jsj�1

��
;
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uniformly as jsj ! 1 and j arg sj � � � ", which implies that

j�.�C i t/j D ‚.jt j��1=2e��jt j=2/; (9)

uniformly for jt j ! 1 and � D o.jt j2=3/.
The integrand in (6) is analytic for <.s/ > �2 and bounded above by

z���it�.�C 1C i t/g.�C i t/
�
p���it

C q���it
�k
D O

�
jzj��jt j�C1=2e��jt j=2Carg.z/t .p�� C q��/k

�
;

for large jt j. This completes the proof of the lemma.

Corollary 1. The expected external profile �n;k satisfies, for n; k � 1,

�n;k D

X
0�j�k

�
k

j

�
pj qk�j n

�
1 � pj qk�j

�n�1
�

X
0�j<k

�
k � 1

j

�
pj qk�1�j n

�
1 � pj qk�1�j

�n�1
;

(10)

and the integral representation

�n;k D
1

2� i

Z
.�/

�.nC 1/�.s C 1/

�.nC 1C s/
g.s/

�
p�s
C q�s

�k ds .� > �2/ (11)

where g.s/ D 1 � 1=.p�s C q�s/.

Proof. By definition and (8)

Mk.z/ D
X

0�j<k

�
k � 1

j

�
pj qk�1�j z

�
pe.1�pjC1qk�1�j /z

C qe.1�pj qk�j /z
� e.1�pj qk�1�j /z

�
:

Thus (the symbol Œzn�f .z/ denoting the coefficient of zn in the Taylor expansion of f .z/)

�n;k D n!Œzn�Mk.z/

D

X
0�j<k

�
k � 1

j

��
pjC1qk�1�j n

�
1 � pjC1qk�1�j

�n�1
C pj qk�j n

�
1 � pj qk�j

�n�1
�

�

X
0�j<k

�
k � 1

j

�
pj qk�1�j n

�
1 � pj qk�1�j

�n�1
:

Rearranging the indices of the first sum, we obtain (10).
On the other hand, it also follows from (7) that, denoting by Q�n;k WD n!Œzn� QMk.z/,

Q�n;k D .p
n
C qn/ Q�n;k�1 .k � 2/;

with

Q�n;1 D

X
2�j�n

�
n

j

�
.�1/n�j�j ;1 D .�1/nn

�
1 � pn

� qn
�

.n � 1/:

Iterating this recurrence yields

Q�n;k D .�1/nn
�
1 � pn

� qn
� �

pn
C qn

�k�1
.n; k � 1/:
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By definition, we have for n � 2

�n;k D

X
0�j�n

�
n

j

�
Q�j ;k D

X
2�j�n

�
n

j

�
.�1/j j

�
1 � pj

� qj
� �

pj
C qj

�k�1
: (12)

The last sum falls under the so-called Rice integral representation for finite differences (see [26, 82]) from
which we conclude

�n;k D
1

2� i

Z
.�/

�.nC 1/�.�s/

�.nC 1 � s/
s
�
1 � ps

� qs
� �

ps
C qs

�k�1 ds:

This gives (11). Absolute convergence of the integral in (11) when <.s/ > �2 is justified as above. Note that
g.�1/ D 0.

Remarks. The integral representation (11) follows formally from interchanging the Cauchy and Mellin
integrals as shown below

�n;k D
n!

2� i

Z
z�n�1ez QMk.z/dz (13)

D
n!

2� i

Z
z�n�1ez

�
1

2� i

Z
z�s�.s C 1/g.s/

�
p�s
C q�s

�k ds

�
dz

D
n!

2� i

Z
�.s C 1/g.s/

�
p�s
C q�s

�k � 1

2� i

Z
z�n�1�sezdz

�
ds

D
n!

2� i

Z
�.s C 1/

�.nC s C 1/
g.s/

�
p�s
C q�s

�k ds:

Although all steps here can be justified by analytic properties of the functions involved (which are essentially
the estimates needed by the saddle-point method), the way we proved (11), based solely on finite differences,
does not rely on any analytic properties.

Note that since the Mellin transform of x.1� x/n�1, x 2 .0; 1/, equals �.n/�.sC 1/=�.nC 1C s/, the
exact expression (10) also follows from (11) by expanding .p�s C q�s/k and then integrating term by term.
For numerical purposes, the expression (10) is preferable to (12), especially when k is not too large.

On the other hand, the closed-form expression (10) can also be proved directly by either a direct combi-
natorial argument (see [67] for similar details) or an urn model argument (see [61]).

3.2 Road map of the proof through de-Poissonization

From the preceding analysis, we have a choice of the two different integral representations: the Rice integral
(11) and the Cauchy integral (13). The approach via the Rice integral (11) is simpler than that via the Cauchy
and Mellin integrals (13), but the latter can be easily amended for computing the variance and limiting distri-
bution as will be evident from Sections 4 and 5. It is for this reason that we use here the route via the Cauchy
and Mellin integrals.

By the Poisson heuristic (2), we anticipate the asymptotic equivalence �n;k �
QMk.n/. We will see that

this holds when q2kn! 0 but requires suitable modification when q2kn 6! 0.

A simple analytic de-Poissonization result. Define a sequence of (Charlier) polynomials �`.n/ by

�`.n/ WD n!Œzn�ez.z � n/` D `!Œz`�.1C z/ne�nz .` D 0; 1; : : : /:

Then �0.n/ D 1, �1.n/ D 0, �2.n/ D �n, �3.n/ D 2n, and �4.n/ D 3n2�6n. Note that �`.n/ is a polynomial
in n of degree b`=2c.
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Proposition 1. Let f .z/ WD
P

n anzn=n! be an entire function, where an is a given sequence, and let Qf .z/ WD
e�zf .z/. Write z D rei� . If

jf .z/j � f .r/e�cr�2

(14)

holds uniformly for r � 0, c > 0, and j� j � � , where f .r/ � 0, and

Qf .`/.nei� / D O
�
ı.n/` Qf .n/

�
.` D 0; 1; : : : /; (15)

uniformly for j� j � �1, where �1 � n�1=2C" and ı.n/ D o.n�1=2/, then for any `0 � 2

an D

X
0�`<`0

Qf .`/.n/

`!
�`.n/CO

�
n`0=2ı.n/`0 Qf .n/

�
: (16)

Proof. By the Cauchy formula and the condition (14), we have

an D
n!

2� i

Z
jzjDn

j arg.z/j��0

z�n�1ez Qf .z/dz CO

�
n!n�nf .n/

Z 1
�0

e�cn�2

d�
�
; (17)

where �0 D n�2=5. By Stirling’s formula, we see that the O-term in (17) is bounded above by

O
�
n1=2 Qf .n/n�1=2e�cn1=5

�
D O

�
e�cn1=5

Qf .n/
�
; (18)

which is negligible in comparison to the main term Qf .n/. It remains to evaluate the first term in (17). To that
purpose, we expand Qf .z/ at z D n and then integrate term by term, the error term introduced being of the
form

n!

2� i.`0 � 1/!

Z
jzjDn

j arg.z/j�n�2=5

z�n�1ez.z � n/`0

Z 1

0

.1 � t/`0�1 Qf .`0/.nC .z � n/t/dtdz;

for any `0 � 1, which is easily seen, by (15), to be bounded above by the O-term in (16); see [31] for similar
details. Since ı.n/ D o.n�1=2/, this proves the asymptotic nature of (16).

Remark. In particular, we have

an D
Qf .n/CO.nı2.n/ Qf .n//;

an D
Qf .n/ �

n

2
Qf 00.n/CO

�
n2ı4.n/ Qf .n/

�
; (19)

for large n.

The theorem indicates that, when the regularity condition (14) and the smoothness condition (15) both
hold for QMk.z/, the asymptotics of �n;k are reduced to that of their Poisson generating function QMk.z/ for
large z near the real axis. Our effort in this section is mostly devoted to finding the uniform bounds for
justifying the de-Poissonization result (16), which holds for �n;k when q2kn ! 0. Note that although the
condition (14) may seem too strong for our purposes, it can be checked rather systematically in the cases
studied in this paper; see [38] for weaker conditions.

On the other hand, we show that when (16) fails (which is the case when q2kn 6! 0), the same proof
given above through the Cauchy integral (17) can be appropriately amended because (18) also holds in this
case. Thus when deriving our asymptotic estimates for �n;k , we will either follow the de-Poissonization route
through Proposition 1 or evaluate the integral (13) directly using (17).
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3.3 Range (I): An elementary analysis

We show in this section that when 1 � k � ˛1.Ln � LLLn C O.1//, the asymptotics of �n;k are dictated
by one or two terms in the first sum of (10). Although the asymptotics of �n;k in this range can be easily
derived by (10) using only elementary arguments, we will use a lengthier analytic approach based on Cauchy’s
integral representation since this approach is readily amended later for the asymptotics of the variance. Define

km WD ˛1

�
Ln �LLLn C log

�
p

q
� 1

�
Cm log

p

q

�
.m � 0/; (20)

Sn;k;j WD

�
k

j

�
pj qk�j n

�
1 � pj qk�j

�n�1
.0 � j � k/:

For convenience, define k�1 D 0.
Our first result says that �n;k is asymptotic to Sn;k;m when km�1 < k < km except when k is close to the

boundaries, where the corresponding neighboring term (either Sn;k;m�1 or Sn;k;mC1) is of the same order.

Theorem 1 (Asymptotics of �n;k in range (I)). Assume m � 0. If

km�1 C
˛1Kn

LLn
� k � km �

˛1Kn

LLn
; (21)

then

�n;k D Sn;k;m

�
1CO..mC 1/e�Kn/

�
: (22)

If k D km C ˛1x=LLn, where x D o.
p

LLn/, then

�n;k D Sn;k;m

�
1C

p˛1ex

q.mC 1/

��
1CO

�
x2LL�1

n C .mC 1/L�.1�q=p/
n

��
: (23)

Remark. Since log.p=q/ < 1 for p 2 .1=2; e=.e C 1//, the interval (21) may contain no integer.

By Theorem 1, the proofs of the following special cases are straightforward.

Corollary 2. If k � 1 and qkn!1, then

�n;k � qkn.1 � qk/n�1
I

if q2kn! 0 and k � ˛1.Ln �LLLn CKn/, then

Sn;k;m �
km

m!
pmqk�mne�pmqk�mn .m � 0/:

On the other hand, the estimate

�n;k D ‚.Sn;k;m/ (24)

holds uniformly for km�1 � k � km, m � 0.

The proof of Theorem 1 is based on evaluating the Cauchy integral (13) along the circle jzj D n by the
same arguments used in the proof of Proposition 1 (see (18)). Observe that

�n;k D
n!

2� i

Z
jzjDn

j arg.z/j��0

z�n�1ez QMk.z/dz CO
�
e�cn1=5

QMk.n/
�
; (25)

where the O-term is justified by applying the following estimate for Mk.z/.
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Lemma 2. Uniformly for r � 0 and j� j � �

jMk.rei� /j �Mk.r/e
�cr�2

.r > 0I j� j � �/; (26)

for all k D k.n/ � 1 and some constant c > 0.

The proof of (26) follows directly from the next proposition in view of (8) and Œzn�M1.z/ � 0.

Proposition 2. Let f .z/ be an entire function and let z D rei� , where r � 0 and j� j � � . If

jezf .z/j � erf .r/ .r � 0I j� j � �/; (27)

where f .r/ � 0, then the sum fk.z/ WD
P

0�j�k

�
k
j

�
f .pj qk�j z/ satisfies

jezfk.z/j � erfk.r/e
�cr�2

; (28)

uniformly for k � 0, r � 0, and j� j � � , where c > 0 is independent of z and k.

Proof. By (27) and the elementary inequality

1 � cos � �
2

�2
�2 .j� j � �/; (29)

we obtain

jezfk.z/j �
X

0�j�k

�
k

j

�
e.1�pi qk�j /r cos �epj qk�j rf .pj qk�j r/

�

X
0�j�k

�
k

j

�
e.1�pi qk�j /r.1�2�2=�2/epj qk�j rf .pj qk�j r/

� e�2r�2.1�pk/=�2

erfk.r/:

This proves (28) with, say, c D 2.1 � p/=�2.

Proof of (22) in Theorem 1. We next evaluate QMk.z/ more precisely in the following lemma whose proof
is presented in Appendix A.

Let

Sk;m.z/ WD

�
k � 1

m

�
pmqk�mze�pmqk�mz :

Lemma 3. (i) .m D 0/. If 1 � k � k0 � ˛1Kn=LLn, then

QMk.z/ D qkze�qkz
�
1CO.e�Kn/

�
; (30)

uniformly for jzj D n and arg.z/ D o.LL
�1=2
n /.

(ii) .m � 1/: If

k D ˛1 .Ln �LLLn C log.p=q � 1/Cm log.p=q/ � �/ ; (31)

where m � 1 and
Kn

LLn
� � � log.p=q/ �

Kn

LLn
;

then

QMk.z/ D Sk;m.z/
�
1CO.me�Kn/

�
; (32)

uniformly for jzj D n and arg.z/ D o.LL
�1=2
n /.
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Using the above lemma, we now prove Theorem 1. It remains to evaluate the integral in (25). We first
consider the case m D 0. By substituting (30) into the integral in (25), and by completing the arc j arg.z/j � �0

to a full circle, we see that

n!

2� i

Z
jzjDn

j arg.z/j��0

z�n�1ez QMk.z/dz D
qkn!

2� i

Z
jzjDn

j arg.z/j��0

z�ne.1�qk/zdz CO.E1/

D qkn!Œzn�1�e.1�qk/z
CO.E2/CO.E1/;

where

E1 WD e�Knn!n�nqkn

Z �0

��0

e.1�qk/n cos �d�;

E2 WD qkn!n1�n

Z �

�0

e.1�qk/n cos �d�:

By inequality (29), we have

E1 D O

�
e�Knn1=2qkne�qkn

Z 1
�1

e�2n.1�qk/�2=�2

d�
�

D O
�
e�Knqkne�qkn

�
:

Similarly,
E2 D O

�
qkne�qknn�1=10e�2n1=5=�2

�
:

This completes the proof of (22) when m D 0. For m � 1, we proceed in a similar manner but using part (ii)
of Lemma 3.

Proof of (23) in Theorem 1. We now consider the remaining gaps when k is of the form (31) with � D
x=LLn, where x D o.

p
LLn/. In this case, the same analysis as above shows that both terms Sk;m.z/ and

Sk;mC1.z/ are asymptotically close so that

QMk.z/ D
�
Sk;m.z/C Sk;mC1.z/

�
.1CO.E3// ; (33)

where the error E3 introduced is bounded above by

E3 D O

0@ X
0�j<m

ˇ̌̌̌
Sk;j .z/

Sk;m.z/

ˇ̌̌̌
C

X
mC2�j�k

ˇ̌̌̌
Sk;j .z/

Sk;m.z/

ˇ̌̌̌1A
D O

�
.mC 1/L�.1�qe� cos �=p/

n

�
CO

0@m!
X
j�2

.p˛1=q/
j

.j Cm/!
L

j� .p=q/j�1
p=q�1

e� cos �
n

1A
D O

�
.mC 1/L�.1�q=p/

n C .mC 1/�1L�.p=q�1/
n

�
D O

�
.mC 1/L�.1�q=p/

n

�
;

since 1 � q=p � p=q � 1, where we used the inequality

tj � 1

t � 1
�

t C 1

2
j .t > 1I j � 2/;

and � D o.LL
�1=2
n /. Thus the same analysis as above gives

�n;k D
km

m!
pmqk�mne�pmqk�mn

 
1C

pL1�e�

n

q.mC 1/ log.1=q/

!�
1CO

�
.mC 1/L�.1�q=p/

n

��
;

which implies (23).
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3.4 Range (II): A saddle-point analysis

We now assume that

˛1 .Ln �LLLn CKn/ � k � ˛2.Ln �Kn

p
Ln/; (34)

and proceed by the saddle-point method (see [82, 86]) to derive the following main result of this subsection.

Theorem 2 (Asymptotics of �n;k in range (II)). If k satisfies (34), then

�n;k D G1

�
�I logp=q pkn

� n�� .p�� C q��/kp
2�ˇ2.�/k

�
1CO

�
1

k.p=q/�
C

1

k.�C 2/2

��
; (35)

where � D �.n; k/ > �2 is chosen to satisfy the saddle-point equation8̂<̂
:

d
d�

�
��e��n��.p�� C q��/k

�
D 0; if � � 1I

d
d�

�
n��.p�� C q��/k

�
D 0; if � � 1;

(36)

and

ˇ2.�/ WD
p��q�� log.p=q/2

.p�� C q��/2
; (37)

G1.�Ix/ D
X
j2Z

g.�C i tj /�.�C 1C i tj /e
�2j�ix .tj WD 2j�= log.p=q//

with g.s/ D 1 � 1=.p�s C q�s/, and G1.�;x/ is a 1-periodic function (see Figures 3 and 4).

We devote the rest of this subsection to the proof of Theorem 2.

3.4.1 Two-step saddle-point method

Here we outline the main steps of the proof of Theorem 2. The approach may be called a two-step saddle-
point method since the saddle-point method will be applied twice. First, we start from the Mellin integral (6)
and apply the saddle-point method to obtain precise asymptotics of QMk.rei� / for small � (i.e., around the
real axis) and large r . The proof here is complicated by the fact thatˇ̌̌

p���it
C q���it

ˇ̌̌
D p�� C q��; (38)

when t D tj D 2�j= log.p=q/, j 2 Z, which implies that the number of saddle-points with the same real
part is infinite, yielding the 1-periodic function G1.�Ix/.

This first application of the saddle-point method yields a good approximation to QMk.z/ for z large and near
the real axis; then we de-Poissonize QMk.z/ by another application of the saddle-point method and establish
that �n;k �

QMk.n/. Ultimately, we will use the de-Poissonization result of Proposition 1; however, in the
first approximation we do de-Poissonization by “bare hands” by applying the argument already used in the
proof of Proposition 1, namely, (17) and (18). Thus we focus on the evaluation of the Cauchy integral (13)
but with j� j � n�2=5 (the first integral of (25)).
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3.4.2 Location of saddle-points

The integrand z�s�.sC1/g.s/ .p�s C q�s/k of the integral in (6) has simple poles at s D �j , j D 2; 3; : : : ,
the rightmost (dominant) one being at s D �2; it also has saddle-points, which are the zeros of the equation

d
ds

�
�.s C 1/n�s.p�s

C q�s/k
�
D 0 (39)

(note that g.s/ is uniformly bounded for all s). In view of (38), there are infinitely many saddle-points of the
form �C i tj= log.p=q/ (j D 0;˙1; : : :), where the real part � satisfies (39). Also it is easy to see that(

�!C1; if k
Ln
#

1
log.1=q/ ;

�! �1; if k
Ln
"

1
log.1=p/ :

We distinguish between two cases � � 1 and �2 < � < 1. In the former case, the saddle-points are
asymptotically determined, by Stirling’s formula for the Gamma function, by the first equation in (36), which
is simpler than (39), while in the latter case they are asymptotically determined by the second equation of (36)
since �.�C 1/ is uniformly bounded and thus does not contribute significantly to the saddle-point location.

More precisely, consider first the case when � � 1 (the choice of 1 being arbitrary). In this case, by (36),
we obtain

k

Ln � log �
D

p�� C q��

p�� log.1=p/C q�� log.1=q/
;

which can be written in the form

� D
1

log.p=q/
log

�
Ln � log � � k log.1=p/
k log.1=q/ �Ln C log �

�
;

whenever Ln � log � < k log.1=q/, which will be seen to be the case when k satisfies (34).
On the other hand, when � � 1, we consider the second equation in (36) or

k

Ln
D

p�� C q��

p�� log.1=p/C q�� log.1=q/
;

which is solved to be

� D
1

log.p=q/
log

�
Ln � k log.1=p/
k log.1=q/ �Ln

�
: (40)

It follows that if k satisfies (34), then

� �
1

log.p=q/

�
LLn � log Kn C log

log.p=q/
log.1=q/

C o.1/

�
; (41)

implying, in particular, that � D O.LLn/. Also, if k D ˛1.Ln �LLLn C log log.p=q/CKn/, then

� D
1

log.p=q/

�
LLn � log Kn C log

log.p=q/
log.1=q/

CO.K�1
n /

�
:

However, if k is close to the right boundary of (34), more precisely, k D ˛2.1 � "n/Ln, where "n D o.1/,
then

� D �2C
"n

˛2ˇ2.�2/
CO."2

n/:

Thus � D O.1/.
From (41), we see that if � � 1 and k satisfies (34), then kˇ2.�/ D ‚.k.p=q/

�/ and

k.p=q/� �
Kn

log.p=q/
C o.1/I

on the other hand, if � � �2 C KnL
�1=2
n , then k.� C 2/2 � K2

n . Thus the O-term in (35) is small if we
choose Kn sufficiently large.
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3.4.3 More transparent behaviors of �n;k

Before we present a formal proof of Theorem 2, we first discuss more transparent behaviors of �n;k in some
specified ranges.

The central range: ˛ 2 Œ˛1 C "; ˛2 � "�. In this case, G1 is bounded and G1.�Ix/ � G1.�
0Ix/, where

�0 WD
1

log.p=q/
log

�
1 � ˛ log.1=p/
˛ log.1=q/ � 1

�
I (42)

also ˇ2.�/ � ˇ2.�
0/. Note that g.�C i tj / D 1 � pitj =.p�� C q��/ and

G1

�
�I logp=q pkn

�
D G1

�
�I logp=q qkn

�
:

More precisely, if k D ˛.Ln C x
p
˛ˇ2.�0/Ln/, where ˛ 2 Œ˛1 C "; ˛2 � "� and x D o.L

1=6
n /, then

�n;k D G1

�
�0I logp=q pkn

� n��
0
�
p��

0

C q��
0
�k

p
2�˛ˇ2.�0/Ln

e�x2=2

 
1CO

 
1C jxj3
p

Ln

!!
;

uniformly in x. In particular, when ˛ D 1=h, where h WD p log.1=p/ C q log.1=q/ is the entropy of the
Bernoulli variate, then �0 D �1, and it follows that

�n;k D

p
h G1

�
�1I logp=q pkn

�
log.p=q/

p
2�pq

�
n
p

Ln

e�x2=2

 
1CO

 
1C jxj3
p

Ln

!!
; (43)

uniformly for x D o.L
1=6
n /. Other approximations can be derived for L

1=6
n � x D o.

p
Ln/. Thus �n;k

reaches the maximum for k near Ln=hCO.1/; also �n;k increases with k when ˛ < 1=h and decreases with
k when ˛ > 1=h; see Figure 2. See also Figure 3 for a plot of G1.�1Ix/ for a few p’s.

The left boundary: �! �2C and �C2� L
�1=2
n . In this case, the dominant periodicity vanishes because

G1.�Ix/ �
jg.�2/j

�C 2
D

2pq

.p2 C q2/.�C 2/
I

thus

�n;k �
2

p
2� log.p=q/.�C 2/

k�1=2n��
�
p�� C q��

�k
: (44)

The right boundary: k=Ln ! 1= log.1=q/C. In this case, � ! 1 and � D O.LLn/. The periodicity in
the leading term of (35) does not vanish because we have

G1.�Ix/ �
X
j2Z

�.�C 1C i tj /e
�2j�ix;

and G1 is not bounded. Indeed, the periodicity becomes more pronounced for increasing � sinceˇ̌̌̌
�.�C 1C i t/

�.�C 1/

ˇ̌̌̌
D O

�
e�t2=.2�/CO.t4=�3/

�
;

for large � and t D o.�/; see Figure 4. This estimate also implies that

G1.�Ix/ D O

0@X
j2Z
j�.�C 1C i tj /j

1A D O
�
e����C1

�
D O

�
�1=2�.�C 1/

�
:

The order is tight. This means that even if we normalize G1.�Ix/ by �.�C1/, jG1.�Ix/j still goes to infinity
with �.
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3.4.4 Proof of Theorem 2

In view of (25) (more generally, de-Poissonization Proposition 1), we need only evaluate QMk.n/ and obtain
precise local expansions for QMk.nei� / when j� j � �0 in order to estimate the first integral of (25). We first
focus on estimating QMk.n/ and then extend the same approach to derive the asymptotics of QMk.nei� /. This
suffices to prove that �n;k �

QMk.n/. Later in Subsection 3.8 we refine this analysis to obtain a better error
term.

In order to evaluate QMk.n/ by the inverse Mellin transform, we first move the line of integration of (6) to
<.s/ D � so that

QMk.n/ D
1

2�

Z 1
�1

Jk.nI �C i t/dt; (45)

where � > �2 is the saddle-point chosen according to (36) and Jk.nI s/ WD n�s�.s C 1/g.s/.p�s C q�s/k .
We now show that the above integral with jt j �

p
Ln is asymptotically smaller than the dominant term in

(35) and then assess the main contribution of saddle-points falling into the range jt j �
p

Ln.

Estimate of the integral when jt j �
p

Ln. Assume from now on that � is chosen as described above in
(36).

Since our � > �2 satisfies (40), we have, by (9),

1

2�

Z
jt j�
p

Ln

Jk.nI �C i t/dt D O

�
n��.p�� C q��/k

Z 1
p

Ln

j�.�C 1C i t/jdt

�
D O

�
n��.p�� C q��/k

Z 1
p

Ln

t�C1=2e�� t=2dt

�
D O

�
L�=2C1=4

n e��
p

Ln=2n��.p�� C q��/k
�
:

On the other hand, since � D O.LLn/ and � � �2CKnL
�1=2
n , we then obtain

L�=2C1=4
n e��

p
Ln=2 D O

�
e��
p

Ln=2CO.LL2
n/
�
D O

�
�.�C 2/e�

p
Ln

�
;

for large enough n; the last O-term holds uniformly for � � �2CKnL
�1=2
n and � satisfying (41).

Contribution from each saddle-point. Let j0 be the largest integer j for which 2j�= log.p=q/ �
p

Ln.
Then we can split the integral over

R
jt j�
p

Ln
as follows.Z

jt j�
p

Ln

Jk.nI �C i t/dt D
X
jj j<j0

Z
jt�tj j��= log.p=q/

Jk.nI �C i t/dt C

Z
tj0�jt j�

p
Ln

Jk.nI �C i t/dt:

The last integral is bounded above by

O
�
�.�C 2/n��.p�� C q��/ke�

p
Ln

�
;

by the same argument used above. It remains to evaluate the integrals

Tj WD
1

2�

Z
jt�tj j��= log.p=q/

Jk.nI �C i t/dt;

for jj j < j0.
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We first derive a uniform bound for jp���it C q���it j. By the elementary inequalities (29) and

p
1 � x � 1 �

x

2
.x 2 Œ0; 1�/;

we have ˇ̌̌
p���it

C q���it
ˇ̌̌
D
�
p�� C q��

�s
1 �

2p��q��

.p�� C q��/2
.1 � cos .t log.p=q///

�
�
p�� C q��

� �
1 �

p��q��

.p�� C q��/2

�
1 � cos

�
.t � tj / log.p=q/

���
�
�
p�� C q��

� �
1 �

2p��q��

�2.p�� C q��/2
.t � tj /

2 log.p=q/2
�

�
�
p�� C q��

�
e�c0.t�tj /

2

; (46)

uniformly for jt � tj j � �= log.p=q/, where

c0 D c0.�/ WD
2p��q�� log.p=q/2

�2.p�� C q��/2
D

2

�2
ˇ2.�/:

We now take

v0 WD

(
k�2=5; if � 2 < � � 1I

.c0k/�2=5; if � � 1;

and split the integration range into two parts: jt � tj j � v0 and v0 < jt � tj j � �= log.p=q/. (We assume that
k is so large that v0 < �= log.p=q/.)

First consider the case when �2 < � � 1. From the inequality (46), it follows that

T 00j WD
1

2�

Z
v0�jt�tj j��= log.p=q/

Jk.nI �C i t/dt (47)

D O

�
j�.�C 2C i tj /jn

��
�
p�� C q��

�k Z 1
k�2=5

e�c0kv2

dv
�

D O

 
n��

�
p�� C q��

�k
k�3=5e�c0k1=5

�

(
j�.�C 1C i tj /j; if j 6D 0

1; if j D 0

!
;

for each jj j � j0.
When � � 1 and satisfies (34), we have

T 00j D O

�
j�.�C 1C i tj /jn

��
�
p�� C q��

�k Z 1
.c0k/�2=5

e�c0kv2

dv
�

D O
�
j�.�C 1C i tj /jn

��
�
p�� C q��

�k
.c0k/�3=5e�.c0k/1=5

�
;

for jj j � j0.

The dominant terms. It remains to evaluate the integrals Tj for t in the range jt � tj j � v0. Note that, by
our choice of tj ,

p���itj C q���itj D p�itj
�
p�� C q��

�
D q�itj

�
p�� C q��

�
;
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so that

p���it C q���it

p���itj C q���itj
D 1C

X
`�1

i`.t � tj /
`

`!
�

p���itj log.1=p/` C q���itj log.1=q/`

p���itj C q���itj

D 1C
X
`�1

i`.t � tj /
`

`!
�

p�� log.1=p/` C q�� log.1=q/`

p�� C q��

where we recall that tj D 2�j= log.p=q/.
It follows that

log
�
p���it

C q���it
�
D log

�
p���itj C q���itj

�
C

X
`�1

ˇ`.�/

`!
i`.t � tj /

`;

where, in particular,

ˇ1.�/ D
p�� log.1=p/C q�� log.1=q/

p�� C q��
:

The remaining manipulation by using the saddle-point method is then straightforward. We use the local
expansions�

p���it C q���it

p���itj C q���itj

�k

D exp

0@k
X

1�`�3

ˇ`.�/

`!
i`.t � tj /

`
CO.kjˇ4.�/jjt � tj j

4/

1A ;
and

�.�C 1C i t/g.�C i t/ D

8̂̂̂̂
<̂
ˆ̂̂:

C0 C C1i.t � tj /CO

 
.t � tj /

2

.�C 2/2

!
; if � 2 < � � 1I

�.�C 1C i tj /e
.log�/i.t�tj /

�
1C C2i.t � tj /CO.jC2j

3
jt � tj j

2/
�

�
�
g.�C i tj /C g0.�C i tj /i.t � tj /CO

�
jt � tj j

2
��
; if � � 1;

where (
C0 WD �.�C 1C i tj /g.�C i tj /I

C1 WD g.�C i tj /�.�C 1C i tj / .�C 1C i tj /C g0.�C i tj /�.�C 1C i tj /;

 .s/ D � 0.s/=�.s/ being the logarithmic derivative of the Gamma function, and

C2 WD  .�C 1C i tj / � log � .� � 1/:

Here C0 and C1 are defined to be their limits when � D �1 and j D 0, namely,(
C0 WD p log.1=p/C q log.1=q/I
C1 WD �

2p�1
2

�
p log.p/2 � q log.q/2

�
� C0 � 2pq log.p/ log.q/:

Note that  .�C 1C i tj / � log � D O.log.1C jtj j//. It follows that for jj j < j0

Tj D
g.�C i tj /p

2�ˇ2.�/k
�.�C 1C i tj /n

���itj
�
p�� C q��

�k
p�iktj

�

�
1CO

�
1

kˇ2.�/
C

1

k.�C 2/2

��
:

Summing over all jj j < j0 and collecting all estimates, we obtain

QMk.n/ D
n�� .p�� C q��/kp

2�ˇ2.�/k

X
jj j<j0

g.�C i tj /�.�C 1C i tj /.p
kn/�itj

�

�
1CO

�
1

k.p=q/�
C

1

k.�C 2/2

��
:
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An asymptotic approximation to QMk.z/. To complete the de-Poissonization, we need a more precise
expansion of QMk.nei� / for small � . The above proof by the saddle-point method can be easily extended
mutatis mutandis to QMk.z/ for complex values of z lying in the right half-plane since we can write (7) as

QMk.nei� / D
1

2� i

Z
.�/

n�se�i�s�.s C 1/g.s/
�
p�s
C q�s

�k ds;

where � > �2 and j� j � �=2 � ". The result is

QMk.nei� / D
.p�� C q�� /kp

2�ˇ2.�/k

X
jj j<j0

g.� C i tj /�.� C 1C i tj /.nei� /���itjp�iktj

�

�
1CO

�
1

k.p=q/�
C

1

k.�C 2/2

��
; (48)

uniformly for j� j � �=2 � " and k lying in the range (34). Note that the index of the sum can be extended to
infinity, but it is easier to manipulate a finite sum than an infinite series since we substitute the right-hand side
into the Cauchy integral (13) and then integrate term by term. This completes the proof of (35).

3.5 Range (IV): A singularity analysis

We consider range (IV) first, leaving to the next subsection the analysis in the transitional range when k D

˛2Ln C o.L
2=3
n /.

We show that, for k � ˛2Ln CKn

p
Ln, the asymptotics of the expected profile QMk.n/ are dictated by

the simple pole at s D �2 in (6) or, structurally, by the number of pairs of input-strings sharing the same
prefixes of length at least k.

Theorem 3. If

k � ˛2

�
Ln CKn

p
˛2ˇ2.�2/Ln

�
; (49)

where ˇ2 is defined in (37), then

�n;k D 2pqn2.p2
C q2/k�1

�
1CO

�
K�1

n e�K 2
n=2CO.K 3

n=
p

Ln/
��
; (50)

uniformly for 1� Kn D o.
p

Ln/.

Proof. To prove (50), we move the line of integration (by absolute convergence of the integral) of the integral
in (6) to <.s/ D %, where

% WD �2 �
Knp

˛2ˇ2.�2/Ln

:

Thus QMk.nei� / equals the residue of the integrand at s D �2 (the dominant term in (50)) plus the integral
along <.s/ D %.

QMk.nei� / D jg.�2/jn2e2i� .p2
C q2/k C

1

2�

Z 1
�1

Jk.nei�
I %C i t/dt;
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where jg.�2/j D 2pq=.p2C q2/. It remains only to estimate the last integral. By the same analysis used for
T 00j (see (47)) and the inequality (46), we have

1

2�

0@Z
jt j��= log.p=q/

C

X
jj j�1

Z
jt�tj j��= log.p=q/

1AJk.nei�
I %C i t/dt

D O

�
j�.%C 1/jn�%

�
p�% C q�%

�k Z
jt j��= log.p=q/

e�c0kt2

dt

�

CO

0@n�%
�
p�% C q�%

�k X
jj j�1

ˇ̌̌̌
�

�
%C 1C

2jj j � 1

log.p=q/
� i

�ˇ̌̌̌
e.2jj jC1/�j� j= log.p=q/

�

Z
jt�tj j��= log.p=q/

e�c0k.t�tj /
2

dt

!

D O

 
k�1=2

j%C 2j
n�%

�
p�% C q�%

�k!
D O

�
K�1

n n�%
�
p�% C q�%

�k�
;

where we used (9) to bound the sumX
jj j�1

ˇ̌̌̌
�

�
%C 1C

2jj j � 1

log.p=q/
� i

�ˇ̌̌̌
e.2jj jC1/�j� j= log.p=q/

D O

0@X
jj j�1

.2jj j � 1/%C1=2 exp

 
�
�2.2jj j � 1/

2 log.p=q/
C
.2jj j C 1/�j� j

log.p=q/

!1A
D O.1/;

uniformly for j� j � �=2 � ".
By our choice of % and by straightforward expansion, we have

K�1
n n�% .p�% C q�%/k

n2
�
p2 C q2

�k D O

�
K�1

n e
�Ln.%C2/C k

˛2
.%C2/Ck

2
ˇ2.�2/.%C2/2CO.kj%C2j3/

�
D O

�
K�1

n e�K 2
n=2CO.K 3

n=
p

Ln/
�
:

Thus

QMk.nei� / D jg.�2/j.nei� /2.p2
C q2/k

�
1CO

�
K�1

n e�K 2
n=2CO.K 3

n=
p

Ln/
��
; (51)

uniformly for j� j � �=2 � ". Substituting this into (25), we deduce the desired result (50).

Remarks. (i) When Kn � "
p

Ln, we can either take Kn D "
p

Ln or refine the analysis to give a better error
term.
(ii) The asymptotic approximation (50) can also be derived from the exact expression (10) by using only
elementary arguments.
(iii) Also note that the range (49) implies that the saddle-point � satisfies � � �2 � Kn=

p
Ln, but the

contribution from this saddle-point is asymptotically negligible (compared to the polar singularity).
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3.6 Range (III): A uniform analysis

We consider in this subsection the transitional range k D ˛2Ln C o.L
2=3
n / and show that the transitional

behavior of �n;k in this range is well described by a Gaussian distribution function.

Theorem 4. If

k D ˛2

�
Ln C �

p
˛2ˇ2.�2/Ln

�
; (52)

where � D �n;k D o.L
1=6
n /, then

�n;k D jg.�2/jˆ.�/n2
�
p2
C q2

�k
 

1CO

 
1C j�j3
p

Ln

!!
; (53)

uniformly in � , where ˆ.�/ D .2�/�1=2
R �
�1

e�t2=2dt .

Proof. We assume first that k satisfies (52) and k < ˛2L (or � < 0). We move the line of integration of the
integral in (11) to <.s/ D �, where � is taken to be of the same form as in (40); asymptotically

� D �2 �
�p

˛2ˇ2.�2/Ln

CO
�
�2L�1

n

�
: (54)

By a similar analysis as the proof of Theorem 3, we obtain

QMk.nei� / D
1

2�

Z
jt j�L

�2=5
n

Jk.nei�
I �C i t/dt CO

�
j�.�C 1C iL�2=5

n /jn��
�
p�� C q��

�k
e�c0L

1=5
n

�
CO

�
k�1=2n��

�
p�� C q��

�k�
;

where j� j < �=2. By (54), we have

j�.�C 1C iL�2=5
n /j D O

 
1

j�jL
�1=2
n CL

�2=5
n

!
D O.L2=5

n /:

It follows that

QMk.nei� / D
1

2�

Z
jt j�L

�2=5
n

Jk.nei�
I �C i t/dt CO

�
k�1=2n��

�
p�� C q��

�k�
:

Note that since s 7! �.s C 1/C 1=.s C 2/ is analytic for js C 2j � 1 � ", we have

QMk.nei� / D
jg.�2/j

2�

Z
jt j�L

�2=5
n

n���ite�i�.�Cit/

�C 2C i t

�
p���it

C q���it
�k

dt CO
�
k�1=2n��

�
p�� C q��

�k�
:

The integral on the right-hand side is evaluated as follows:

jg.�2/j

2�

Z
jt j�L

�2=5
n

n���ite�i�.�Cit/

�C 2C i t

�
p���it

C q���it
�k

dt

D
jg.�2/j

2�
n��e�i��

�
p�� C q��

�k Z
jt j�L

�2=5
n

e� t�ˇ2.�/kt2=2CO.kjt j3/

�C 2C i t
dt

D
jg.�2/j

2�
n��e�i��

�
p�� C q��

�k Z 1
�1

e�t2=2

�0 C i t

 
1CO

 
jt j C jt j3
p

Ln

!!
dt; (55)
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where
�0 WD .�C 2/

p
ˇ2.�/k > 0:

Note that �0 D �� CO
�
�2L

�1=2
n

�
by (52) and (54). Since �0 > 0, we have

1

2�

Z 1
�1

e�t2=2

�0 C i t
dt D

1

2�

Z 1
�1

e�t2=2

Z 1
0

e�v.�0Cit/dvdt

D
1

2�

Z 1
0

e�v�0

Z 1
�1

e�t2=2�itvdtdv

D
1
p

2�

Z 1
0

e�v
2=2�v�0dv

D e�
2
0
=2ˆ.��0/:

The error term in (55) is estimated similarly and satisfies

L�1=2
n

Z 1
�1

.jt j C jt j3/e�t2=2

j.�C 2/
p
ˇ2.�/k C i t j

dt D O

�
L�1=2

n

Z 1
0

.v C v3/e�v
2=2�v�0dv

�
:

Observe that

ex2=2ˆ.�x/ D

(
O
�
x�1

�
; if x !1I

O
�
ex2=2

�
; if x ! �1:

(56)

Also Z 1
0

.v C v3/e�v
2=2�vxdv D

(
O
�
x�2

�
; if x !1I

O
�
jxj3ex2=2

�
; if x ! �1;

so that Z 1
0

v3e�v
2=2�vxdv D O

�
ex2=2ˆ.�x/.1C jxj3/

�
:

Thus

QMk.nei� / D jg.�2/j.nei� /��
�
p�� C q��

�k
e�

2
0
=2ˆ.��0/

 
1CO

 
1C j�j3
p

Ln

!!
CO

�
k�1=2n��

�
p�� C q��

�k�
; (57)

uniformly for j� j � �=2 � ". Substituting this in (25) and using the expansions

n��
�
p�� C q��

�k
D n2

�
p2
C q2

�k
e��

2=2CO.j�j3L
�1=2
n /;

e�
2
0
=2ˆ.�0/ D e�

2=2ˆ.�/
�
1CO

�
j�j3L�1=2

n

��
;

we deduce (53) when � < 0.
The restriction that � < 0 can now be removed by continuity (when �0 D 0 the integral path has to be

properly indented) or by a similar analysis. This proves (53).
One can easily check, by (56), that the asymptotic estimate (53) coincides with the two estimates (44) and

(50) when � ! �1 and � !1, respectively.

Remark. The appearance of the normal distribution function is typical when a saddle-point coalesces with a
simple pole; see [86]. Also, the polynomial order (4) of �n;k now follows from (35), (50), and (53).

28



3.7 The range where the expected profile grows unbounded

An important consequence of the preceding results is the following characterization of the range where
�n;k !1, which also will be seen to be the range where Bn;k is asymptotically normally distributed.

Theorem 5. Define

m0 WD

�
1

p=q � 1

�
and ˛3 WD

2

log 1
p2Cq2

:

Then �n;k !1 iff

˛1

�
Ln �LLLn � log m0 Cm0 log.p=q/ �

LLLn �Kn

m0LLn

�
� k � ˛3 .Ln �Kn/ ;

as n!1.

Proof. Consider first the upper bound. If k � ˛3Ln � x, then

n2.p2
C q2/k � .p2

C q2/�x;

which tends to infinity if x !1; on the other hand, if k � ˛3Ln � x, then the reverse inequality holds and
the right-hand side remains bounded if x is less than a positive constant.

For the lower bound, we use the estimate (24). First, if k � k0 D ˛ � 1.Ln � LLLn C log.p=q � 1//

(see (20)), then
�n;k D ‚.q

kne�qkn/ D o.1/:

Next, if km�1 � k � km, m � 1, then by (24)

�n;k D ‚.Sn;k;m/ D ‚.L
m�e�=.p=q�1/
n LLn/;

where k is written in the form (31). Since � 2 Œ0; log.p=q/�, we have

m �
p

p � q
� m �

e�

p=q � 1
� m �

q

p � q
:

Also, by the definition of m0, we have the inequalities

m0 � 1 <
q

p � q
D

1

p=q � 1
� m0:

Thus if m � m0 � 1, then

m �
e�

p=q � 1
� m �

q

p � q
< m �m0 C 1 � 0;

implying that �n;k ! 0 for k � km0�1. Similarly, since

m0 �
p

p � q
< m0 C 1;

we have

m �
e�

p=q � 1
� m �

p

p � q
> m �m0 � 1 � 0;

when m � m0C1. Therefore, �n;k !1 if k � km0
(and remains in the range k � ˛1.Ln�LLLnCKn/).
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The remaining range is km0�1 � k � km0
in which �n;k D ‚.L

m0�e�=.p=q�1/
n LLn/, where

k D ˛1.Ln �LLLn C log.p=q � 1/Cm0 log.p=q/ � �/:

We distinguish three cases: (i) if

� � log m0 C log.p=q � 1/C
LLLn CKn

m0LLn
;

then �n;k D ‚.L
m�e�=.p=q�1/
n LLn/ and

Lm�e�=.p=q�1/
n LLn � e�Kn ! 0I

(ii) if

� D log m0 C log.p=q � 1/C
LLLn C x

m0LLn
;

then

�n;k � Sn;k;m0
�

˛
m0

1

.m0 � 1/!
e�x;

uniformly for x D O.1/; and (iii) if

� � log m0 C log.p=q � 1/C
LLLn �Kn

m0LLn
;

then �n;k D ‚.L
m�e�=.p=q�1/
n LLn/ and

Lm�e�=.p=q�1/
n LLn � eKn !1:

Thus �n;k is bounded away from zero and infinity in the second case.
This proves the theorem when k lies in Ranges (I) and (IV). The remaining cases follow easily from (35)

and (53).

Let fxg denote the fractional part of x. The lower bound can be further refined as follows.

Corollary 3. Let

Ok WD ˛1

�
Ln �LLLn � log m0 Cm0 log.p=q/ �

LLLn

m0LLn

�
; (58)

where m0 D d1=.p=q�1/e. Then (i) �n;k !1 for d Oke � k � ˛3.Ln�Kn/; (ii) �n;k ! 0 for k � d Oke�2,
and (iii)

�
n;d Oke�1

(
D ‚.1/; if f Okg D O.LL�1

n /I

! 0; otherwise:

Proof. The proof is similar to that of Theorem 5. We consider only the last case. First write

d Oke � 1 D Ok � f Okg D ˛1

�
Ln �LLLn C log.p=q � 1/Cm0 log.p=q/ � �0

�
;

where
�0 D log m0 C log.p=q � 1/C f Okg=˛1 C

LLLn

m0LLn
:

(We assume that Ok is not an integer.) Then we follow the same proof as above by distinguishing three cases.
In particular, the case when Ok is an integer is also covered by the bounded case.
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The result is to be compared with Pittel’s result in [67], which says that the probability that the shortest
path equals either h�ni or h�ni C 1 tends to 1, where hxi denotes the nearest integer to x and

�n D ˛1

�
Ln �LLLn � log max

j�1
j .q=p/j

�
:

Note that
� log max

j�1
j .q=p/j D � log m0 Cm0 log.p=q/:

Our result is slightly more precise; see Section 8.

3.8 Refinement of �n;k by de-Poissonization

All expansions for �n;k that we have derived so far are in terms of slowly decreasing powers of L�1
n or LL�1

n ,
which will turn out to be insufficient for the asymptotics of the variance because of cancelation of dominant
terms. Thus in this section we derive a more effective expansion for �n;k in terms of QMk.n/ and its higher
derivatives; namely, we derive an expression of the form (19). The major difference here is that we do not
substitute the asymptotic expansions for QMk.n/ into the Cauchy integral representation for �n;k , resulting in
less explicit asymptotic approximation to �n;k but with a much better error term.

We start with a lemma in which we again use k0 D ˛1.Ln �LLLn C log.p=q � 1//.

Lemma 4. Define

�0 WD

8̂<̂
:

qkn; if 1 � k � k0I

�; if � � 1 and k � k0

1; if � � 1;

(59)

where � is given by (36). Then

QM
.`/

k
.nei� / D O

�
�`0n�` QMk.n/

�
; (60)

uniformly for � D o.LL
�1=2
n /.

Proof. If ` � 1, then, by (8),

QM
.`/

k
.z/ D

X
0�j<k

�
k � 1

j

�
.pj qk�1�j /` QM

.`/
1
.z/

D

X
0�j<k

�
k � 1

j

�
.pj qk�j /`C1ze�pj qk�j z

�
1CO

�
jzj�1

��
;

as jzj ! 1 and <.z/ > 0. If 1 � k � k0 (see (20)), then a proof similar to (and simpler than) that of (30)
shows that

QM
.`/

k
.nei� / D O

�
qk.`C1/ne�qkn cos �

�
D O

�
�`0n�` QMk.n/

�
;

uniformly for � D o.LL
�1=2
n /. If km�1 � k � km, where m � 1, then the proof of (30) is also easily

amended and we obtain

QM
.`/

k
.nei� / D O

�
km.pmqk�m/`C1ne�pmqk�mn cos �

�
D O

�
LL`nn�` QMk.n/

�
;
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uniformly for � D o.LL
�1=2
n /. Note that � D O.LLn/ when km�1 � k � km, m � 1. For the proof of (60)

in the remaining ranges of k, we use the integral representation

QM
.`/

k
.z/ D

.�1/`

2� i

Z
.�/

s.s C 1/ � � � .s C ` � 1/z�s�`�.s C 1/g.s/
�
p�s
C q�s

�k ds;

and a simpler analysis than that given above for QMk.z/. In particular, when k lies in the saddle-point range
(II) and � � 1, we have, by the same analysis used for (46),

QM
.`/

k
.nei� / D O

0@n���`
X
j2Z

ˇ̌
�C i tj

ˇ̌`
j�.�C 1C i tj /j

Z
jt�tj j��= log.p=q/

ˇ̌̌
.p���it

C q���it /k
ˇ̌̌
dt

1A
D O

0@k�1=2.q=p/�=2.p�� C q��/kn���`�`
X
j2Z
j1C i tj j

`
j�.�C 1C i tj /j

1A
D O

�
k�1=2.q=p/�=2.p�� C q��/kn���`�`

�
D O

�
�`n�` QMk.n/

�
;

uniformly for j� j � �=2 � ". The other cases are treated similarly. Alternatively, we can use the estimates
(48), (51) and (57) for QMk.nei� / and the integral formula

QM
.`/

k
.z/ D

`!

2� i

Z
jw�zj�"jzj=�0

QMk.w/

.w � z/`C1
dw;

following a standard analysis (referred to as Ritt’s theorem in [63, pp. 9–10]).

An application of Proposition 1 (analytic de-Poissonization) and the above lemma leads to our refinement.

Theorem 6. If q2kn! 0, then

�n;k D
QMk.n/ �

n

2
QM 00

k .n/CO
�
�4

0n�2 QMk.n/
�
; (61)

where �0 is given in (59).

Proof. By (26) and (60), we can take ı.n/ D �0=n, which is o.n�1=2/ if q2kn! 0.

Remark. The condition that q2kn ! 0 is also necessary for �n;k �
QMk.n/ because otherwise �n;k �

qkn.1 � qk/n�1, which is not asymptotically equivalent to QMk.n/. Note also that (61) and (60) imply that
�n;k D

QMk.n/
�
1CO.�2

0
n�1/

�
.

4 Variance of the external profile

Asymptotic approximations to �2
n;k
WD V.Bn;k/ are derived in this section. It turns out that the variance is of

the same order as the mean in all ranges, implying that the standard deviation is small; therefore we expect
asymptotic normality when the variance tends to infinity with n. The calculations here are more involved due
to the cancelation of dominant orders of �2

n;k
. The key idea is a suitable manipulation of the corresponding

de-Poissonized approximations for the mean and the second moments.
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4.1 Recurrence and generating functions of the second moment

Let �n;k WD E.B2
n;k
/ denote the second moment of Bn;k . By (1), we have the recurrence

�n;k D

X
0�j�n

�
n

j

�
pj qn�j

�
�j ;k�1 C �n�j ;k�1

�
C !n;k ;

for n; k � 1 with �n;0 D ın;1, where

!n;k WD 2
X

0�j�n

�
n

j

�
pj qn�j�j ;k�1�n�j ;k�1:

Generating functions. Let Nk.z/ WD
P

n �n;kzn=n!. Then Nk.z/ satisfies

Nk.z/ D eqzNk�1.pz/C epzNk�1.qz/C !k.z/ .k � 2/;

with N1.z/ D 2pqz2 CM1.z/, where !k.z/ WD 2Mk�1.pz/Mk�1.qz/. It follows that the Poisson generat-
ing function QNk.z/ WD e�zNk.z/ satisfies

QNk.z/ D QNk�1.pz/C QNk�1.qz/C Q!k.z/;

where Q!k.z/ D 2 QMk�1.pz/ QMk�1.qz/. By iterating this functional equation, we obtain

QNk.z/ D
X

0�`<k

�
k � 1

`

�
QN1.p

`qk�1�`z/C
X

0�m�k�2

X
0�`�m

�
m

`

�
Q!k�m.p

`qm�`z/;

for k � 2.

Regularity of Nk.z/. The following estimate is useful in justifying the application of the saddle-point
method and the de-Poissonization procedure.

Lemma 5. Let z D rei� , where r � 0 and j� j � � . Then the estimate

jNk.z/j � Nk.r/e
�cr�2

(62)

holds for r � 0 and j� j � � for some constant c independent of r; k and � .

Proof. We start from

Nk.z/ D ez
X

0�`<k

�
k � 1

`

�
QN1.p

`qk�1�`z/C !k.z/C ez
X

1�m�k�2

X
0�`�m

�
m

`

�
Q!k�m.p

`qm�`z/;

and apply Lemma 2 to the first sum. For the second term, we observe first that, by (26),

j!k.z/j � 2Mk�1.pr/Mk�1.qr/e�cr�2

D !k.r/e
�cr�2

;

uniformly for r � 0 and j� j � � . It remains to estimate the last sumˇ̌̌̌
ˇ̌ez

X
1�m�k�2

X
0�`�m

�
m

`

�
Q!k�m.p

`qm�`z/

ˇ̌̌̌
ˇ̌ ;

for which we apply the same argument as that used in the proof of Lemma 2, yielding an estimate of the type
(28). Collecting the three parts gives (62).
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An auxiliary function for asymptotic variance. As a good approximation to V.Bn;k/, define QVk.z/ WD
QNk.z/ � QM

2
k
.z/. Then QVk.z/ satisfies

QVk.z/ D QVk�1.pz/C QVk�1.qz/ .k � 2/;

which, by iteration, yields

QVk.z/ D
X

0�j<k

�
k � 1

j

�
QV1.p

j qk�1�j z/; (63)

where
QV1.z/ D QM1.z/C 2pqz2e�z

� QM 2
1 .z/:

It follows that

QVk.z/ D
1

2� i

Z
.�/

z�s�.s C 1/h.s/
�
p�s
C q�s

�k ds; (64)

where � > �2 and

h.s/ WD 1 �
1

p�s C q�s
�

s C 1

p�s C q�s

�
p�s C q�s C 1

2sC2
�

2p

.1C p/sC2
�

2q

.1C q/sC2

�
I

compare (6).

4.2 Asymptotics of �2
n;k

In this section we show that the variance �2
n;k
WD V.Bn;k/ is asymptotically equivalent to �n;k when k lies

in range (I), and to 2�n;k when k lies in ranges (III) and (IV), and is of the same order as �n;k in the central
range (II).

Theorem 7. (i) If 1 � k � ˛1.1C o.1//Ln, then

�2
n;k � �n;k : (65)

(ii) If ˛1.Ln �LLLn CKn/ � k � ˛2.Ln �Kn

p
Ln/, then

�2
n;k D G2

�
�I logp=q pkn

� n�� .p�� C q��/kp
2�ˇ2.�/k

�
1CO

�
1

k.p=q/�
C

1

k.�C 2/2

��
; (66)

where � D �.n; k/ > �2 is given in (36) and

G2.�Ix/ D
X
j2Z

h.�C i tj /�.�C 1C i tj /e
�2j� ix .tj WD 2j�= log.p=q//:

(iii) If k � ˛2.1 � o.1//Ln, then
�2

n;k � 2�n;k : (67)

Proof. Since most details are similar to those for �n;k , only the key differences will be highlighted. We
separate the analysis into two overlapping cases: 1 � k � k0 D ˛1.Ln � LLLn C log.p=q � 1// and
q2kn! 0.

Consider the first case when 1 � k � k0. In this range, QMk.nei� /! 0 for � D o.LL
�1=2
n / by (30) and

(33). By (63) and the same proof of (30), we have

QVk.nei� / D QMk.nei� /
�
1CO

�
qkne�qkn cos �

��
;
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uniformly for � D o.LL
�1=2
n /. Then since

�n;k D n!Œzn�Nk.z/ D n!Œzn�ez
�
QVk.z/C QM

2
k .z/

�
;

and �n;k ! 0, it is straightforward to show, by (30), (62) and the proof of (22), that �2
n;k
� �n;k in this case,

which establishes (65).
We now consider the range q2kn! 0 that will cover the other two cases. We will show that V.Bn;k/ �

QVk.n/, which in turn will imply (66) and (67) (indeed, jh.�2/j D 2jg.�2/j D 4pq=.p2 C q2/).
In this case, by the integral representation (64) and the same method of proof for QMk.z/, we have

QV
.`/

k
.nei� / D O

�
�`0n�` QVk.n/

�
; (68)

uniformly for � D o.LL
�1=2
n / whenever q2kn ! 0. On the other hand, since QMk.z/ satisfies the estimate

(60), we have
d`

dz`
QM 2

k .z/
ˇ̌̌
zDnei�

D O
�
�`0n�` QM 2

k .n/
�

.` D 0; 1; : : : /;

uniformly for � D o.LL
�1=2
n /. Thus QNk.z/ D QVk.z/C QM

2
k
.z/ also satisfies condition (15) of Proposition 1.

Therefore, by (19) of Proposition 1 we have

�n;k D
QNk.n/ �

n

2
QN 00k .n/CO

�
�4

0n�2 QNk.n/
�
;

for k � k0. Note that QNk.n/ D ‚.�
2
n;k
/ when �n;k !1 but QNk.n/ D ‚.�n;k/ when �n;k ! 0.

On the other hand, by (61),

�2
n;k D

QM 2
k .n/ � n QMk.n/ QM

00
k .n/CO

�
�4

0n�2 QM 2
k .n/

�
:

Therefore
�2

n;k D
QVk.n/

�
1CO.�2

0n�1�n;k/
�
;

whenever q2kn ! 0. Note that the O-term is at most of order LL2
nL
�1=2
n . In fact, a further refinement (see

(16 or [38]) shows that

�2
n;k D

QVk.n/ � n QM 0
k.n/

2
�

n

2
QV 00k .n/CO

�
�4

0n�2 QNk.n/
�
:

It remains to derive asymptotic approximations to QVk.n/, which follow the same methods of proof used for
QMk.n/, the only difference being changing all occurrences of g.s/ to h.s/. In particular, G2.�Ix/ � G1.�Ix/

when �!1, which corresponds to k � ˛1.1Co.1//Ln; also jh.�2/j D 2jg.�2/j D 4pq=.p2Cq2/. This
proves (66) and (67).

We conclude this section with two corollaries.

Corollary 4. As n!1, the variance �2
n;k
!1 iff the mean �n;k !1.

Corollary 5. If �n;k !1, then Bn;k=�n;k ! 1 in probability.

Proof. The proof follows from Theorem 7 and Chebyshev’s inequality.
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5 Limiting distribution

We prove in this section that the limiting distribution of Bn;k is normal if �n;k ! 1 and is Poisson if
the variance remains bounded. Since the mean and the variance are asymptotically of the same order, the
conditions can also be stated by replacing �n;k ! 1 by �n;k ! 1. These results cover the range when
k � ˛1.Ln � LLn C O.1// and k � ˛2.Ln C O.1//. Outside this range, �n;k ! 0, so Bn;k ! 0 in
probability.

Theorem 8. (i) If �n;k !1, then

Bn;k � �n;k

�n;k

d
�! N .0; 1/; (69)

where N .0; 1/ denotes a standard normal random variable and
d
�! stands for convergence in distribution.

(ii) If �n;k D ‚.1/, then 8<: P
�
Bn;k D 2m

�
D
�m

0

m!
e��0 C o.1/;

P
�
Bn;k D 2mC 1

�
D o.1/;

(70)

uniformly for (finite) m � 0, where �0 WD pqn2.p2 C q2/k�1.

Note that (70) implies that Bn;k takes asymptotically only even numbers when the mean is bounded. This
indeed holds in the wider range when

k �
3

log.1=.p3 C q3//
.Ln CKn/:

Intuitively, this is the range where
�

n
j

�
.pj C qj /k ! 0 for all j � 3, where

�
n
j

�
.pj C qj /k is the expected

number of groups of j input-strings having common prefixes of length at least k; since
P

j�3

�
n
j

�
.pj C

qj /k ! 0, all nodes appearing at levels � k are most likely only in pairs (see [33] for more precise local
limit theorems for Bn;k).

Let Q�n;k WD

q
QVk.n/ � n QM 0

k
.n/2 (see Theorem 7). We will prove, by extending the above de-Poissonization

procedure, that

E exp

 
Bn;k �

QMk.n/

Q�n;k

i'

!
D e�'

2=2

 
1CO

 
1C j'j3

�n;k

!!
; (71)

uniformly for ' D o.�
1=5

n;k
/, which implies (69) by Lévy’s continuity theorem since �n;k �

QMk.n/ and
�n;k � Q�n;k when �n;k !1. Note that as far as the central limit theorem is concerned, the validity of (71)
in the range ' D O.1/ suffices; observe also that centering Bn;k by the exact mean or normalizing Bn;k by
the exact variance will result in a poorer error term.

Our method of proof of (71) is roughly as follows. We start by deriving a closed-form expression for the
bivariate generating functionPk.z;y/ D

P
n�0 Pn;k.y/z

n=n! by using the recurrence (1). We then will apply
the Cauchy integral representation to prove (71), for which we need, as in the analytic de-Poissonization used
above, a crude estimate for jPk.nei� ; ei'/j for j� j away from zero, as well as a more precise local expansion
when j� j is very close to zero. The proof for the Poisson limit law (70) is similar.
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5.1 An exact expression for Pk.z;y/

By (1), we have the functional equation

Pk.z;y/ D Pk�1.pz;y/Pk�1.qz;y/ .k � 2/;

with
P1.z;y/ D ez

C .y � 1/z
�
p.eqz

� 1/C q.epz
� 1/

�
C pq.y � 1/2z2:

By iterating this functional equation, we obtain

Pk.z;y/ D
Y

0�j<k

P1.p
j qk�1�j z;y/.

k�1
j / .k � 1/: (72)

This expression, although explicit, is less transparent from an asymptotic viewpoint.

5.2 A uniform estimate for jPk.rei� ;y/j

We first prove a uniform bound on jPk.rei� ;y/j that is necessary for the proof of Theorem 8.

Proposition 3. Uniformly for k � 1, r � 0, j� j � � and jyj D 1,

jPk.rei� ;y/j � er�cr�2

; (73)

for some constant c > 0 independent of k; r , and � .

In order to prove the above proposition we need a lemma.

Lemma 6. If z D rei� , where r � 0 and j� j � � , then

jez
� 1 � zj � .er

� 1 � r/e�c1r�2

; (74)

where c1 WD 2=.3�2/. On the other hand, if r � r0, where r0 � 1:37 solves the equation er � r D er=3 C 1,
then

jez
� zj � .er

� r/e�c1r�2=2 .j� j � �/: (75)

Proof. The first inequality is a special case of Pittel’s inequality (see [67])ˇ̌̌̌
ˇ̌ez
�

X
0�j<m

zj

j !

ˇ̌̌̌
ˇ̌ �

0@er
�

X
0�j<m

rj

j !

1A e�2r�2=.�2.mC1// .r � 0I j� j � �/:

A simple proof of (74) (following [67]) is as follows.

jez
� 1 � zj D jez=3

j

ˇ̌̌
e2z=3

� .1C z/e�z=3
ˇ̌̌

D er cos.�/=3

ˇ̌̌̌
ˇ̌X
j�2

zj

j !3j

�
2j
C .�1/j .3j � 1/

�ˇ̌̌̌ˇ̌
� er cos.�/=3.e2r=3

� .1C r/e�r=3/;

since 2j C .�1/j .3j � 1/ � 0 for j � 2. Thus (74) follows from (29).
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For the proof of inequality (75), we have

jez
� zj � jez

� 1 � zj C 1

� .er
� 1 � r/e�c1r�2

C 1

� .er
� r/e�c1r�2=2;

since the last inequality is equivalent to

1 � e�c1r�2

� .er
� r/e�c1r�2=2

�
1 � e�c1r�2=2

�
;

or ec1r�2=2 C 1 � er � r , which follows from our choice of r in view of the inequalities ec1r�2=2 C 1 �

er=3 C 1 � er � r .

Proof of Proposition 3. We separate the proof into two cases: r � r0 and r � r0, where we recall that
r0 � 1:37 solves the equation er � r D er=3 C 1. In the first case, we use the expansion

P1.z;y/ D 1C z C
z2

2

�
1 � 2pq.1 � y2/

�
C

X
j�2

zj

j !

�
1 � j .pqj�1

C qpj�1/.1 � y/
�
;

which yields

jP1.rei� ; ei'/j � j1C rei�
j C

X
j�2

rj

j !

� er
�

2r�2

�2.1C r/

� er�c2r�2

; (76)

uniformly for 0 � r � r0 and j� j � � , where we used again (29) and c2 WD 2=.�2.1C r0/
2er0/.

Assume now r � r0. We can write P1.z;y/ as follows.

P1.z;y/ D a1.pz/a1.qz/C z C .qza2.pz/C pza2.qz//y C pqz2y2;

where a1.z/ WD ez � z and a2.z/ WD ez � 1 � z. Note that P1.z; 1/ D ez . By applying the two inequalities
(74) and (75), we haveˇ̌̌

P1.rei� ; ei'/
ˇ̌̌
� a1.pr/a1.qr/e�c1r�2=2

C r C qra2.pr/e�c1pr�2

C pra2.qr/e�c1qr�2

C pqr2

�

�
er
� r � pqr2

�
e�c1qr�2

C r C pqr2

� er�c1qr�2=2; (77)

the last inequality following from an argument similar to the proof of (75). Indeed, it is equivalent to

.r C pqr2/.ec1qr�2=2
C 1/ � er ;

but the left-hand side is less than .r C r2=4/.er=6 C 1/, which is in turn less than er for r � 0:99.
Collecting the two inequalities (76) and (77), we obtain

jP1.rei� ; ei'/j � er�cr�2

.c D minfc1; c2g/;

uniformly for r � 0 and j� j � � . This implies (73) by (72).
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5.3 Local expansion of Pk.rei� ; ei'/

Recall that �0 WD n�2=5 and �0 is defined in (59).

Proposition 4. Assume that �n;k !1. Then uniformly for j� j � �0 and ' D o.�
�2=3

n;k
/

Pk.nei� ; ei'/ D exp

 
n �

n

2
�2
C QMk.n/i' � n QM 0

k.n/'� �
QVk.n/

2
'2
CO.E4/

!
; (78)

where
E4 WD nj� j3 C �2

0�
2
n;k j'j�

2
C �0�

2
n;k'

2
j� j C �2

n;k j'j
3:

Proof. Define

Q.z;y/ WD log e�zP1.z;y/ D log
�
1C a3.z/.y � 1/C a4.z/.y � 1/2

�
;

where a3.z/ WD pze�pz C qze�qz � ze�z and a4.z/ WD pqz2e�z . Let

Qk.z;y/ WD
X

0�j<k

�
k � 1

j

�
Q.pj qk�1�j z;y/ D log e�zPk.z;y/:

First, we prove in Lemma 7 of Appendix B that P1.rei� ; ei'/ is away from zero for r � 0 and j� j � ",
implying that Qk.z;y/ is well defined when j arg.z/j � ".

Then since �n;k !1, we need only consider k � k0. To that purpose, we start from the expansion

Q.z;y/ D

(
pq.y2 � 1/z2 CO.jy � 1jjzj3/; as z ! 0I

q.y � 1/ze�qz
�
1CO.e�.p�q/<.z//

�
; as z !1; j arg.z/j � ":

(79)

By (79), we have

Qk.z;y/ D
1

2� i

Z
.�/

z�sQ�.s;y/.p�s
C q�s/k�1ds; (80)

where � > �2 and Q�.s;y/ WD
R1

0 zs�1Q.z;y/dz is well defined for <.s/ > �2. Note that

Q.z;y/ D a3.z/.y � 1/C
2a4.z/ � a3.z/

2

2
.y � 1/2 C NQ.z;y/.y � 1/3;

where by Taylor’s remainder formula

NQ.z;y/ WD

Z 1

0

.1 � t/2.a3.z/C 2a4.z/.y � 1/t/

�
.a3.z/

2 � 3a4.z/C a3.z/a4.z/.y � 1/t C a4.z/
2.y � 1/2t2/

.1C a3.z/.y � 1/t C a4.z/.y � 1/2t2/3
dt:

The exact form is of less importance here; we need instead the estimates NQ.z;y/ D O.jzj4/ D O.jzj2/ as
z ! 0 and

NQ.z;y/ D O
�
jzj3e�3q<.z/

�
D O

�
jzje�q<.z/

�
;

as z !1 in the sector fz W j arg.z/j � "g. This expansion gives

Qk.z;y/ D QMk.z/.y � 1/C
QVk.z/ � QMk.z/

2
.y � 1/2 C NQk.z;y/.y � 1/3;
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where
NQk.z;y/ WD

X
0�j<k

�
k � 1

j

�
NQ.pj qk�1�j z;y/:

An application of Lemma 8 presented in Appendix C yields, with z D nei� ,

Qk.z;y/ D QMk.z/.y � 1/C
QVk.z/ � QMk.z/

2
.y � 1/2 CO

�
jy � 1j3j QMk.nei� /j

�
;

where the O-term holds uniformly for j� j � " and jy � 1j D o.1/. Since �2
n;k
D ‚.�n;k/ ! 1, this leads

to (78) by expansions of QMk.nei� / and QVk.nei� / at � D 0, using the estimates (60) and (68). This completes
the proof of Proposition 4.

5.4 Proof of Theorem 8

We are now ready to prove Theorem 8.

Proof of the central limit theorem (69). By Cauchy’s integral formula and the two estimates (73) and (78),
we have, similar to (25),

E
�
eBn;k i'

�
D

n!

2� i

Z
jzjDn

z�n�1Pk.z;y/dz

D
n!n�n

2�
enC QMk.n/i'� QVk.n/'

2=2

Z �0

��0

e�n�2=2�n QM 0
k
.n/'� .1CO.E4// d� CO

�
n�1=10e�cn1=5

�
;

since E4 ! 0 in the range of integration and when ' D o.�
�4=5

n;k
/. Applying Stirling’s formula, extending

the integration limits to˙1 and making the change of variables � 7! �n�1=2, we obtain

E
�
eBn;k i'

�
D

e
QMk.n/i'�Q�

2
n;k
'2=2

p
2�

Z 1
�1

e�.�C
p

n QM 0
k
.n/'/2=2

�

 
1CO

 
1C j� j3
p

n
C
�2

n
�2

0�
2
n;k j'j C

j� j
p

n
�0�

2
n;k'

2
C �2

n;k j'j
3

!!
d�;

uniformly in '. A straightforward evaluation of the integral gives (71). This completes the proof of (69).

Proof of the Poisson limit theorem (70). The proof of (70) is similar to the previous proof but proceeds
slightly differently. We first show that

Qk.nei� ;y/ WD log e�zPk.z;y/ D �0.y
2
� 1/e2i�

CO
�
jy � 1jn�e.p/

�
; (81)

uniformly for jyj D 1 and j� j � ", where e.p/ WD 2 log.p3Cq3/= log.p2Cq2/�3 2 .0; 1/ for p 2 .1=2; 1/.
This follows from the Mellin inversion integral (80) since the Mellin transform Q�.s;y/ has a simple pole

at s D �2 with residue pq.y2 � 1/ and can be meromorphically continued into the whole s-plane. Indeed,
by moving the line of integration of the integral in (80) to <.s/ D �3 � ", we obtain

Qk.nei� ;y/ D �0.y
2
� 1/e2i�

CO
�
jy � 1jn3.p3

C q3/k
�
;

whenever j� j � �=2 � " and

k �
Ln CKn

log..p2 C q2/=.p3 C q3//
:
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Since �n;k D ‚.1/, we know that k D ˛3Ln C O.1/ and for such values of k, we have n3.p3 C q3/k D

‚.n�e.p//. Thus (81) follows.
By (81) and the same choice of �0 and (73), we then deduce that

E
�
eBn;k i'

�
D

e�0.e
2i'�1/

p
2�

Z n1=10

�n1=10

e��
2=2

�
1CO

�
n�e.p/

j'j
��

�

 
1C

12�0.e
2i' � 1/i� � i�3

6
p

n
CO

 
1C �0j'j�

2 C �6

n

!!
d�

D e�0.e
2i'�1/ .1CO.E5// ;

uniformly for j'j � � , where E5 WD j'jn
�e.p/ C .1C �0j'j/n

�1. Thus

P
�

Bn;k

2
D m

�
D

1

2�

Z �

��

e�im'C�0.e
i'�1/ .1CO.E5// d';

from which the even case in (70) follows since, by (50), �n;k � 2�0. The odd case is similar.

Remark. Note that �0 is periodic in nature since k D ˛3Ln CO.1/ 2 Z; indeed, we can write

k D b˛3Lnc C ` D ˛3Ln C ` � f˛3Lng .` 2 Z/;

so that

n2.p2
C q2/k D exp

�
�

2

˛3

.` � f˛3Lng

�
:

This is why we did not state the Poisson convergence (70) in the usual form: if �0 ! � < 1, then Bn;k

converges in distribution to 2Po.�/, where Po.�/ denotes a Poisson variate with parameter �.

6 The internal profile

We consider the internal profile in this section. All asymptotic results follow the same footsteps as in the proof
we used for Bn;k ; details will thus be omitted. The main differences are that E.In;k/ and V.In;k/ are not of
the same order for all ranges of k, and In;k assumes both odd and even values when k D ˛3LnCO.1/. These
are intuitively clear since most levels close to the root are full and internal nodes do not necessarily appear in
pairs near the fringes of the tree.

Let P
ŒI �

n;k
.y/ D E.yIn;k / be the probability generating function of In;k . Then

P
ŒI �

n;k
.y/ D

X
0�j�n

�
n

j

�
pj qn�j P

ŒI �

j ;k�1
.y/P

ŒI �

n�j ;k�1
.y/ .n � 2I k � 1/; (82)

with the initial conditions

P
ŒI �

n;k
.y/ D

(
y; if n � 2 and k D 0I

1; if n � 1 and k � 0:

From this, we obtain, defining P ŒI �
k
.z;y/ WD

P
n P

ŒI �

n;k
.y/zn=n!,

P ŒI �
k
.z;y/ D

Y
0�j�k

P ŒI �
0
.pj qk�j z;y/.

k
j/ .k � 0/; (83)
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with P ŒI �
0
.z;y/ D yez C .1 � y/.1C z/. This suggests that we consider

NIn;k WD 2k
� In;k ;

so that the bivariate generating function P Œ
NI �

k
.z;y/ WD

P
n P

Œ NI �

n;k
.y/zn=n! is given by

P Œ
NI �

k
.z;y/ D

Y
0�j�k

P Œ
NI �

0
.pj qk�j z;y/.

k
j/ .k � 0/;

with P Œ
NI �

0
.z;y/ D ez C .y�1 � 1/.1C z/.

6.1 Expected internal profile

We state without proof the asymptotics of E.In;k/ in this subsection. By (82) or (83), we deduce that the
Poisson generating function

QM
ŒI �

k
.z/ WD e�z

X
n�0

E.In;k/

n!
zn;

satisfies

QM
ŒI �

k
.z/ D 2k

�

X
0�j�k

�
k

j

�
QM
ŒI �
0
.pj qk�j z/ (84)

D 2k
�

1

2� i

Z
.�/

z�s.s C 1/�.s/.p�s
C q�s/kds; (85)

where � > 0 and QM ŒI �
0
.z/ D .1C z/e�z . Thus, in particular,

E.In;k/ D 2k
�

X
0�j�k

�
k

j

��
1C pj qk�j .n � 1/

� �
1 � pj qk�j

�n�1
:

Due to the presence of 2k or the simple pole at s D 0 in (85), we have an additional phase transition for
E.In;k/ at � D 0 or, equivalently, at k � ˛0Ln, where

˛0 WD
2

log.1=p/C log.1=q/
:

We now list asymptotic approximations to E.In;k/ for various ranges of k (without proofs since they
follow the same lines as the derivations presented above for the external profile).

Asymptotics of E.In;k/ when 1 � k � ˛1.1C o.1//Ln. Since

QM
ŒI �
1
.z/ D 2k

� .1C pz/e�pz
C .1C qz/e�qz

D 2k
� qze�qz

�
1CO.jzj�1/

�
;

as jzj ! 1 in the sector j arg.z/j � �=2 � ", we see immediately that in this range

E.In;k/ D 2k
� E.Bn;k/.1C o.1//; (86)

uniformly in k.
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Asymptotics of E.In;k/ when ˛1.Ln � LLLn CKn/ � k � ˛0.Ln �Kn

p
Ln/. By applying the saddle-

point method to the Mellin inversion integral in (85) and then de-Poissonizing, we deduce that in this range

E.In;k/ D 2k
�G3

�
�I logp=q pkn

� n�� .p�� C q��/kp
2�ˇ2.�/k

�
1CO

�
1

k.p=q/�
C

1

k�2

��
;

where � D �.n; k/ > 0 satisfies the saddle-point equation (36), ˇ2.�/ is the same as in (37) and

G3.�Ix/ D
X
j2Z

.�C 1C i tj /�.�C i tj /e
�2j�ix

where tj WD 2j�= log.p=q/.

Asymptotics of E.In;k/ when k D ˛0.Ln C o.L
2=3
n //. In this range, we write

k D ˛0.Ln C �
p
˛0ˇ2.0/Ln/;

where ˛0ˇ2.0/ D 2.log.1=p/ C log.1=q//= log.p=q/2 and � D o.L
1=6
n /. The same uniform asymptotic

analysis we used for proving (53) gives

E.In;k/ D 2kˆ.��/

 
1CO

 
1C j�j3
p

Ln

!!
;

uniformly in � , where ˆ.x/ denotes the standard normal distribution function.

Asymptotics of E.In;k/when ˛0.LnCKn

p
Ln/ � k � ˛2.Ln�Kn

p
Ln/. The same saddle-point method

and de-Poissonization procedure yield

E.In;k/ D G3

�
�I logp=q pkn

� n�� .p�� C q��/kp
2�ˇ2.�/k

�
1CO

�
1

k.p=q/�
C

1

k.�C 2/2

��
; (87)

with �, ˇ2.�/ and G3 as defined above.

Asymptotics of E.In;k/ when k D ˛2.Ln C o.L
2=3
n //. In this case, we write

k D ˛0.Ln C �
p
˛2ˇ2.�2/Ln/;

and we have

E.In;k/ D
1

2
ˆ.�/n2.p2

C q2/k

 
1CO

 
1C j�j3
p

Ln

!!
;

uniformly for � D o.L
1=6
n /.

Asymptotics of E.In;k/ when k � ˛2.Ln C Kn

p
Ln/. In this case, the simple pole at s D �2 in the

integrand of (85) dominates, and we have

E.In;k/ D
1

2
n2.p2

C q2/k
�
1CO

�
K�1

n e�K 2
n=2CO.K 3

n L
�1=2
n /

��
as n!1.
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6.2 Asymptotics of V.In;k/

Since V.In;k/ D V. NIn;k/, we can apply the same analysis used for proving Theorem 7 to derive asymptotic
approximations to V.In;k/. The auxiliary function we need is

QV
ŒI �

k
.z/ WD e�z

X
n�0

E. NI2
n;k
/

n!
zn
�

0@e�z
X
n�0

E. NIn;k/

n!
zn

1A2

;

which satisfies

QV
ŒI �

k
.z/ D

X
0�j�k

�
k

j

�
QV
ŒI �

0
.pj qk�j z/ .k � 0/; (88)

where QV ŒI �
0
.z/ D .1C z/e�z.1 � .1C z/e�z/. Thus we have

QV
ŒI �

k
.z/ D

1

2� i

Z
.�/

z�s.s C 1/�.s/
�
1 � 2�s

� s2�s�2
�
.p�s

C q�s/kds;

where � > �2.

Asymptotics of V.In;k/ when 1 � k � ˛1.1C o.1//Ln. In this range, we have

V.In;k/ � V.Bn;k/ � E.Bn;k/:

Asymptotics of V.In;k/ when ˛1.Ln �LLLn CKn/ � k � ˛2.Ln �Kn

p
Ln/. We have

V.In;k/ D G4

�
�I logp=q pkn

� n�� .p�� C q��/kp
2�ˇ2.�/k

�
1CO

�
1

k.p=q/�
C

1

k.�C 2/2

��
;

where � D �.n; k/ > �2 satisfies the saddle-point equation (36) and

G4.�Ix/ D
X
j2Z

.�C 1C i tj /�.�C i tj /
�
1 � 2���itj � .�C i tj /2

���2�itj
�

e�2j� ix :

Asymptotics of V.In;k/ when k � ˛2.Ln C Kn

p
Ln/. In this case, the simple pole at s D �2 again

dominates, and we have
V.In;k/ � E.In;k/:

Observe that, unlike for the external profile, the variance of the internal profile is asymptotically equivalent to
the mean of the internal profile near the height of a trie.

From these asymptotic estimates and Chebyshev’s inequality, we see that In;k=E.In;k/! 1 in probability
if E.In;k/!1; see [15].

6.3 Limiting distributions

The same limiting Gaussian-Poisson behavior for Bn;k holds for In;k . We state formally our main result for
the internal profile in the following theorem. The proof is indeed simpler than that for Theorem 8 since the
base function P ŒI �

0
.z;y/ has a simpler form than P0.z;y/.
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Theorem 9. (i) If V.In;k/!1, then

In;k � E.In;k/p
V.In;k/

d
�! N .0; 1/I

(ii) If V.In;k/ D ‚.1/, then, with �1 WD n2.p2 C q2/=2,

P.In;k D m/ D
�m

1

m!
e��1 C o.1/; (89)

for all m � 0.

The theorem states that asymptotic normality (in the sense of convergence in distribution) holds as long
as

d Oke � k � ˛3Ln �Kn;

for any sequence Kn !1, where Ok is defined in (58).
On the other hand, In;k is asymptotically Poisson distributed when k D ˛3Ln C O.1/. A result related

to (89) was given in [67] by a method of moments, as a key step in deriving the asymptotic distribution of the
height.

7 Profiles under the unbiased Bernoulli model

All exact expressions we have derived up to now, as well as most asymptotic approximations, also hold when
p D q D 1=2. The major difference is reflected by the fact that ˛1 D ˛2 (see Figure 2), so that the saddle-
point range between ˛1 and ˛2 does not exist, and most of the analysis we give above becomes much simpler.
For simplicity of presentation, we omit all error terms in our asymptotic estimates.

Expected external profile. By (8), the Poisson generating function of E.Bn;k/ is given exactly by

QMk.z/ D z
�
e�z=2k

� e�z=2k�1
�

.k � 1/: (90)

From this we deduce, by our de-Poissonization procedures, that

E.Bn;k/ �

8<: n
�
1 � 2�k

�n�1
; if 2�kn!1I

QMk.n/; if 4�kn! 0;
(91)

where the condition 4�kn! 0 is due to the properties that

QM
.`/

k
.z/ D O

�
2�k`
j QMk.z/j

�
.j arg.z/j � �=2 � "/;

and 2�k D o.n�1=2/; see Proposition 1 and compare with (61). In particular,

E.Bn;k/ �

(
ne�t

�
1 � e�t

�
; if 2�kn! t 2 .0;1/I

2�kn2; if 2�kn! 0:

Note that these approximations can also be easily derived by the exact formula

E.Bn;k/ D n
�
1 � 2�k

�n�1
� n

�
1 � 21�k

�n�1
; (92)

by (90) or (10). But such an elementary approach becomes messier for the calculation of the variance. Also

max
k

E.Bn;k/ �
n

4
;

which is reached when k � log2 n � 1.
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Expected internal profile. In a similar manner, we have, by (84),

QM
ŒI �

k
.z/ D 2k

� .2k
C z/e�z=2k

.k � 0/:

Therefore, the expected internal profiles satisfy

E.In;k/ �

8<: 2k
� n

�
1 � 2�k

�n�1
; if 2�kn!1I

QM
ŒI �

k
.n/; if 4�kn! 0:

Consequently,

E.In;k/ �

(
2k
�
1 � .1C t/e�t

�
; if 2�kn! t 2 .0;1/I

2�k�1n2; if 2�kn! 0:

Note that

E.In;k/ D 2k
�
1 �

�
1 � 2�k

�n�
� n

�
1 � 2�k

�n�1
;

and

max
k

E.In;k/ � c3n; (93)

where c3 � 0:298 denotes the maximum value achieved by the function .1 � .1C x/e�x/=x for x 2 RC.

Asymptotics of the variances. Similarly, by (63) and (88), we have

QVk.z/ D z
�
e�z=2k

� e�z=2k�1
�
C 2�kz2e�z=2k�1

� 21�kz2
�
e�z=2k

� e�z=2k�1
�2
;

QV
ŒI �

k
.z/ D .2k

C z/e�z=2k

� 2k
�
1C 2�k

�2
e�z=2k�1

I

accordingly, if n=2k !1, then

V.Bn;k/ � V.In;k/ � E.Bn;k/ � n
�
1 � 2�k

�n�1
I

and if n=4k ! 0, then
V.Bn;k/ � QVk.n/; and V.In;k/ � QV

ŒI �

k
.n/;

uniformly in k. These approximations imply that

V.Bn;k/ �

(
ne�t

�
1 � .1C t/e�t

C 2te�2t .2 � e�t /
�
; if 2�kn! t 2 .0;1/I

2E.Bn;k/ � 21�kn2; if 2�kn! 0:
(94)

and

V.In;k/ �

(
2k.1C t/e�t

�
1 � .1C t/e�t

�
; if 2�kn! t 2 .0;1/I

E.In;k/ � 2�k�1n2; if 2�kn! 0:
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Limiting distributions. Both Theorems 8 and 9 (asymptotic normality of Bn;k and In;k , respectively) hold
when p D q D 1=2 by the same method of proof. Note that both bivariate generating functions become
simpler (see (72) and (83))

Pk.z;y/ D

 
ez=2k�1

C .y � 1/
z

2k�1

�
ez=2k

� 1
�
C .y � 1/2

z2

4k

!2k�1

;

P ŒI �
k
.z;y/ D

�
yez=2k

C .1 � y/

�
1C

z

2k

��2k

:

Observe that, as n!1, E.Bn;k/!1 iff V.Bn;k/!1 iff V.In;k/!1 iff

1

log 2

�
Ln �LLn C

Kn

Ln

�
� k �

2

log 2
.Ln �Kn/; (95)

for any sequence Kn !1 with n; compare Theorem 5 for the asymmetric case.

Theorem 10. (i) If k lies in the range (95), then

Bn;k � E.Bn;k/p
V.Bn;k/

d
�! N .0; 1/;

In;k � E.In;k/p
V.In;k/

d
�! N .0; 1/:

(ii) If k D 2.Ln CO.1//= log 2, then, with �2 WD 2�k�1n2,8̂<̂
:

P.Bn;k D 2m/ D
�m

2

m!
e��2 C o.1/; P.Bn;k D 2mC 1/ D o.1/;

P.In;k D m/ D
�m

2

m!
e��2 C o.1/;

uniformly for m � 0.

Note that when p D q, �0 D �1 D �2.

8 Applications of results

In this section, we briefly discuss a few properties of some shape characteristics of random tries, as implied
either by our results or by our approaches. We consider only depth, height, shortest path, fill-up level, width
and right-profile.

Depth. The distribution of the depth Dn is given by P.Dn D k/ D �n;k=n. Our asymptotic approximations
for �n;k give very precise results for the distribution of Dn. First consider the case when p 6D q. By
definition, we see that the result (4) for the limiting behaviors of log�n;k= log n also describes those of
�1C log P.Dn D k/= log n, or essentially the large deviations of the distribution of Dn.

Furthermore, (43) can be regarded as a local limit theorem for Dn. Indeed, we have, for k D h�1.Ln C

x
p

h�1ˇ2.�1/Ln/, where h WD p log.1=p/C q log.1=q/ is the entropy rate,

P.Dn D k/ D G1

�
�1I logp=q pkn

� e�x2=2p
2�V.Dn/

 
1CO

 
1C jxj3
p

Ln

!!
; (96)

uniformly for x D o.L
1=6
n /, where V.Dn/ � .h2�h2/=h3 log n, with h2 WD p log2 pCq log2 q, (see [34, 79])

is also rederived below in (97). Because of the appearance of the uncommon periodic function G1, we see
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that Dn satisfies a central limit theorem but not a local limit theorem (of the usual form). It can be shown that
the right-hand side indeed sums (over all k) asymptotically to 1. The result (96) is new.

If p D q, then, by the exact formula (92), we have

P.Dn D k/ D
�
1 � 2�k

�n�1
�

�
1 � 21�k

�n�1
;

which implies that

P.Dn D blog2 nc C `/ D
�
e�2�`Cflog2 ng

� e�21�`Cflog2 ng
� �

1CO
�
n�12�`

��
;

uniformly for ` 2 Z, where fxg denotes the fractional part of x.
On the other hand, if one is interested in the cumulative distribution functions or tail probabilities, then,

by (6) and by partial summation,

P.Dn � k/ D .n � 1/!Œzn�
ez

2� i

Z
.�/

z�s�.s C 1/
�
p�s
C q�s

�k ds;

for k � 1, where � > �1. Equivalently, by (11), we have (see [36])

P.Dn � k/ D
1

2� i

Z
.�/

�.n/�.s C 1/

�.nC 1C s/

�
p�s
C q�s

�k ds;

where � > �1. Asymptotics of such integrals can be treated by our approaches, which give not only the
central limit theorem of Dn with convergence rate (since there is a simple pole at s D �1) but also precise
estimates for tail probabilities. Indeed, we have

P
�

Dn � h�1.Ln C x

q
h�1ˇ2.�1/Ln/

�
D ˆ.x/

 
1CO

 
1C jxj3
p

Ln

!!
;

uniformly for x D o.L
1=6
n /, as already shown in [34, 36] (but without rate). Furthermore,

�
log P.Dn � ˛Ln/

log n
! �0 C 1 � ˛ log.p��

0

C q��
0

/ .˛1 � ˛ � h�1/;

�
log P.Dn � ˛Ln/

log n
!

(
�0 C 1 � ˛ log.p��

0

C q��
0

/; if h�1 � ˛ � ˛2I

�1 � ˛ log.p2 C q2/; if ˛2 � ˛ � ˛3;

both tails being asymptotic to �1 for smaller and larger ˛, respectively, where �0 is given in (42). These
results imply, in particular, that E.Dn/ � Ln=h and

V.Dn/ � ˇ2.�1/h�3Ln D
pq log2.p=q/

.p log.1=p/C q log.1=q//3
Ln D

h2 � h2

h3
Ln (97)

where h2 WD p log2 p C q log2 q; see [13, 79]. Note that the constant on the right-hand side becomes zero
when p D q.

Width. The width of tries Wn is defined to be Wn WD maxk In;k , or the size of the most abundant level(s).
As a natural lower bound for E.Wn/, we consider maxk E.In;k/. By (87) and a similar analysis for (43), we
have, when p 6D q,

E.In;k/ D

p
h G3

�
�1I logp=q pkn

�
log.p=q/

p
2�pq

�
n
p

Ln

�
1CO.L�1=2

n /
�
;
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uniformly for k D Ln=hCO.1/. This approximation, together with the estimates for E.In;k/ in other ranges
given in Section 6.1, yields

E.Wn/ � max
k

E.In;k/ D ‚.nL�1=2
n /;

when p 6D q. Indeed, we have
E.Wn/ D ‚.nL�1=2

n /:

The upper bound can be proved by applying the arguments used in [16], which start from the inequality

E.Wn/ � max
k

E.In;k/C
X

jk�Ln=hj�"L
2=3
n

V.In;k/

Mn � E.In;k/
C

X
jk�Ln=hj>"L2=3

n

E.In;k/;

and then use the asymptotics of E.In;k/ and V.In;k/ given in Section 6.1. Details are omitted here. Finer
results for E.Wn/ can be derived, but the proof is more involved due to the presence of the periodic function
G3 (whose parameter involving k).

For symmetric tries, we easily have E.Wn/ D ‚.n/, by (93) and the trivial bound E.Wn/ � n. Thus
random symmetric tries are “fatter” and most nodes lie near the most abundant levels k D log2 nCO.1/.

Height. We next derive an estimate for the height of random tries, as a consequence of our estimates for the
external profiles together with the use of the first and second moment methods (see [82]).

Corollary 6. (Height of a trie) Let Hn WD maxfk W Bn;k > 0g be the height of a random trie. Then
Hn= log n! ˛3 in probability.

Proof. Let kH WD ˛3Ln. First we derive an upper bound for Hn as follows.

P.Hn > .1C "/kH / � P.Bn;k � 1/; for some k � .1C "/kH

� E.Bn;k/! 0;

where the last inequality follows from Theorem 3 when p 6D q and (91) when p D q. For the lower bound,
we use the second moment method (see [82]) to find

P.Hn < .1 � "/kH / � P.Bn;d.1�"/kH e
D 0/

�
V.Bn;d.1�"/kH e

/

.E.Bn;d.1�"/kH e
//2

D O

�
1

E.Bn;d.1�"/kH e
/

�
! 0;

by Theorems 3 and 7 and (94). Combining the two estimates, we obtain the required result.

Corollary 6 is not new and has already been derived in Devroye [12], Pittel [66, 67] and Szpankowski
[80].

Shortest path. The shortest path Sn WD minfj W Bn;j > 0g of a random trie, discussed next, has attracted
much less attention than the height (see [82]) in the literature. It is closely related to the behaviors of the
external profile in range (I) near k D ˛1.Ln � LLLn C O.1// as discussed in Theorem 1 and its refinement
in Corollary 3.

Define

Ok WD

8<: ˛1

�
Ln �LLLn � log m0 Cm0 log.p=q/ �

LLLn

m0LLn

�
; if p 6D qI

˛1.Ln �LLn/; if p D q;
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where m0 WD d1=.p=q � 1/e, and

kS WD

(
d Oke; if p 6D qI

b Okc; if p D q:

Corollary 7. (Shortest Path Length of Tries) If p 6D q, then

Sn D

(
kS ; if f OkgLLn !1I

kS or kS � 1; if f OkgLLn D O.1/I

with high probability2; if p D q D 1=2, then

Sn D

(
kS C 1; if f OkgLn !1I

kS or kS C 1; if f OkgLn D O.1/;

with high probability.

Proof. Assume p 6D q. Consider first the case f OkgLLn !1. In this case, we have, by Corollary 3,(
�n;kS

!1;

�n;k ! 0 for k � kS � 1:

Thus, again by the second moment method,

P.Sn > kS / � P.Bn;kS
D 0/ �

V.Bn;kS
/

.E.Bn;kS
//2
D O

�
1

�n;kS

�
! 0:

On the other hand, by using the first moment method, we have

P.Sn < kS / � P.Bn;k � 1/; for some k < kS

� �n;k ! 0:

These two estimates imply that P.Sn D kS /! 1.
Now if f OkgLLn D O.1/, then, again by Corollary 3,8̂<̂

:
�n;kS

!1;

�n;kS�1 D ‚.1/;

�n;k ! 0 for k � kS � 2:

Thus applying mutatis mutandis the same proof gives

P.Sn D kS /C P.Sn D kS � 1/! 1:

The proof for the symmetric case is similar; for, �n;k ! 1 when k lies in the range (95) and from this
result we deduce that �n;kSC1 !1, �n;kS�1 ! 0 and

�n;kS

(
! 0; if f OkgLn !1I

D ‚.1/; if f OkgLn D O.1/:

This completes the proof.

2 We say that an event holds with high probability if it holds with probability tending to 1 as n!1.
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Fill-up level. We now consider the fill-up level Fn D maxfk W In;k D 2kg of a random trie, which was
also analyzed previously by Devroye [12], Pittel [66, 67] and Knessl and Szpankowski [50].

Corollary 8. (Fill-up level of a trie) If p 6D q, then

Fn D

(
kS � 1; if f OkgLLn !1I

kS � 2 or kS � 1; if f OkgLLn D O.1/I

with high probability; if p D q D 1=2, then

Fn D

(
kS ; if f OkgLn !1I

kS or kS � 1; if f OkgLn D O.1/I

Proof. Observe that
Fn D maxfk W NIn;k D 0g D minfk W NIn;k > 0g � 1:

By (86), we have E. NIn;k/ � �n;k when k � ˛1.1 C o.1//Ln. Thus the proof of Corollary 7 applies with
little modification.

Profile enumerating only right branches. We consider the random variable Rn;k , which denotes the num-
ber of external nodes in random tries that are away from the root by k right branches. Since a right branch
means a “1” in the input string, Rn;k enumerates the number of strings with exactly k 1’s; it also has other
concrete interpretations in splitting processes and conflict resolution algorithms. All of our tools can be ex-
tended to Rn;k , although Rn;k exhibits very different behaviors. For example, unlike Bn;k or In;k , there is no
need to distinguish between symmetric and asymmetric tries, all results being uniform in p; also, the Poisson
heuristic holds for all k � 0. This example further reveals the power of our approaches.

The probability generating function Fn;k.y/ WD E.yRn;k / of Rn;k satisfies the recurrence

Fn;k.y/ D
X

0�j�n

�
n

j

�
pj qn�j Fj ;k�1.y/Fn�j ;k.y/ .n � 2I k � 0/;

with the initial conditions Fn;k.y/ D 1 for n � 1 or k < 0 and F2;1.y/ D y. Thus the bivariate generating
function Fk.z;y/ WD

P
n Fn;k.y/z

n=n! satisfies

Fk.z;y/ D Fk.qz;y/Fk�1.pz;y/ D
Y
j�0

F0.p
kqj z;y/.

kCj�1
j /;

where
F0.z;y/ D epzF0.qz;y/C p.1 � p=2/.y � 1/z2;

which is further solved to be

F0.z;y/ D ez
C p.1 � p=2/.y � 1/

X
j�0

.qj z/2e.1�qj /z : (98)

From this we deduce that the expected right-profile is given by

E.Rn;k/ D p.1 � p=2/n!Œzn�
ez

2� i

Z
.�/

z�s�.s C 2/
p�ks

.1 � q�s/kC1
ds;

where �2 < � < 0. The integral is not of the same type as (6) but similar, and our methods of proof easily
extend. It has simple poles at s D �2;�3; : : : and poles of order k C 1 at s D 2j� i= log.1=q/, j 2 Z. Thus
the asymptotics of E.Rn;k/ are divided into four overlapping ranges.
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� If 0 � k D o.log n/, then the residues of the poles on the imaginary lines are dominant and we have

E.Rn;k/ � p.1 � p=2/
.log pkn/k

k!.log.1=q//kC1

0@1C
X
j 6D0

�.1C �j /.p
kn/��j

1A ;
uniformly in k, where �j WD 2j� i= log.1=q/.

� If k !1 and k � ˛�.Ln �Kn

p
Ln/, where Kn !1 and

˛� WD
1 � q2

.1 � q2/ log.1=p/ � q2 log.1=q/
;

then by the saddle-point method

E.Rn;k/ �
p.1 � p=2/q�=2
p

2�k log.1=q/
.pkn/��.1 � q��/�k

X
j2Z

�.�C 1C �j /.p
kn/��j ;

uniformly in k, where

� D log1=q

log.pkn/

log.pkn=qk/
:

� If k D ˛�Ln C x
p
˛�.1C ˛� log.p=q//.1C ˛� log p/Ln, then

E.Rn;k/ �
1

2
ˆ.x/.pkn/2.1 � q2/�k ;

uniformly for x D o.L
1=6
n /.

� If k � ˛�Ln CKn

p
˛�.1C ˛� log.p=q//.1C ˛ log p/Ln, then

E.Rn;k/ �
1

2
.pkn/2.1 � q2/�k :

These results imply that, as n!1, E.Rn;k/!1 iff

1 � k �
2

log 2�p
p

Ln �Kn;

where Kn !1 with n. Note that

log e�zF0.z;y/ D log.1C .y � 1/�.z//;

where �.z/ WD p.1 � p=2/
P

j�0.q
j z/2e�qj z satisfies �.z/ D O.jzj2/ as z ! 0, and, by Mellin transform,

�.z/ D O.1/ as jzj ! 1 in a small sector containing the real axis. This yields, by a straightforward
modification of our approaches, that V.Rn;k/ D ‚.E.Rn;k// for all k D k.n/ � 0 and that

Rn;k � E.Rn;k/p
V.Rn;k/

d
�! N .0; 1/;

whenever E.Rn;k/ or V.Rn;k/!1. Two remaining cases are k D 0 and k D 2Ln= log 2�p
p
CO.1/. In the

first case, Rn;0 by (98) is Bernoulli distributed with mean equal to �.n/, which is asymptotic to the periodic
function

1

log.1=q/

0@1C
X
j 6D0

�.2 � �j /n
��j

1A I
and in the second case,

P.Rn;k D m/ D
�m

3

m!
e��3 C o.1/;

where �3 WD .p
kn/2.1 � q2/�k=2.
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Appendix A: Proof of Lemma 3

In this appendix, we prove Lemma 3. For part (i) let z D nei� , where � D o.LL
�1=2
n /. By (8)

QMk.z/ D
X

0�j<k

�
k � 1

j

�
pj qk�j ze�pj qk�j z

�
1CO

�
e�.p�q/pj qk�1�jn cos �

��
D

X
0�j<k

�
k � 1

j

�
pj qk�j ze�pj qk�j z

�
1CO

�
e�.p�q/qk�1n cos �

��
(99)

D qkze�qkz .1CO.E6// ;

where

E6 WD

X
1�j<k

.p˛1=q/
j

j !
Lj

ne�qkn..p=q/j�1/ cos � :

Since 1 � k � k0 � ˛1Kn=LLn, we have

qkn �
LLn

p=q � 1
eKn=LLn :

It follows, by using the inequality

tj � 1

t � 1
� j .t > 1I j � 1/;

that

E6 �

X
j�1

.p˛1=q/
j

j !
L

j� .p=q/j�1
p=q�1

cos.�/eKn=LLn

n

�

X
j�1

.p˛1=q/
j

j !
L�j.cos.�/eKn=LLn�1/

n

�

X
j�1

.p˛1=q/
j

j !
e�jKCO.j�2LLn/

D O.e�Kn/;

since � D o.LL
�1=2
n /. This proves (30).

For part (ii), by (99),

QMk.z/ D Sk;m.z/
�
1CO

�
e�.p�q/pmqk�1�mn cos �

CE7 CE8

��
;

where

E7 WD

X
0�j<m

ˇ̌̌̌
Sk;j .z/

Sk;m.z/

ˇ̌̌̌ �
1CO

�
e�.p�q/pj qk�1�jn cos �

��
;

E8 WD

X
m<j<k

ˇ̌̌̌
Sk;j .z/

Sk;m.z/

ˇ̌̌̌ �
1CO

�
e�.p�q/pj qk�1�jn cos �

��
:
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By (31), pmqk�mn D e�LLn=.p=q � 1/. It follows, by changing j to m � j , that

E7 D O

0@m!
X

1�j�m

.q=p/j

.m � j /!
k�j exp

�
pmqk�mn cos.�/

�
1 � .q=p/j

��1A
D O

0@m!
X

1�j�m

.q=p˛1/
j

.m � j /!
L
�jC 1�.q=p/j

p=q�1
e� cos �

n

1A
D O

0@m!
X

1�j�m

.q=p˛1/
j

.m � j /!
L�j.1�qe� cos �=p/

n

1A
D O

�
m�.1�qe� cos �=p/

n

�
D O

�
me�Kn

�
;

since � � log.p=q/ �Kn=LLn and � D o.LL
�1=2
n /.

Similarly,

E8 D O

0@m!
X
j>m

.p=q/j�m

j !
kj�m exp

�
�pmqk�mn cos.�/

�
.p=q/j�m

� 1
��1A

D O

0@m!
X
j�1

.p˛1=q/
j

.j Cm/!
L

j� .p=q/j�1
p=q�1

e� cos �
n

1A
D O

0@m!
X
j�1

.p˛1=q/
j

.j Cm/!
L�j.e� cos ��1/

n

1A
D O

�
m�1L�.e

� cos ��1/
n

�
D O

�
m�1e�Kn

�
;

since � � Kn=LLn. This completes the proof of (32).

Appendix B: Well-definedness of Qk.z;y/

We prove here the following lemma that is needed for the proof of Proposition 4.

Lemma 7. The function Qk.rei� ;y/ is well-defined for r � 0, j� j � " and jyj D 1.

Proof. We first show that

ja3.r/.e
i'
� 1/C a4.r/.e

i'
� 1/2j < 1; (100)

for r � 0 and jyj D 1. By direct calculation, we have

ja3.r/.e
i'
� 1/C a4.r/.e

i'
� 1/2j2 D a3.r/

2� � a4.r/.a3.r/ � a4.r//�
2;

where � WD 2.1 � cos'/. Since

a3.r/ � a4.r/ � a3.r/ � 2a4.r/ D e�r
�
pr.eqr

� 1 � qr/C qr.epr
� 1 � pr/

�
� 0;

we have
ja3.r/.e

i'
� 1/C a4.r/.e

i'
� 1/2j �

p
2 a3.r/:
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By simple calculus, we have a3.r/ < 2�1=2, which implies (100). Indeed, the inequality a3.r/ < 2�1=2 is
equivalent to

pre�pr
C qre�qr

� re�r < 2�1=2 .r � 0/;

and we have
pre�pr

C qre�qr
� re�r

� max
r�0

re�r .er=2
� 1/ � 0:52 < 2�1=2:

This proves the lemma when z D r ; then the assertion of the lemma follows from analyticity.

Appendix C: A useful approximation

In the proof of Proposition 4 we need the following lemma.

Lemma 8. Let f .z/ be an entire function satisfying

f .z/ D

(
O.jzj2/; as z ! 0I

O.jzje�q<.z//; as z !1; j arg.z/j � N";
(101)

where N" > 0. Then uniformly for all k D k.n/ � 1 and z D nei� , j� j � N",

fk.z/ WD
X

0�j<k

�
k � 1

j

�
f .pj qk�1�j z/ D ‚.j QMk.z/j/:

Proof. If 1 � k � k0, then it is easy to see that fk.z/ D ‚.j QMk.z/j/ for j� j � N". When k � k0, let
f �.s/ WD

R1
0 xs�1f .x/dx. Then f �.s/ is well defined in the half-plane <.s/ > �2 by (101). By the

estimates in (101) and the same argument used in [24, Proposition 5], we have, assuming � � 1 and t > 0,

f �.�C i t/ D

Z ei N"1

0

x�Cit�1f .x/dx

D ei N".�Cit/

Z 1
0

x�Cit�1f .xei N"/dx

D O.e�N"t
Z 1

0

x�C1dx/CO

�
e�N"t

Z 1
1

x�e�qx cos N"dx

�
D O

�
e�N"t��1

C e�N"tq���1=2.�=e/�
�
;

uniformly in � and t . If t < 0, then changing ei N" to e�i N" gives

f �.�C i t/ D O
�
e�N"jt j��1

C e�N"jt jq���1=2.�=e/�
�
:

When �2 < � � 1, f �.� C i t/ D O.e�N"jt j/ for large jt j by the same argument. On the other hand, by the
first estimate in (101), we also have

f �.s/ D O
�
js C 2j�1

�
.s ! 2/:

With these estimates and the Mellin inversion integral

fk.z/ D
1

2� i

Z
.�/

z�sf �.s/.p�s
C q�s/k�1ds;

we can apply the arguments used for QMk.z/ and prove that fk.z/ D ‚.j QMk.z/j/ for j arg.z/j � N".
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