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Motivation

Kirchho� theorem links Spanning Trees, Dimers, Abelian

Sandpile Model, Loop-Erased Random Walks and other

combinatorial models.

Correlation functions in these models can be described by

Conformal Field Theories in thermodynamical limit.

Goal: con�rm predictions from Conformal Field Theories using

combinatorial methods.
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Stating the problem

Let G = (V ,E ) be an undirected connected graph with neither

loops nor multiple edges.

Take two non-intersecting subsets of vertices

Ik = {i1, . . . , ik} ⊂ V and Jk = {j1, . . . , jk} ⊂ V .

Consider k totally disjoint loopless paths from Ik to Jk (such

con�gurations of paths are called watermelons).

Typical questions.

What is the number of di�erent watermelon con�gurations?

How does it change with the distance r between Ik and Jk?
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Loop-erased random walk (LERW)

x

A

Let

A ⊂ V be a set of vertices,

Xn be a simple random walk

starting at X0 = x ,

τA = min{n > 0: ξn ∈ A} be a stopping

time (hitting time for the set A),

γ = (X0,X1, . . . ,XτA) be a path

corresponding to Xn.

De�ne loop-erased random walk as a path

LERW (x ,A) = (y0, . . . , ym) = (Xn0 , . . . ,Xnm),

where n0 = 0, ni+1 = max{j : γ(j) = γ(ni )}+ 1.
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Wilson algorithm for generating uniform spanning tree

v0

1 Take any vertex v0 ∈ V .

2 De�ne U0 = {v0}.

3 Take any vertex v1 ∈ V \ U0.

4 Consider LERW (v1,U0) and
de�ne U1 = LERW (v1,U0).

5 . . .

6 Take any vertex vk ∈ V \ Uk−1.

7 De�ne Uk = LERW (vk ,Uk−1) ∪ Uk−1.

8 At the end, we obtain a spanning tree.

If |V0| > 0, then we will get a spanning forest.
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LERW and watermelons

i1
i2
.

.

.

ik . . .

j1
j2
.

.

.

jk

Each k-leg watermelon can be considered as k loop-erased random

walks from Ik to Jk .
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Previous results: isotropic case

Ik

Jk

A. Gorsky, S. Nechaev, V. Poghosyan and

V. Priezzhev studied this problem in 2013

for the following case:

G is a square lattice,

k is odd,

Ik and Jk have the form of fence.

Let r be the distance between Ik and Jk ,

Wn(k , r) =
#{watermelons inside the square n × n}
#{spanning trees inside the square n × n}

,

W (k, r) = lim
n→∞

Wn(k , r).

Theorem: W (k , r) ∼ C · r−ν · ln r , where ν =
k2 − 1

2
.
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Previous results: anisotropic case

Ik

Jk

Another case studied by V. Priezzhev,

A. Gorsky, S. Nechaev and V. Poghosyan

is the following:

G is an elongated square lattice,

k is odd,

Ik and Jk have the form of fence.

1
4 + ε

1
4 − ε

1
4 − ε

1
4 + ε

Theorem: if ε→ 0, then

W (k, r) ∼ C · r−ν , where ν =
k2

2
.
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New results: isotropic case, open boundary

G is a square lattice on the half-plane,

Ik and Jk have the form of

segments located near the

boundary,

absorbing boundary conditions.

i1 i2 ik jk j2 j1
Ik Jk

Theorem 1 (N., Povolotsky):

W op(Ik , Jk) ∼ C op · r−k(k+1), where C op =
1

πk · k!
·

k∏
s=1

(s!)2.
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New results: isotropic case, closed boundary

G is a square lattice on the half-plane,

Ik and Jk have the form of

segments located near the

boundary,

re�ecting boundary conditions.

i1 i2 ik jk j2 j1
Ik Jk

Theorem 2 (N., Povolotsky):

W cl(Ik , Jk) ∼ C cl ·r−k(k−1)·ln r , where C cl =
1

πk · (k − 1)!
·

k∏
s=1

(s!)2.
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New results: anisotropic case, open boundary

G is a horizontally elongated square lattice on the half-plane,

Ik and Jk have the form of

segments located near the

boundary,

absorbing boundary conditions.

i1 i2 ik jk j2 j1
Ik Jk

1
4 + ε

1
4 − ε

1
4

1
4

Theorem 3 (N., Povolotsky): if ε→ 0, then

W op(Ik , Jk) ∼ C op · r−k(k+
1
2),

where C op =
1√

2k2 · πk
·
k−1∏
s=1

s! · (2s + 1)!!.
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1
4

1
4
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Tools for proof

Matrix Tree Theorem,

Green functions,

Generating functions,

Symmetric (Schur) functions.
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Thank you for your attention!
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