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Watermelon configurations

Ik

Jk

Ik

Jk

Let G = (V ,E ) be an undirected
connected graph with neither loops
nor multiple edges.

Ik = {i1, . . . , ik} and Jk = {j1, . . . , jk}
are two non-intersecting subsets.

Watermelon is a configuration of
k disjoint loopless paths from Ik to Jk .
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Spanning forests

Ik Jk

∗

Let G∗ = (V ∗,E ∗), where
V ∗ = V ∪ {∗} and ∗ is a sink.

Choose Ik and Jk .

Take a (k + 1)-connected span-
ning forest with roots Ik ∪ {∗}.

Consider a uniform measure on
the set of all spanning forests.

Question.
What is the probability to have a watermelon configuration?
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Main question

i1 i2 . . . ik . . . jk . . . j2 j1

r

Let Ik and Jk be separated by distance r .

Main question. What is the asymptotical behavior of
P(watermelon configuration) for r →∞?
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Loop-erased random walk (LERW)

x

A

A ⊂ V is a set of vertices,

Xn is a simple random walk
starting at X0 = x ,

τA = min{n > 0: ξn ∈ A} is a stop-
ping time (hitting time for the set A),

γ = (X0,X1, . . . ,XτA) is a path
corresponding to Xn.

Loop-erased random walk is a path

LERW (x ,A) = (y0, . . . , ym) = (Xn0 , . . . ,Xnm),

where n0 = 0, ni+1 = max{j : γ(j) = γ(ni )}+ 1.
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Wilson algorithm for generating uniform spanning tree

v0

1 Take any vertex v0 ∈ V .

2 Define U0 = {v0}.

3 Take any vertex v1 ∈ V \ U0.

4 Consider LERW (v1,U0) and
define U1 = LERW (v1,U0).

5 . . .

6 Take any vertex vk ∈ V \ Uk−1.

7 Define Uk = LERW (vk ,Uk−1) ∪ Uk−1.

8 At the end, we obtain a spanning tree.

If |U0| > 1, then we will get a spanning forest.
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LERW and watermelons

i1
i2...
ik . . .

j1
j2...
jk

Every k-leg watermelon can be considered as k loop-erased random
walks from Jk to Ik .
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CFT predictions

In the bulk, Duplantier and Saleur (1987) predicted

νbulk =
k2 − 1

2

with the help of the Coulomb gas approach.

For the half-plane, Duplantier and Saleur (1986) predicted

νhp = k(k − 1).
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Watermelons in the bulk

Ik

Jk
Let

G be a square lattice (bulk case),

k be odd,

Ik and Jk have the form of fence.

Theorem (Ivashkevich, Hu, 2005;
Gorsky, Nechaev, Poghosyan, Priezzhev, 2013)

F (r) ∼ C · r−νbulk · ln r , where νbulk =
k2 − 1

2
.
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Watermelons on the half-plane, open boundary

G is a square lattice on the half-plane,

Ik and Jk have the form of
segments located near the
boundary,

absorbing boundary conditions.

i1 i2 ik jk j2 j1
Ik Jk

Theorem

P(watermelon configuration) ∼ C op · r−k(k+1),

C op =

∏k
s=1 (s!)2

popk (π) · k!
, popk (x) is a polynomial of degree k .
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Watermelons on the half-plane, closed boundary

G is a square lattice on the half-plane,

Ik and Jk have the form of
segments located near the
boundary,

reflecting boundary conditions.

i1 i2 ik jk j2 j1
Ik Jk

Theorem

P(watermelon configuration) ∼ C cl · r−k(k−1),

C cl =

∏k−1
s=1 (s!)2

pclk (π) · (k − 1)!
, pclk (x) is a polynomial of degree k − 1.
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Predictions for stretched watermelons

1
4 + ε

1
4 − ε

1
4 − δ

1
4 + δ

For the anisotropic case, we have the universality
class of the vicious walkers model.

In the bulk, Fisher (1984) predicted

νbulk,‖ =
k2

2
.

For the half-plane, depending on boundary conditions,
Guttmann, Owczarek, and Viennot (1998) predicted

νop,‖ = k

(
k +

1

2

)
for absorbing boundary conditions,

νcl ,‖ = k

(
k − 1

2

)
for reflecting boundary conditions.
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Elongated watermelons in the bulk

Ik

Jk
G is an elongated square lattice,

Ik and Jk have the form of fence.

k is odd,

δ = ε.
1
4 + ε

1
4 − ε

1
4 − ε

1
4 + ε

Theorem (Gorsky, Nechaev, Poghosyan, Priezzhev, 2013)

If ε→ 1/4, then

P(watermelon configuration) ∼ C ·r−νbulk,‖ , where νbulk,‖ =
k2

2
.
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Elongated watermelons on the half-plane, open boundary

G is a horizontally elongated square lattice on the half-plane,

Ik and Jk are segments located near the boundary,

absorbing boundary conditions.

i1 i2 ik jk j2 j1
Ik Jk

1
4 + ε

1
4 − ε

1
4

1
4

Theorem

If ε→ 1/4, then

P(watermelon configuration) ∼ C op · r−k(k+ 1
2).
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Matrix Tree Theorem

G = (V ,E ) is a finite connected (directed) graph without
loops and multiple edges.
G∗ = (V ∗,E ∗), where V ∗ = V ∪ {∗}, ∗ is a sink.
Discrete Laplacian is the matrix ∆ = (∆ij)i ,j∈V ,

∆ij =


deg i , if i = j ;
−1, if i 6= j , ij ∈ V ;
0, if i 6= j , ij /∈ V .

Theorem (Kirchhoff, 1848)

#{spanning trees of G∗ rooted to ∗} = det ∆.
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All Minors Matrix Tree Theorem

I = {i1, . . . , ik}, J = {j1, . . . , jk} and R = {r1, . . . , rn} are
three disjoint subsets of V ,
ρσ = i1jσ(1)| . . . |ik jσ(k)|r1| . . . |rn|∗ is partial pairing, σ ∈ Sk ,
Z [ρσ] is the number of spanning forests on G∗ such that

each component is rooted to I ∪ R ∪ {∗},
im and jσ(m) are in the same component.

Theorem (Chen, 1976)

Let ∆ be invertible, G = ∆−1. Then

det ∆ · detG I∪R
J∪R =

∑
σ∈Sk

(−1)σZ [ρσ].
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Watermelon probability and Green functions

P(watermelon configuration) =
detG Ik

Jk

detG Ik
Ik

G — Green function
G Ik
Jk

and G Ik
Ik

are matrices k × k

G op
(x ;y1,y2)

=
1

π2

π∫
0

dα

π∫
0

dβ
cos xα sin y1β sin y2β

2− (cosα + cosβ)
.

G cl
(x ;y1,y2)

=
1

π2

π∫
0

dα

π∫
0

dβ
cos xα cos

(
y1 − 1/2

)
β cos

(
y2 − 1/2

)
β − 1

2− (cosα + cosβ)
.
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Thank you for the attention!
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