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Asymptotics for square-tiled surfaces

Square-tiled surfaces

Take n labeled squares.

Identify their sides by translation
(right side ↔ left side, bottom side ↔ top side).

If obtained surface is connected, then it is called
a labeled square-tiled surface (SQS) or origami.
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Asymptotics for square-tiled surfaces

Square-tiled surfaces

SQS is determined by the pair of permutations (h, v) ∈ S2
n acting

transitively on {1, . . . , n}:
h: horizontal (right) permutation,

v : vertical (top) permutation,

transitive action ↔ connectedness of SQS.
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Asymptotics for square-tiled surfaces

Probability of a surface to be connected

Question. What is the probability pn of a random surface
determined by (σ, τ) ∈ S2

n to be connected as n→∞?

Dixon, 2005: pn = 1−
r−1∑
k=1

µk
(n)k

+ O

(
1

nr

)
,

where (n)k = n(n − 1) . . . (n − k + 1) are the falling
factorials.

Cori, 2009: the sequence

(µk) = 1, 1, 3, 13, 71, 461, 3447, 29093, . . .

counts indecomposable permutations.
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Asymptotics for square-tiled surfaces

Indecomposable permutations

A permutation σ ∈ Sn is

decomposable, if there is an index p < n
such that σ

(
{1, . . . , p}

)
= {1, . . . , p}.

indecomposable otherwise.

(
1 2 3 4 5
3 1 2 5 4

)
decomposable (p = 3)

(
1 2 3 4 5
5 3 2 1 4

)
indecomposable

Observation. Every permutation can be uniquely decomposed into
a sequence (SEQ) of indecomposable permutations.
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Asymptotics for graphs

Graphs

Let fn be the number of labeled graphs with n vertices.
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fn = 2(n2)
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Asymptotics for graphs

Connected graphs

Let gn be the number of connected labeled graphs with n vertices.
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26
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4 5

3

26

1

4 5
connected graph disconnected graph

(gn) = 1, 1, 4, 38, 728, 26704, 1866256, . . .

Every graph is a disjoint union (SET) of connected graphs.
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Asymptotics for graphs

Probability of a graph to be connected

Question. What is the probability pn =
gn
fn

of a random graph with

n vertices to be connected as n→∞?

folklore: pn = 1 + o(1)

Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
Wright, 1970:

pn = 1−
(
n

1

)
2

2n
−
(
n

3

)
27

23n
− 3

(
n

4

)
213

24n
+ O

(
n5

25n

)

Can we have all terms at once? What is the interpretation?
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Asymptotics for graphs

Asymptotics for pn

Monteil, N., 2019:

as n→∞, for every r > 1

pn = 1−
r−1∑
k=1

hk ·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where hk counts irreducible labeled tournaments of size k .

(hk) = 1, 0, 2, 24, 544, 22320, 1677488, . . .
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Asymptotics for graphs

Tournaments

A tournament is a complete directed graph.

1

23

4

5 6

The number of labeled tournaments with n vertices is equal to

fn = 2(n2)
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Asymptotics for graphs

Irreducible tournaments

A tournament is called irreducible
(or strongly connected tournament),

if for every partition of vertices V = A t B

1 there exist an edge from A to B and

2 there exist an edge from B to A.

Equivalently, for each two vertices u and v

1 there is a path from u to v and

2 there is a path from v to u.

V = {1, 2, 3, 4, 5, 6}

V = {1, 2, 3, 4, 5, 6}

1

23

4

5 6

1

23

4

5 6

A = {1, 2, 3, 6}
B = {4, 5}
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Asymptotics for graphs
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Asymptotics for graphs

Tournament as a sequence

Lemma. Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.
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Asymptotics for graphs
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Asymptotics for graphs

SET vs SEQ

F (x) =
∞∑
n=0

fn
xn

n!
=
∞∑
n=0

2(n2)
xn

n!

counts

graphs

counts

tournaments

decomposed

as SET of

connected

graphs

decomposed as

as SEQ of

irreducible

tournaments

counted by

G (x) =
∞∑
n=0

gn
xn

n!
= log(F (x))

counted by

H(x) =
∞∑
n=0

hn
xn

n!
= 1−

1

F (x)
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SET and SEQ asymptotics

Notations

F = SET(G), F (x) = exp(G (x));

F = SEQ(H), F (x) =
1

1− H(x)
;

G(m) = SETm(G), G (m)(x) =

(
G (x)

)m
m!

;

H(m) = SEQm(H), H(m)(x) =
(
H(x)

)m
.
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SET and SEQ asymptotics

SET asymptotics

Theorem (Monteil, N., 2019+)

If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then, as n→∞,

(a) pn =
gn
fn

= 1−
r−1∑
k=1

hk ·
(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
.

Combinatorial meaning: pn is the probability of a random object of
size n to be irreducible in terms of SET-decomposition.

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotics for the probability of labeled objects to be irreducible



Introduction Theorems Other applications

SET and SEQ asymptotics

Main tool: Bender’s theorem

Theorem (Bender, 1975)

A(x) =
∞∑
n=1

anx
n is a formal power series, ∀n ∈ N : an 6= 0;

C (x , y) is a function analytic in a neighborhood of (0; 0);

B(x) =
∞∑
n=1

bnx
n = C (x ,A(x));

D(x) =
∞∑
n=1

dnx
n = C ′y (x ,A(x)).

If (i)
an−1
an
→ 0 and (ii) ∃r > 1 :

n−r∑
k=r

|akan−k | = O(an−r ),

then, as n→∞, bn =
r−1∑
k=0

dkan−k + O(an−r ).
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SET and SEQ asymptotics

Example 1: connected graphs

fn counts labeled graphs / tournaments,

gn counts connected labeled graphs,

hn counts irreducible labeled tournaments.

P{graph is connected} =

=
gn
fn

= 1−
r−1∑
k=1

hk ·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where (hk) = 1, 0, 2, 24, 544, 22320, 1677488, . . .
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SET and SEQ asymptotics

Example 2: square-tiled surfaces

fn counts surfaces generated by pairs (σ, τ) ∈ S2
n ,

gn counts connected surfaces (SQS),

hn = n! · µn, where µn counts indecomposable permutations.

P{surface is connected} =

=
gn
fn

= 1−
r−1∑
k=1

µk
(n)k

+ O

(
1

nr

)
,

where (n)k = n(n − 1) . . . (n − k + 1) are the falling factorials

and (µk) = 1, 1, 3, 13, 71, 461, 3447, 29093, . . .

Khaydar Nurligareev (with Thierry Monteil) LIPN, Paris 13

Asymptotics for the probability of labeled objects to be irreducible



Introduction Theorems Other applications

SET and SEQ asymptotics

SEQ asymptotics

Theorem (Monteil, N., 2019+)

If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then, as n→∞,

(b)
hn
fn

= 1−
r−1∑
k=1

(
2hk − h

(2)
k

)
·
(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
.

Combinatorial meaning: it is the probability of a random object of
size n to be irreducible in the sense of SEQ-decomposition.
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SET and SEQ asymptotics

Example 1: irreducible tournaments

fn counts labeled tournaments,

hn counts irreducible labeled tournaments.

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament is irreducible} =

=
hn
fn

= 1−
r−1∑
k=1

(
2hk − h

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where

(hk) = 1, 0, 2, 24, 544, 22320, . . .(
h
(2)
k

)
= 0, 2, 0, 16, 240, 6608, . . .(

c
(1)
k

)
= 2, −2, 4, 32, 848, 38032, . . .
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SET and SEQ asymptotics

Example 2: indecomposable permutations

fn = (n!)2 counts pairs of permutations,

hn = n! · µn, where µn counts indecomposable permutations.

h
(m)
n = n! · µ(m)

n , where µ
(m)
n counts permutations that have

exactly m indecomposable parts.

P{permutation is indecomposable} =

=
hn
fn

=
µn
n!

= 1−
r−1∑
k=1

2µk − µ
(2)
k

(n)k
+ O

(
1

nr

)
,

where

(µk) = 1, 1, 3, 13, 71, 461, 3447, . . .(
µ
(2)
k

)
= 0, 1, 2, 7, 32, 177, 1142, . . .(

c
(1)
k

)
= 2, 1, 4, 19, 110, 745, 5752, . . .
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SETm and SEQm asymptotics

SEQm asymptotics

Theorem (Monteil, N., 2020+)

If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then for all m > 1, as n→∞,

(c) p
(m+1)
n =

h
(m+1)
n

fn
=

r−1∑
k=1

c
(m+1)
k ·

(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
,

where c
(m+1)
k = (m + 1)

(
h
(m)
k − 2h

(m+1)
k + h

(m+2)
k

)
.

Combinatorial meaning: p
(m+1)
n is the probability of a random

object of size n to have exactly (m + 1) irreducible components.
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SETm and SEQm asymptotics

Example 1: tournaments with m irreducible components

fn counts labeled tournaments,

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament has exactly 2 irreducible components} =

=
h
(2)
n

fn
=

r−1∑
k=1

2
(
h
(1)
k − 2h

(2)
k + h

(3)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where

(
h
(1)
k

)
= 1, 0, 2, 24, 544, 22320, . . .(

h
(2)
k

)
= 0, 2, 0, 16, 240, 6608, . . .(

h
(3)
k

)
= 0, 0, 6, 0, 120, 2160, . . .(

c
(2)
k

)
= 2, −8, 16, −16, 368, 22528, . . .
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SETm and SEQm asymptotics

Example 1: tournaments with m irreducible components

fn counts labeled tournaments,

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament has exactly 3 irreducible components} =

=
h
(3)
n

fn
=

r−1∑
k=1

3
(
h
(2)
k − 2h

(3)
k + h

(4)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where

(
h
(2)
k

)
= 0, 2, 0, 16, 240, 6608, . . .(

h
(3)
k

)
= 0, 0, 6, 0, 120, 2160, . . .(

h
(4)
k

)
= 0, 0, 0, 24, 0, 960, . . .(

c
(3)
k

)
= 0, 6, −36, 120, 0, 9744, . . .
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SETm and SEQm asymptotics

Example 1: tournaments with m irreducible components

fn counts labeled tournaments,

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament has exactly 4 irreducible components} =

=
h
(4)
n

fn
=

r−1∑
k=1

4
(
h
(3)
k − 2h

(4)
k + h

(5)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where

(
h
(3)
k

)
= 0, 0, 6, 0, 120, 2160, . . .(

h
(4)
k

)
= 0, 0, 0, 24, 0, 960, . . .(

h
(5)
k

)
= 0, 0, 0, 0, 120, 0, . . .(

c
(4)
k

)
= 0, 0, 24, −192, 960, 960, . . .
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SETm and SEQm asymptotics

Example 1: tournaments with m irreducible components

fn counts labeled tournaments,

h
(m)
n counts labeled tournaments that have exactly

m irreducible components.

P{tournament has exactly (m + 1) irreducible components} =

=
h
(m+1)
n

fn
= (n)m ·

2m(m+1)/2

2nm
+ O

(
nm+1

2n(m+1)

)
,

where (n)m = n(n − 1)(n − 2) . . . (n −m + 1).
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SETm and SEQm asymptotics

Example 2: permutations with m indecomposable parts

fn = (n!)2 counts pairs of permutations,

µ
(m)
n counts permutations that have exactly

m indecomposable parts.

P{permutation has exactly 2 indecomposable parts} =

=
h
(2)
n

fn
=
µ
(2)
n

n!
=

r−1∑
k=1

2
(
µ
(1)
k − 2µ

(2)
k + µ

(3)
k

)
(n)k

+ O

(
1

nr

)
,

where

(
µ
(1)
k

)
= 1, 1, 3, 13, 71, 461, 3447, . . .(

µ
(2)
k

)
= 0, 1, 2, 7, 32, 177, 1142, . . .(

µ
(3)
k

)
= 0, 0, 1, 3, 12, 58, 327, . . .(

c
(2)
k

)
= 2, −2, 0, 4, 38, 330, 2980, . . .
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SETm and SEQm asymptotics

Example 2: permutations with m indecomposable parts

fn = (n!)2 counts pairs of permutations,

µ
(m)
n counts permutations that have exactly

m indecomposable parts.

P{permutation has exactly 3 indecomposable parts} =

=
h
(3)
n

fn
=
µ
(3)
n

n!
=

r−1∑
k=1

3
(
µ
(2)
k − 2µ

(3)
k + µ

(4)
k

)
(n)k

+ O

(
1

nr

)
,

where

(
µ
(2)
k

)
= 0, 1, 2, 7, 32, 177, 1142, . . .(

µ
(3)
k

)
= 0, 0, 1, 3, 12, 58, 327, . . .(

µ
(4)
k

)
= 0, 0, 0, 1, 4, 18, 92, . . .(

c
(3)
k

)
= 0, 3, 0, 6, 36, 237, 1740, . . .
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SETm and SEQm asymptotics

Example 2: permutations with m indecomposable parts

fn = (n!)2 counts pairs of permutations,

µ
(m)
n counts permutations that have exactly

m indecomposable parts.

P{permutation has exactly 4 indecomposable parts} =

=
h
(4)
n

fn
=
µ
(4)
n

n!
=

r−1∑
k=1

4
(
µ
(3)
k − 2µ

(4)
k + µ

(5)
k

)
(n)k

+ O

(
1

nr

)
,

where

(
µ
(3)
k

)
= 0, 0, 1, 3, 12, 58, 327, . . .(

µ
(4)
k

)
= 0, 0, 0, 1, 4, 18, 92, . . .(

µ
(5)
k

)
= 0, 0, 0, 0, 1, 5, 25, . . .(

c
(4)
k

)
= 0, 0, 4, 4, 20, 108, 672, . . .
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SETm and SEQm asymptotics

Example 2: permutations with m indecomposable parts

fn = (n!)2 counts pairs of permutations,

µ
(m)
n counts permutations that have exactly

m indecomposable parts.

P{permutation has exactly (m + 1) indecomposable parts} =

=
h
(m+1)
n

fn
=
µ
(m+1)
n

n!
=

(m + 1)

(n)m
+ O

(
1

nm+1

)
,

where (n)m = n(n − 1)(n − 2) . . . (n −m + 1).
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SETm and SEQm asymptotics

SETm asymptotics – 1

Theorem (Monteil, N., 2020+)

If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then for all m > 1, as n→∞,

(d)
g
(m+1)
n

fn
=

r−1∑
k=1

c
(m+1)
k ·

(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
,

where c
(m+1)
k are the coefficients of Gm(x)

(
1− H(x)

)
.

Combinatorial meaning: it is the probability of a random object of
size n to have exactly (m + 1) connected components.
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Erdös-Rényi model G (n, p)

Fix p ∈ (0, 1), q = 1− p.

Consider a random labeled graph G = G (n, p):

p is the probability of edge presence;

q = 1− p is the probability of edge absence;

weight of the graph: W (G) = (q−1 − 1)|E(G)|.

Define:

fn :=
∑

|V (G)|=n

W (G) = q−(n2) — total weight.

gn :=
∑

G is connected
W (G) — weight of connected graphs.
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Erdös-Rényi model G (n, p)

Fix p ∈ (0, 1), q = 1− p.

Consider a random labeled graph G = G (n, p):

p is the probability of edge presence;

q = 1− p is the probability of edge absence;

weight of the graph: W (G) = (q−1 − 1)|E(G)|.

Define:

fn :=
∑

|V (G)|=n

W (G) = q−(n2) — total weight.

gn :=
∑

G is connected
W (G) — weight of connected graphs.
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Asymptotics for G (n, p)

Question. What is the probability pn of a random graph with
n vertices to be connected as n→∞?

Gilbert, 1959: pn = 1− nqn−1 + O
(
n2q3n/2

)

Monteil, N., 2020:

pn = 1−
r−1∑
k=1

hk(q) ·
(
n

k

)
· qnk

qk(k+1)/2
+ O

(
nrqnr

)
,

where hk(q) ∈ Z[q−1] and deg hk =
(k
2

)
.

h1(q) = 1, h2(q) = q−1 − 2, h3(q) = q−3 − 6q−1 + 6, . . .

Question. What is the meaning of hk(q)?
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Asymptotics for G (n, p)

Question. What is the probability pn of a random graph with
n vertices to be connected as n→∞?

Gilbert, 1959: pn = 1− nqn−1 + O
(
n2q3n/2

)
Monteil, N., 2020:

pn = 1−
r−1∑
k=1

hk(q) ·
(
n

k

)
· qnk

qk(k+1)/2
+ O

(
nrqnr

)
,

where hk(q) ∈ Z[q−1] and deg hk =
(k
2

)
.

h1(q) = 1, h2(q) = q−1 − 2, h3(q) = q−3 − 6q−1 + 6, . . .

Question. What is the meaning of hk(q)?
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Representation of h3(q)

1

2

3

+(q−1 − 1)3

1

2

3

+(q−1 − 1)2

1

2

3

+(q−1 − 1)2

1

2

3

+(q−1 − 1)2

1

2

3

+(q−1 − 1)0

1

2

3

−(q−1 − 1)1

1

2

3

−(q−1 − 1)1

1

2

3

−(q−1 − 1)1

q−3 − 6q−1 + 6 = (q−1 − 1)3 + 3(q−1 − 1)2 − 3(q−1 − 1)1 + 1
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Asymptotics for G (n, p), continued

Theorem (Monteil, N., 2020+)

a) The probability pn of a random graph with n vertices to be
connected, as n→∞, is

pn = 1−
r−1∑
k=1

hk(q) ·
(
n

k

)
· qnk

qk(k+1)/2
+ O

(
nrqnr

)
,

where hk(q) =
∑

|V (G)|=k

(−1)#CC(G)−1W (G).
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Asymptotics for G (n, p), continued

Theorem (Monteil, N., 2020+)

b) The probability p
(m+1)
n of a random graph with n vertices to

have exactly (m + 1) connected components, as n→∞, is

p
(m+1)
n =

r−1∑
k=1

h
(m+1)
k (q) ·

(
n

k

)
· qnk

qk(k+1)/2
+ O

(
nrqnr

)
,

where h
(m+1)
k (q) =

∑
|V (G)|=k

(−1)#CC(G)−m(#CC(G)
m

)
W (G).
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SETm asymptotics, continued

Theorem (Monteil, N., 2020+)

If fn 6= 0 for all n ∈ N and there exists r > 1 such that

(i) n · fn−1
fn
→ 0 and (ii)

n−r∑
k=r

(
n

k

)
fk fn−k = O

(
nr fn−r

)
,

Then for all m > 1, as n→∞,

(d ′)
g
(m+1)
n

fn
=

r−1∑
k=1

c
(m+1)
k ·

(
n

k

)
· fn−k

fn
+ O

(
nr · fn−r

fn

)
,

where c
(m+1)
k =

k∑
s=1

(−1)s
(
s

m

)
fk,s

and fk,s is the number of objects of size k which have exactly
s connected components.
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Other applications

combinatorial map model (D + 1)-colored graphs

surfaces obtained bipartite regular graphs
fn by gluing polygons with colored edges

{(σ, τ) | τ is perfect matching} (σ1, . . . , σD+1) ∈ SD+1
n

gn connected surfaces connected graphs
{(σ, τ) | τ is indecomposable (τ1, . . . , τD−1) is indecomposable

hn perfect matching} tuple of permutations
pn P{surface is connected} P{graph is connected}

P{perfect matching is . P{tuple of permutations is .

p
(1)
n indecomposable} indecomposable}
f2n (2n)!(2n − 1)!! (2n)! · (n!)D−1

g2n 2, 60, 8880, 3558240 . . . 2, 12(2D − 1), . . .
µ2n h2n = (2n)! · µ2n h2n = (2n)! · µ2n

h2n (µ2n) = 1, 2, 10, 74, 706 . . . 1, 2D−1 − 1, 6D−1 − 2D + 1, . . .
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Many thanks to all listeners

Thank you for your attention!
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