
Motivating example Combinatorial classes Species Directed graphs Perspectives

Irreducibility of combinatorial objects:
asymptotic probability and interpretation

Khaydar Nurligareev

LIPN, University Paris 13

PhD defense

October 20, 2022

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Graphs
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every graph is a disjoint union (SET)

of connected graphs

gn = 2(n2) : the number of labeled graphs with n vertices

cgn : the number of connected labeled graphs with n vertices

(cgn)n>0 = 1, 1, 4, 38, 728, 26704, 1866256, . . .
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Probability of a graph to be connected

Question. What is the probability pn =
cgn
gn

that a random graph

with n vertices is connected, as n→∞?

1 folklore: pn = 1 + o(1)

2 Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
3 Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

4 Can we see the structure? What is the interpretation?

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Probability of a graph to be connected

Question. What is the probability pn =
cgn
gn

that a random graph

with n vertices is connected, as n→∞?

1 folklore: pn = 1 + o(1)

2 Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
3 Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

4 Can we see the structure? What is the interpretation?

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Probability of a graph to be connected

Question. What is the probability pn =
cgn
gn

that a random graph

with n vertices is connected, as n→∞?

1 folklore: pn = 1 + o(1)

2 Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)

3 Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

4 Can we see the structure? What is the interpretation?

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Probability of a graph to be connected

Question. What is the probability pn =
cgn
gn

that a random graph

with n vertices is connected, as n→∞?

1 folklore: pn = 1 + o(1)

2 Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
3 Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

4 Can we see the structure? What is the interpretation?

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Probability of a graph to be connected

Question. What is the probability pn =
cgn
gn

that a random graph

with n vertices is connected, as n→∞?

1 folklore: pn = 1 + o(1)

2 Gilbert, 1959: pn = 1− 2n

2n
+ O

(
n2

23n/2

)
3 Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

4 Can we see the structure? What is the interpretation?

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Asymptotics for pn

Theorem

For every r > 1, the probability pn that a random labeled graph of
size n is connected satisfies

pn = 1−
r−1∑
k=1

itk ·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where itk is the number of irreducible labeled tournaments of
size k.

(itk) = 1, 0, 2, 24, 544, 22320, 1677488, . . .
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Tournaments

A tournament is a complete directed graph.

1

23

4

5 6

The number of labeled tournaments with n vertices is

tn = 2(n2)
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Irreducible tournaments

A tournament is irreducible, if
for every partition of vertices V = A t B

1 there exist an edge from A to B,

2 there exist an edge from B to A.

Equivalently, a tournament is strongly
connected: for each two vertices u and v

1 there is a path from u to v ,

2 there is a path from v to u.

V = {1, 2, 3, 4, 5, 6}

V = {1, 2, 3, 4, 5, 6}

1

23

4

5 6

1

23

4

5 6

A = {1, 2, 3, 6}
B = {4, 5}

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Irreducible tournaments

A tournament is irreducible, if
for every partition of vertices V = A t B

1 there exist an edge from A to B,

2 there exist an edge from B to A.

Equivalently, a tournament is strongly
connected: for each two vertices u and v

1 there is a path from u to v ,

2 there is a path from v to u.

V = {1, 2, 3, 4, 5, 6}

V = {1, 2, 3, 4, 5, 6}

1

23

4

5 6

4

6

u = 4

v = 6
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Exponential generating functions and Bender’s theorem

Bender, 1975:

1 A(z) =
∞∑
n=1

anz
n, an 6= 0

2 F (x , y) is analytic in U(0; 0)

3 B(z) =
∞∑
n=0

bnz
n = F (z ,A(z))

4 C(z) =
∞∑
n=0

cnz
n =

[
∂F

∂y
(z , y)

]
y=A(z)

5
an−1

an
→ 0, as n→∞

6 ∃r > 1 :
n−r∑
k=r

|akan−k | = O(an−r )

Then bn =
r−1∑
k=0

ckan−k + O(an−r ).

EGF: G(z) =
∞∑
n=0

gn
zn

n!

CG(z) = logG(z)

F (y) = log(y)

∂F

∂y
=

1

y
,

1

1− y
= 1 + y + y 2 + . . .

G(z) = T (z) =
1

1− IT (z)

cgn
gn
≈ 1−

∑
k>0

itk

(
n

k

)
gn−k

gn
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Then bn ≈
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1 CG(z) = logG(z)

2 A(z) = G(z)− 1

3 F (x , y) = log(1 + y)

4
∂F

∂y
=

1

1 + y

5 C(z) =
1

G(z)
=

1

T (z)

6
1

T (z)
= 1− IT (z)

7
cgn
gn
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∑
k>0

itk

(
n

k

)
gn−k

gn
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Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.

1

23

4

5 6

4

5 1

23

6

4 5 3
1

2

6
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Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.

1

23

4

5 6

4

5 1

23

6 1

234

5 6

4 5 3
1

2

6
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SET and SEQ decompositions

G (z) =
∞∑
n=0

2(n
2)
zn

n!
= T (z)

counts

graphs

counts

tournaments

decomposed

as SET of

connected

graphs

decomposed as

as SEQ of

irreducible

tournaments

counted by

CG (z) =
∞∑
n=0

cgn
zn

n!
= log(G (z))

counted by

IT (z) =
∞∑
n=0

itn
zn

n!
= 1−

1

T (z)

derivative
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Asymptotics for connected graphs

Theorem

The probability pn that a random labeled graph of size n is
connected, satisfies

pn ≈ 1−
∑
k=1

itk ·
(
n

k

)
· 2k(k+1)/2

2nk

where itk is the number of irreducible labeled tournaments of
size k.

(itk) = 1, 0, 2, 24, 544, 22320, 1677488, . . .
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Combinatorial constructions

1 U = SET(V), U(z) = exp
(
V (z)

)
.

2 U = SEQ(W), U(z) =
1

1−W (z)
.
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SET asymptotics

Theorem

If U , V and W are such combinatorial classes that

1 U is gargantuan with positive counting sequence,

2 U = SET(V) and U = SEQ(W),

then

pn :=
vn
un
≈ 1−

∑
k>1

wk ·
(
n

k

)
· un−k

un
.

Combinatorial meaning: pn is the probability that a random object
of size n from U is irreducible in terms of SET-decomposition.
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Random pair of permutations

Question. What is the probability pn that a random pair of
permutations (σ, τ) ∈ S2

n generates a transitive group, as n→∞?

1 Dixon, 2005: pn ≈ 1−
∑
k>1

ipk
(n)k

,

where (n)k = n(n − 1) . . . (n − k + 1) are the falling
factorials.

2 Cori, 2009: the sequence

(ipk) = 1, 1, 3, 13, 71, 461, 3447, 29093, . . .

counts indecomposable permutations.
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Square-tiled surfaces

A pair (h, v) ∈ S2
n determines a square-tiled surface:

1 take n labeled squares,

2 identify horizontal sides by the permutation h,

3 identify vertical sides by the permutation v ,

4 glue together identified sides.

Transitive action ↔ connectedness of the square-tiled surface.

h = (13)(2)

v = (1)(23)

↔

a

b

1 2 3

f

a

a

b

b

d d

e e

1

23
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Indecomposable permutations

A permutation σ ∈ Sn is

1 decomposable, if there is an index p < n
such that σ

(
{1, . . . , p}

)
= {1, . . . , p}.

2 indecomposable otherwise.

(
1 2 3 4 5
3 1 2 5 4

)
decomposable (p = 3)

(
1 2 3 4 5
3 5 4 1 2

)
indecomposable

Obstacles. Not stable under relabeling, number of permutations is
not (n!)2, combinatorial class is not gargantuan.
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Pairs of linear orders

A pair of linear orders (≺1,≺2) of size n is

1 reducible, if there is a partition {1, . . . , n} = A t B such that
∀ a ∈ A, b ∈ B: a ≺1 b and a ≺2 b.

2 irreducible otherwise.

(
3 ≺1 1 ≺1 4 ≺1 2
4 ≺2 3 ≺2 1 ≺2 2

)
reducible (A = {1, 3, 4},B = {2})

(
3 ≺1 1 ≺1 4 ≺1 2
4 ≺2 1 ≺2 2 ≺2 3

)
irreducible

Observation.

#{irreducible pairs of linear orders of size n} = n! · ipn.
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Correspondence of classes

1
U = {square-tiled surfaces}

= {pairs of linear orders of the same size}

2 V = {connected square-tiled surfaces}

3 W = {irreducible pairs of linear orders of the same size}

pn = wk ·
(
n

k

)
· un−k

un
= k! · ipk ·

(
n

k

)
·
(
(n − k)!

)2
(n!)2

=
ipk

(n)k
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Asymptotics for connected square-tiled surfaces

Theorem (reformulation of the results of Dixon and Cori)

The probability pn that a random square-tiled surface of size n is
connected, satisfies

pn ≈ 1−
∑
k=1

ipk
(n)k

where (n)k = n(n − 1) . . . (n − k + 1) are the falling factorials
and ipk is the number of indecomposable permutations of size k.

(ipk) = 1, 1, 3, 13, 71, 461, 3447, 29093, . . .
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More applications

1 Combinatorial maps and indecomposable perfect matchings.

2 Connected multigraphs and irreducible multitournaments.

3 Constellations and indecomposable multipermutations.

4 Colored tensor models and indecomposable multipermutations.
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SEQ asymptotics

Theorem

If U , W and W(2) are such combinatorial classes that

U is gargantuan with positive counting sequence,

U = SEQ(W) and W(2) =W ?W = SEQ2(W),

then

qn :=
wn

un
≈ 1−

∑
k>1

(
2wk −w

(2)
k

)
·
(
n

k

)
· un−k

un
.

Reasoning:
1

y
∂−−→ − 1

y2
,
(
1−W (z)

)2
= 1− 2W (z) +

(
W (z)

)2
.
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Example: asymptotics for irreducible tournaments

Theorem

The probability qn that a random labeled tournament of size n is
irreducible, satisfies

qn ≈ 1−
∑
k>1

(
2itk − it

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
,

where it
(2)
k is the number of labeled tournaments of size k with two

irreducible components.

(itk) = 1, 0, 2, 24, 544, 22320, . . .(
it
(2)
k

)
= 0, 2, 0, 16, 240, 6608, . . .(

2itk − it
(2)
k

)
= 2, −2, 4, 32, 848, 38032, . . .
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Combinatorial classes: limits of applicability

1 Coefficients can be negative (see tournaments).

2 In certain cases, there is a decomposition

U = SET(V),

but we have no class W such that

U = SEQ(W),

and our theorem is not applicable. We would like to have
an “anti-SEQ” operator to create this class.
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Correspondance between combinatorial classes and species

combinatorial classes species of structures

A = SET(B)

A = SEQ(B)

A = CYC(B)

A = SETm(B)

A = SEQm(B)

A = CYCm(B)

⇔

A = E ◦ B

A = L ◦ B

A = CP ◦ B

A = Em ◦ B

A = Lm ◦ B

A = CPm ◦ B
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“Anti-SEQ” operator

1 If a virtual species Φ satisfies Φ0 = 1, then there exists
a unique inverse of Φ under multiplication:

Φ−1 = 1− Φ+ + Φ2
+ − Φ3

+ + . . . ,

where Φ+ = Φ− 1.

2 If a virtual species Ψ satisfies Ψ0 = 0 and Ψ1 = Z, then there
exists a unique inverse of Ψ under substitution Ψ(−1).

3 “Anti-SEQ” operator:

L(−1)+ ≡ 1− E−1 ◦ E(−1)+ .
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SETm asymptotics in terms of species

Theorem

If A, B and B{m}, m ∈ N, are such (weighted) species that

1 A is gargantuan with positive total weights on [n], n ∈ N,

2 A = E ◦ B and B{m} = Em ◦ B,

then
p
{m}
n :=

b
{m}
n

an
≈
∑
k>0

ck ·
(
n

k

)
· an−k

an
.

where C = B{m−1}(E−1 ◦ B) ≡ B{m−1}
((

1− L(−1)+

)
◦ A+

)
.
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SEQm asymptotics in terms of species

Theorem

If A, B and B(m), m ∈ N, are such (weighted) species that

1 A is gargantuan with positive total weights on [n], n ∈ N,

2 A = L ◦ B and B(m) = Lm ◦ B,

then

q
(m)
n :=

b
(m)
n

an
≈
∑
k>0

ck ·
(
n

k

)
· an−k

an
.

where C = mBm−1(1− B)2.
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CYCm asymptotics in terms of species

Theorem

If A, B and B[m], m ∈ N, are such (weighted) species that

1 A is gargantuan with positive total weights on [n], n ∈ N,

2 A = CP ◦ B and B[m] = CPm ◦ B,

then

r
[m]
n :=

b
[m]
n

an
≈
∑
k>0

ck ·
(
n

k

)
· an−k

an
.

where C = Bm−1(1− B).
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Erdős-Rényi model G (n, p)

Consider a random labeled graph G :

1 p ∈ (0, 1) is the probability of edge presence;

2 q = 1− p is the probability of edge absence;

3 the probability to pick this graph is

P(G ) = p|E(G)|q(n2)−|E(G)| =
ρ|E(G)|

(ρ+ 1)(n2)
,

where ρ =
p

q
= q−1 − 1.

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Graph weight

1 Weight of a graph: w(G ) = ρ|E(G)|.

2 Reason: if G1 and G2 are disjoint, then

w(G1 t G2) = w(G1) · w(G2).

3 The total weight of graphs of size n:∑
|V (G)|=n

w(G ) = q−(n2).

4 The weight of connected graphs of size n:∑
G is connected

w(G ).
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Asymptotics of the Erdős-Rényi model

Theorem

The probability pn that a random graph with n vertices is
connected satisfies

pn ≈ 1−
∑
k>1

Pk(ρ) ·
(
n

k

)
· qnk

qk(k+1)/2
,

where

Pk(ρ) =
∑

|V (G)|=k

(−1)π0(G)−1w(G ).
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Meaning of the coefficients

+ρ0
w = 1

P1(ρ) = 1

P1(1) = 1 = it1

w = ρ w = 1

P2(ρ) = ρ− 1

P2(1) = 0 = it2

w = ρ3 w = ρ2 w = ρ1 w = 1

P3(ρ) = ρ3 + 3ρ2 − 3ρ+ 1

P3(1) = 2 = it3
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Asymptotics of the Erdős-Rényi model, continued

Theorem

The probability p
{m}
n that a random graph with n vertices has

exactly m connected components satisfies

p
{m}
n ≈

∑
k>0

P
{m}
k (ρ) ·

(
n

k

)
· qnk

qk(k+1)/2
,

where

P
{m}
k (ρ) =

∑
|V (G)|=k

(−1)π0(G)−m
(
π0(G )

m − 1

)
w(G ).

Khaydar Nurligareev [-2em] LIPN, University Paris 13

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example Combinatorial classes Species Directed graphs Perspectives

Probability of a directed graph to be strongly connected

Question. What is the probability rn that a random directed graph
with n vertices is strongly connected, as n→∞?

Wright, 1970: rn =
r−1∑
k=0

ωk(n)

2kn
· n!

(n + [k/2]− k)!
+ O

(
nr

2rn

)
,

where

ωk(n) =

[k/2]∑
ν=0

γνξk−2ν
2k(k+1)/2

2ν(k−ν)
(n + [k/2]− k) . . . (n + ν + 1− k),

γ0 = 1, γν =
ν−1∑
s=0

γsηn−s
(ν − s)!

,
∞∑
ν=0

ξνz
ν =

(
1−

∞∑
n=0

ηn

2n(n−1)/2
zn

n!

)2

,

η1 = 1, ηn = 2n(n−1) −
n−1∑
t=1

(
n

t

)
2(n−1)(n−t)ηt .
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Towards the asymptotics

1 Dovgal and de Panafieu, 2019:

SD(z) = − log
(
G (z)� 1

G (z)

)
2 In terms of tournaments:

SD(z) = − log
(

1− T (z)� IT (z)
)

3 Semi-strong directed graphs:

SSD(z) =
1

1− T (z)� IT (z)

Open problem: are there direct bijections?
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Asymptotics for strongly connected graphs

Theorem

The probability rn that a random directed graph with n vertices is
strongly connected satisfies

rn ≈
∑
k>0

ssdk

(
n

k

)
2k(k+1)

22nk
itn−k
tn−k

,

where ssdk , tk and itk are the numbers of semi-strong digraphs,
tournaments and irreducible tournaments of size k, respectively.

Reasoning: log(1− y)
∂−−→ − 1

1− y
.
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Asymptotics for strongly connected graphs, continued

Theorem

The probability rn that a random directed graph with n vertices is
strongly connected satisfies

rn ≈ 1−
∑
k>1

Rk(n)

2nk
,

where a Rk(n) is a polynomial of degree k.

Explanation of terms involved in Wright’s asymptotics:

ηn = tnitn, γn =
ssdn
n!

, ξ0 = 1, ξn = −2itn + it
(2)
n

n!
.
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Explicit form of Rk(n)

For any positive integer k,

Rk(n) = 2k(k+1)/2

[k/2]∑
ν=0

(
n

ν, k − 2ν

)
ssdνβk−2ν

2ν(k−ν)
,

and

βk =

{
1, if k = 0,

−2itk + it
(2)
k , if k 6= 0.

ssdk is the number of semi-strong digraphs of size k ,

itk is the number of irreducible tournaments of size k ,

it
(2)
k is the number of tournaments of size k with two

irreducible parts.
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Another type of convergence rate or irreducibles

1 Some classes are not gargantuan (forests, polynomials).

2 The notion of irreducibility can be understood broader. For
instance, ordinary generating functions of “noncrossing
compositions” satisfy

A(z) = 1 + I
(
zA(z)

)
.

Question. Can we have any combinatorial interpretation for the
coefficients arising in the asymptotic expansions of the probabilities
in the above cases?
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Algorithmic aspects

For the asymptotic expansion for connected graphs,

pn = 1−
(
n

1

)
2it1
2n
−
(
n

2

)
23it2
22n
−
(
n

3

)
26it3
23n
− . . . ,

the inclusion-exclusion principle shows the origin of terms:

1 n − 1 2 n − 2

Question. Can we create a rejection algorithm for producing
connected graphs randomly, so that we reject with a probability of
a smaller order?
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Erdős-Rényi model

The form of the asymptotic expansion is

pn = 1−
(
n

1

)
qnP1(ρ)

q
−
(
n

2

)
q2nP2(ρ)

q2
−
(
n

3

)
q3nP3(ρ)

q3
− . . .

Question Can we interpret the coefficients Pk(ρ) as a
generalization of irreducible tournaments?

The straightforward generalization fails. Archer, Gessel, Graves
and Liang showed that enumeration of tournaments counted by
descents uses Eulerian generating functions (instead of exponential
ones).
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Erdős-Rényi model, continued

The form of the asymptotic expansion is

pn = 1−
(
n

1

)
qnP1(ρ)

q
−
(
n

2

)
q2nP2(ρ)

q2
−
(
n

3

)
q3nP3(ρ)

q3
− . . .

When the parameter p approaches the threshold for connectedness,

p =
(1 + ε) ln n

n
,

all terms become equivalent:

Pk(ρ)

(
n

k

)
qnk

qk(k+1)/2
∼ n−εk .

Question. Can we build a fruitful theory of phase transition for
asymptotic expansions?
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Summary

We obtained asymptotic expansions and combinatorial
interpretation of the involved constants for probabilities

1 related to constructions SET, SEQ and CYC;

2 of particular combinatorial classes:

1 connected graphs and irreducible tournaments,
2 connected square-tiled surfaces and indecomposable

permutations,
3 combinatorial maps and indecomposable perfect matchings,
4 . . .

3 related to virtual species;

4 within the Erdős-Rényi model;

5 of strongly connected directed graphs.

Also, we stated several open problems.
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CYC asymptotics

Theorem

If V and W are such combinatorial classes that

V is gargantuan with positive counting sequence,

V = CYC(W),

then

rn :=
wn

vn
≈ 1−

∑
k>1

wk ·
(
n

k

)
· vn−k

vn
.

Reasoning: e−y
∂−−→ −e−y .
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SETm asymptotics

Theorem

If U , V and V{m}, m ∈ N, are such combinatorial classes that

U is gargantuan with positive counting sequence,

U = SET(V) and V{m} = SETm(V),

then

p
{m}
n :=

v
{m}
n

un
≈
∑
k>0

α
{m}
k ·

(
n

k

)
· un−k

un
.

where α
{m}
k are the coefficients of

∞∑
n=0

α
{m}
k

zn

n!
=

∞∑
s=m−1

(−1)s+m−1
(

s

m − 1

)
V {s}(z).
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SEQm asymptotics

Theorem

If U , W and W(m), m ∈ N, are such combinatorial classes that

U is gargantuan with positive counting sequence,

U = SEQ(W) and W(m) = SEQm(W),

then

q
(m)
n :=

w
(m)
n

un
≈
∑
k>0

β
(m)
k ·

(
n

k

)
· un−k

un
.

where β
(m)
k = m

(
w

(m−1)
k − 2w

(m)
k + w

(m+1)
k

)
.
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CYCm asymptotics

Theorem

If V, W, W [m] and W(m), m ∈ N, are such combinatorial classes
that

V is gargantuan with positive counting sequence,

V = CYC(W), W [m] = CYCm(W), W(m) = SEQm(W),

then

r
[m]
n :=

w
[m]
n

vn
≈
∑
k>0

γ
[m]
k ·

(
n

k

)
· vn−k

vn
.

where γ
[m]
k = w

(m−1)
k −w

(m)
k .
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