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Simple labeled graphs

B g,: the number of labeled graphs with n vertices,

m cg,: the number of connected labeled graphs with n vertices.
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(cg,) = 1,1,4,38,728,26704, 1866256, . . .
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Motivating example

Probability of a graph to be connected

. . - ¢
Question. What is the probability p, = n that a random graph
Gn
with n vertices is connected, as n — oco?
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Motivating example

Probability of a graph to be connected

. . - ¢
Question. What is the probability p, = n that a random graph
Gn
with n vertices is connected, as n — oco?

folklore: pn =1+ o(1)

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Motivating example

Probability of a graph to be connected

. . - ¢
Question. What is the probability p, = n that a random graph
n
with n vertices is connected, as n — oco?

folklore: pn =1+ o(1)

2 2
A Gilbert, 1959: pn=1-— 2—: +0 < k >
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Motivating example

Probability of a graph to be connected

Question. What is the probability p, = n that a random graph

with n vertices is connected, as n — 00? !
folklore: pn =1+ o(1)
) 2n n?
E Gllbert, 1959: Pn = 1-— ? + O <23n/2>

Wright, 1970:

n\ 2 n\ 2° n\ 210 n®
o1 (1) 25 - 24() 2w+ 0 ()
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Motivating example

Probability of a graph to be connected

. . - ¢
Question. What is the probability p, = n that a random graph
n
with n vertices is connected, as n — oco?

folklore: pn =1+ o(1)

_ 2n n?
A Gilbert, 1959: pn=1-— on +0 <23n/2>

Wright, 1970:
n\ 2 n\ 2° n\ 210 n®
o1 (1) 25 - 24() 2w+ 0 ()
[ Can we see the structure? What is the interpretation?
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Motivating example

Asymptotics for p,

For every r > 1, the probability p, that a random labeled graph of
size n is connected satisfies

r-1 k(k+1)/2 r
n 2 n
ap— : e 7 o),
P <k> 2nk + 0 <2nr>
k=1
where is the number of of

size k.
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Motivating example

Tournaments

A tournament is a complete directed graph.

3 2

\/
5 6

The number of labeled tournaments with n vertices is

¢, = 20)
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Motivating example

Irreducible tournaments

A tournament is irreducible, if V ={1,2,3,4,5,6}
3 2

for every partition of vertices V=AU B
there exist an edge from A to B,
A there exist an edge from B to A.
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Motivating example

Irreducible tournaments

A tournament is irreducible, if V =1{1,2,3,4,5,6}
for every partition of vertices V=AU B 5
there exist an edge from A to B, {

A there exist an edge from B to A.

Equivalently, a tournament is strongly
connected: for each two vertices u and v

there is a path from v to v,

A there is a path from v to u.
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Motivating example

Exponential generating functions and Bender's theorem

n

EGF: G(z) = g’
n=0 n!
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Motivating example

Exponential generating functions and Bender's theorem
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Motivating example

Exponential generating functions and Bender's theorem

EGF: G(Z) — Z g"% Bender, ].9752OQ
A(z) = > anz", an#0
n=1

H F(x,y) is analytic in U(0;0)

B(z) = niob,,z" — F(z,A(2))

= n (i)F
B ) -5 e = |5 )
n=0 gy y=A(z)

an—1
7250, as n— o0
an

@ 3r>1: > |acan—«| = O(an—r)
k=r

r—1
Then b, =3 cran—k + O(an—r).
k=0
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Motivating example

Exponential generating functions and Bender's theorem

EGF: G(z)=Y gn% Bender, 1975:00
} Az) = 3 202", a0 #0
n=1

H F(x,y) is analytic in U(0;0)

B(z) = ibnz” — F(z,A(2))
A C(z)= i crz" = P)F

dy

n=0

(Z-,V)}

/=A(z)

H the sequence (a,) is gargantuan
r—1
Then b, =" ckap—k + O(an—r).
k=0
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Motivating example

Exponential generating functions and Bender's theorem

EGF: G(z)=3 gn% Bender, 1975:
e . A(z) = apz", an#0
CG(z) = log G(z2) n=1

F(x,y) is analytic in U(0; 0)

B(z) = 2} bz" = F(z, A(2))

B C) -5 o — {ﬁ(z,\/)]

n=0 (')4\/ y=A(z)

H the sequence (an) is gargantuan

Then b, = Y cran—«.

k>0
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Motivating example

Exponential generating functions and Bender's theorem

EGF: G(z) = i gn% Bender, 1975:
= AZ) = anz", a0 #0
CG(z) = log G(2) n=t
F(x,y) is analytic in U(0; 0)

F(y)=1 o0

() = logly) B(z) = 5 biz" = F(z,A(2))
OF 1 =0
== x F
oy "y B c)-3ar =[5y

n=_0 J y=A(z)

H the sequence (an) is gargantuan

Then b, = > cran—«.

k>0
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Motivating example

Exponential generating functions and Bender's theorem

EGF: G(z)=> gn% Bender, 1975:
n=0 A(Z) _
n=1

F(x,y) is analytic in U(0; 0)

anz", an#0

18

CG(z) = log G(z)

Fly) =1 3
(y) = log(y) B(z) = 3 bnz" = F(z,A(2))
oF _1 -
ay y ﬂ C(Z) — : cnz" = {()F(Z \/)}
n=0 ()\/ y=A(z)

1
=14y +y ...
-y

H the sequence (an) is gargantuan

ch On—k
—~l- Z‘tk< ) Then b, ~ > cran—«-

k>0 k>0
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Motivating example

Exponential generating functions and Bender's theorem

n

EGF: G(2) =3 g’
n=0 n!

CG(z) = log G(z)

F(y) = log(y)
oF _ 1
dy vy
-, = 1try+ Y+
1
cE=TE= 17
g . ny\ @n—«k
I ~1— Zlfk< )
9n = k| gn
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Bender, 1975:

anz", an#0

18

Az) =
n=1
F(x,y) is analytic in U(0; 0)

B(z) = 2} bz" = F(z, A(2))

>0 0
B - 5o [P

n=0 (),\/ y=A(z)

H the sequence (an) is gargantuan

Then b, = > cran—«.

k>0
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Motivating example

Exponential generating functions and Bender's theorem

CG(z) =log G(z) Bender, 1975:
H A(z) =G(z)-1 Alz) = Z;la,,z", an #0
F(x,y) = log(1+y) F(x,y) is analytic in U(0; 0)
. B(z) = X boz" = F(z,A(2))
B c)=3ar =[5 e
H C(z) = Lo =0 Oy y=A(2)
G(z) T(2)
a % =1-1T(z) H the sequence (an) is gargantuan
z
lGn
~ it
kz>0 A( ) Then b, = > cran—«.
k>0
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Motivating example

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.

3 2
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Motivating example

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.

2

1 —>
/
6
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Motivating example

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed
into a sequence (SEQ) of irreducible labeled tournaments.

3. 2
4 1 —
E \/
5 6
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SET and SEQ decompositions

decomposed connected
graphs
as SET of graphs counted by
counts
chn = log(G(2))
< mz" .
G(z) = 2(2)—I =T(2) derivative
prd n!
IT(2) z\: 6,2 =1
z) = it,— =
counts —0 ! T(2)
decomposed as irreducible counted by
tournaments
as SEQ of tournaments
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Combinatorial classes

Combinatorial constructions

U =SET(V), U(z) = exp (V(2)).
B U = SEQU), U(z) = 1_1W(Z)
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Combinatorial classes

SET asymptotics

If U, V and W are such combinatorial classes that

U is gargantuan with positive counting sequence,
U =SET(V) and U =SEQ(V),

then
[ n Up_k
=—r=1- : : .
poi= 1= <k> .

Combinatorial meaning: p, is the probability that a random object
of size n from U is irreducible in terms of SET-decomposition.
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Combinatorial classes

Asymptotics for connected graphs

The probability p, that a random labeled graph of size n is
connected, satisfies

n ok(k+1)/2
anl—z '<k>'2”k’

k=1

where is the number of of
size k.
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Combinatorial classes

More applications

Square-tiled surfaces and indecomposable permutations.

H Combinatorial maps and indecomposable perfect matchings.
Connected multigraphs and irreducible multitournaments.
A Constellations and indecomposable multipermutations.

B Colored tensor models and indecomposable multipermutations.
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Combinatorial classes

SEQ asymptotics

If U, W and W) are such combinatorial classes that

m U is gargantuan with positive counting sequence,
m U =SEQ(W) and = SEQ,(W),
then

to, n Up—k
=—r1- . . .
e Up Z (k) Un

Reasoning: )1/ oy , (1- W(z))2 =1-2W(z)+ (W(2))".
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Combinatorial classes

Example: asymptotics for irreducible tournaments

The probability g, that a random labeled tournament of size n is
irreducible, satisfies

n\  ok(k+1)/2

k>1

where is the number of of size k

(i) = 1, 0, 2, 24, 544, 22320,
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Combinatorial classes

Combinatorial classes: limits of applicability

Coefficients can be negative.
In certain cases, there is a decomposition
U =SET(V),
but we have no class W such that
U = SEQV),

and our theorem is not applicable

(need of an “anti-SEQ" operator to create this class).
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Correspondance between combinatorial classes and species

combinatorial classes species of structures
A = SET(B) A = €EoB
A = SEQ(B) A = LoB
A = CYC(B) A = C(CPoB
A = SETn,(B) - A = Eno0B
A = SEQ,(B) A = LyoB
A = CYCn,(B) A = CPpoB
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Motivating example Combinatorial classes Species Directed graphs Perspectives

Asymptotics in terms of species

If A, B and B(m), m € N, are such (weighted) species that
A is gargantuan with positive total weights on [n], n € N,

one of the following conditions holds:
(a)| A=EoB | B(m)=E,o0B
(b)| A=LoB | B(m)=LphoB
(c)| A=CPoB | B(m)=CPmoB

then
_ bp(m) N n\ an,_x
pn(m) = P E : <k> S

k>m—1

In the case (a), ¢ = pim-1 ((1 - z(;l)) o A+).

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Erd6s-Rényi model G(n, p)

Consider a random labeled graph G:

p € (0,1) is the probability of edge presence;
H g = 1 — p is the probability of edge absence.

Weight of a graph:
w(G) = plF),

where p = g =qgl-1

Reason: if G; and G, are disjoint, then

W(Gl (] G2) = W(Gl) - W(Gg).
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Motivating example Combinatorial classes Species Directed graphs Perspectives

Asymptotics of the Erdés-Rényi model

The probability p,(m) that a random graph with n vertices has
exactly m connected components satisfies

_ n an
pa(m) =) \k) " g

k>0

where
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Motivating example Combinatorial classes Species Directed graphs Perspectives

Asymptotics of the Erdés-Rényi model, continued

The probability p, that a random graph with n vertices is
connected satisfies

_ n an
Pn~1— Z \k) gD/

k>1

where
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Meaning of the coefficients

w=p w = p? w=p! w=1

P3(p) = p> +3p> —3p+1
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Meaning of the coefficients

[ ] *——=o [ ] [ )
Pi(p) =1 Px(p)=p—1
Pl(].):].:itl PQ(].):O:itQ
[ ]
> > - .
[ )
w=p> w = p? w=p! w=1

P3(p) = p> +3p> —3p+1
P3(1) =2 =it3
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Directed graphs

Probability of a directed graph to be strongly connected

Question. What is the probability r, that a random directed graph
with n vertices is strongly connected, as n — oo?
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Probability of a directed graph to be strongly connected

Question. What is the probability r, that a random directed graph
with n vertices is strongly connected, as n — oo?

: =L wi(n) n! < n’ )
Wright, 1970: "= : 0o )
s L RN Ty AV
where
[k/2] ok(k+1)/2
W Z(J%jfk 2y (K2 = K)o (v +1— k),

v—1 00 2
Y =1, ’YV:Z(ZSTin;;V ZgV _< Z n(n— 1/2n|> ’

s=0 v=0 =
n—1 n
=1, =20 _ ; <t> 2(-1)(n-1),,
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Directed graphs

Towards the asymptotics

Dovgal and de Panafieu, 2019:

SD(2) = —log (G(2) © ng))

H In terms of tournaments:
SD(z) = — log (1 ~T(2)® /T(z))

Semi-strong directed graphs:

1
S0C) = T eme
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Directed graphs

Asymptotics for strongly connected graphs

Theorem (with Sergey Dovgal)

The probability r, that a random directed graph with n vertices is
strongly connected satisfies

m\ 2Kk g,
Ry T
k) 22rk g,

k>0 i

where , tx and it, are the numbers of semi-strong digraphs,
tournaments and irreducible tournaments of size k, respectively.

Reasoning: log(1 — y) 92,
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Directed graphs

Asymptotics for strongly connected graphs, continued

Theorem (with Sergey Dovgal)

The probability r, that a random directed graph with n vertices is
strongly connected satisfies

k>1
(2N [ B2
_ ok(k+1)/2 —2v
where =) ; (u, o 2y> ()

m Bi = lio — 2ity + it

[ is the number of semi-strong digraphs of size k,

m ity is the number of irreducible tournaments of size k,

[ itf) is the number of tournaments of size k with two irreducible
parts.
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Possible directions for generalization

Different types of irreducibility. For instance, “noncrossing
compositions”:

A(z) =1+ 1(zA(2)).

A Classes of different rate of convergence (forests, polynomials).

Unlabeled structures.

Question. Can we obtain any combinatorial interpretation for the
above cases?
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Algorithmic aspects

For the asymptotic expansion for connected graphs,

()& (n 2%, [/ 20t
Pn=27R1)2n " \2) 220 " \3) 23 ~ v

the inclusion-exclusion principle shows the origin of terms:
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Perspectives

Algorithmic aspects

For the asymptotic expansion for connected graphs,

_ (M2 (n 2%, [/ 26t
Pn=2"\1) 20 " \2) 22 " \3) 28 T

the inclusion-exclusion principle shows the origin of terms:

®
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Perspectives

Algorithmic aspects

For the asymptotic expansion for connected graphs,

_ (M3 (n 2%it, () 2Cits
Pn=27R1)2n \2) 22 " \3) 23 ~

the inclusion-exclusion principle shows the origin of terms:
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Perspectives

Algorithmic aspects

For the asymptotic expansion for connected graphs,

g (Y2 (n Bitp [ it
Pn= 1)2n “\2) 220 \3) 08 T

the inclusion-exclusion principle shows the origin of terms:

o) o)

Question. Can we create a rejection algorithm for producing
connected graphs randomly, so that we reject with a probability of
a smaller order?
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Erdés-Rényi model, continued

The form of the asymptotic expansion is

()R- (PR ()

When the parameter p approaches the threshold for connectedness,

(I+¢€)inn

I

n

all terms become equivalent:

nk
n q —ck
Pk(p)<k>qk<k+n/z’“” -

Question. Can we build a fruitful theory of phase transition for
asymptotic expansions?

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Many thanks to all listeners

Thank you for your attention!
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Square-tiled surfaces

To obtain a square-tiled surface (determined by (h, v) € S2):
take n labeled squares,

Khaydar Nurligareev (joint with Thierry Monteil)

y of combinatorial objects: asymptotic probability and interpretation



Square-tiled surfaces

To obtain a square-tiled surface (determined by (h, v) € S2):
take n labeled squares,
A identify horizontal sides (corresponds to h € S,),

h = (13)(2) a b ¢
1 2 3
C b a
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Square-tiled surfaces

To obtain a square-tiled surface (determined by (h, v) € S2):
take n labeled squares,
A identify horizontal sides (corresponds to h € S,),
identify vertical sides (corresponds to v € Sp,),

h=(13)(2) a b S
dl 1 |d f| 2 |e e 3 |f
v = (1)(23) - - .
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Square-tiled surfaces

To obtain a square-tiled surface (determined by (h, v) € S2):
take n labeled squares,
A identify horizontal sides (corresponds to h € S,),
identify vertical sides (corresponds to v € Sp,),
A glue together identified sides.

a

h=(13)(2) d 1 |d,

v =(1)(23) el 3 2 e
a b

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Square-tiled surfaces

To obtain a square-tiled surface (determined by (h, v) € S2):
take n labeled squares,
A identify horizontal sides (corresponds to h € S,),
identify vertical sides (corresponds to v € Sp,),
A glue together identified sides.

Transitive action <> connectedness of the square-tiled surface.

a
h = (13)(2) d 1 |d,
<
v =(1)(23) el 3 2 e
a b
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Indecomposable permutations

A permutation o € S, is

decomposable, if there is an index p < n
such that J({l, . ,p}) ={1,...,p}.
indecomposable otherwise.

1 2 3|4 5 1 2 3 4
31 2|5 4 35 41

decomposable (p = 3) indecomposable

N o1

)

Observation. Every permutation can be uniquely decomposed into
a sequence of indecomposable permutations.
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Perspectives

Asymptotics for connected square-tiled surfaces

Theorem (reformulation of the results of Dixon and Cori)

The probability p, that a random square-tiled surface of size n is
connected satisfies

~1-— —
Pr kz_:l )

where (n)x =n(n—1)...(n—k+1) are the falling factorials
and is the number of of size k.
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Pairs of linear orders

A pair of linear orders (<1, <2) of size n is

reducible, if there is a partition {1,...,n} = AU B such that
Vae A, beB: a<ibanda=<shb.

irreducible otherwise.

3 <11 <1 4 1 2
4 <, 3 < 1 s 2

reducible (A = {1,3,4}, B = {2}) irreducible

3 <11 <1 4 =<1 2
4 <5 1 < 2 < 3

Observation.

#{irreducible pairs of linear orders of size n} = n! -ip,,.

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Correspondence of classes

U = {square-tiled surfaces}
= {pairs of linear orders of the same size}
B V = {connected square-tiled surfaces}
= {irreducible pairs of linear orders of the same size}
2
B n\ Up—k n\ ((n—k"H"
P = k) un k (n)2 (n)

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Perspectives

Probability of a permutation to be indecomposable

The probability q, that a random permutation of size n is
indecomposable, satisfies

q”zl_ZW’

where is the number of of size k

(ip,) = 1, 1, 3, 13, 71, 461, 3447,

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Perspectives

Combinatorial map model

m Take several labeled polygons of total perimeter N = 2n
(1-gons and 2-gons are allowed).

m |dentify their sides randomly to obtain a surface.

m Each surface is determined by a pair (¢, a) € S2,
where « is a perfect matching.

T <

¢ =(12345)(678)(910), a = (13)(26)(410)(59)(78)

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation



Perspectives

Combinatorial map model asymptotics

The probability p, that a random surface within the combinatorial
map model is connected satisfies

2(n — k) — )1
P 1= ! ((2n—)1)!!) ’
k>1

where counts

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation
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