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Asymptotics of endhered patterns in perfect matchings



2/16

Perfect matchings

A (perfect) matching is an involution without fixed points.

A matching of size n consists of 2n points and n arcs:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

There are (2n − 1)!! matchings of size n.
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Endhered patterns

Endhered pattern in a matching:
starting points form an interval,
ending points form an interval.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Endhered patterns are encoded by permutations:

1 2 3 1 3 2
! τ = 1 3 2

an,k(τ) = #{matchings of size n with k patterns τ}.
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Endhered twists

Left endhered twist: reverse all runs of consecutive left points.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

l letw

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) LIB, Université de Bourgogne
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Endhered twists

Right endhered twist: reverse all runs of consecutive right points.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

l retw

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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(Wilf) equivalent patterns

1 3 2

3 1 2

2 3 1

2 1 3

letw l letw l

retw
↔

retw
↔

Left twist: relabeling 1, . . . , p → p, . . . , 1 in a pattern.

Right twist: reversing a pattern.

an,k(τ) = an,k(letw(τ)) = an,k(retw(τ)).
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Pattern τ = 21, recurrences

Generating: an+1,k =

an,k−1 + 2(n − k)an,k + 2(k + 1)an,k+1

Insertion:

an+1,k =

(
n

k

)
an−k+1,0

Inclusion-exclusion:

an+1,0 =
n∑

k=0

(−1)n−k
(
n

k

)
(2k + 1)!!
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Pattern τ = 21, generating function and asymptotics

Generating function:

A(z , u) =
∞∑
n=0

n∑
k=0

an,k
zn

n!
uk

Exact form:
∂A

∂z
(z , u) =

ez(u−1)√
(1− 2z)3

Asymptotics:

an,k ∼
1

2kk!

(
2

e

)n+1/2

nn

as n→∞.
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Autocorrelation polynomials

Autocorrelation polynomial of a pattern τ is Aτ (z) =
|τ |−1∑
j=0

cjz
j ,

where cj = 1 iff the pattern matchs itself after shifting right
by j positions (otherwise, cj = 0).

A123(z) = 1 + z + z2

A213(z) = 1

A2143(z) = 1 + z2

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) LIB, Université de Bourgogne
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Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) LIB, Université de Bourgogne
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Self-overlapping permutations

Permutation σ ∈ Sn is self-overlapping if there is k < n:

1 {1, . . . , k} is invariant under σ,

2 {n − k + 1, . . . , n} is invariant under σ,

3 σ(1) . . . σ(k) and σ(n − k + 1) . . . σ(n) are isomorphic.

2 1 4 3 6 5 2 1 4 3 6 5

It is always possible to choose k 6 n/2.
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Structure of self-overlapping permutations

Let σ ∈ Sn and σ(1) < σ(n).

Then σ is non-self-overlapping iff Aσ(z) = 1.

Every permutation σ ∈ Sn
can be decomposed as

where

σi are non-self-overlapping,
τ is empty or
non-self-overlapping.

σ = σ1 ⊕ . . .⊕ σm ⊕ τ ⊕ σm ⊕ . . .⊕ σ1

σ1

···
σm

τ

σm

···
σ1
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Asymptotics of non-self-overlapping permutations

Generating functions:

P(z) =
1 + N(z)

1− N(z2)
,

where

P(z) is the OGF of permutations,

N(z) is the OGF of non-self-overlapping permutations.

Asymptotics:

P(σ is non-self-overlapping) = 1−
r−1∑
k=1

nok
(n)2k

+ O

(
1

n2r

)
,

where

nok = #{non-self-overlapping permutations of size k},
(n)k = n(n − 1) . . . (n − k + 1) are falling factorials.
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Asymptotics for an,k(τ) with Aτ(z) = 1

Let τ be a non-self-overlapping pattern, i.e. Aτ (z) = 1.

Generating function of matchings:

S(z) =
∞∑
n=0

(2n − 1)!! zn

Generating function with respect to τ :∑
n,k>0

an,k(τ) znuk = S
(
z + (u − 1)z |τ |

)
Asymptotics:

an,k(τ) ∼ 21/2

k! 2k(|τ |−1)

(
2

e

)n

nn−k(|τ |−2)

as n→∞.
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Asymptotics for an,k(τ) with Aτ(z) 6= 1

Let τ be a self-overlapping permutation, Aτ (z) = 1 + zm + . . .

Generating function with respect to τ :

∑
n,k>0

an,k(τ) znuk = S

(
z + (u − 1)z |τ |

1− (u − 1)(Aτ (z)− 1)

)

Asymptotics: as n→∞,

an,k(τ) ∼



21/2

k! 2km

(
2

e

)n

nn−k(m−1) if m = |τ | − 1

(2n)n−km 21/2

en

k∑
s=1

1

s! 2s
(k−1
s−1

)
if m = |τ | − 2

(2n)n−km−(|τ |−2−m)

en 21/2
if m < |τ | − 2
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Asymptotics of factorially divergent series (Borinsky)

an = αn+βΓ(n + β)

(
c0 +

c1

α(n + β − 1)
+

c2

α2(n + β − 1)(n + β − 2)
+ . . .

)

∞∑
n=0

anz
n

Aα
β7−−−→

∞∑
n=0

cnz
n

Properties:(
Aα

β(A · B)
)
(z) = A(z) · (Aα

βB)(z) + B(z) · (Aα
βA)(z),(

Aα
β(A ◦ B)

)
(z) = A′(B(z)

)
· (Aα

βB)(z)(
Aα

β(A ◦ B)
)
(z) +

(
z

B(z)

)β

exp

(
1

α

(
1

z
− 1

B(z)

))
(Aα

βA)
(
B(z)

)
.
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Extracting asymptotics

S(z) =
∞∑
n=0

(2n − 1)!! zn ⇒
(
A2

1/2S
)
(z) =

1√
2π

G (z) =
z + (u − 1)z |τ |

1− (u − 1)(Aτ (z)− 1)
⇒

(
A2

1/2G
)
(z) = 0

Composition:

(
A2

1/2(S ◦ G )
)
(z) =

1√
2π

(
1 +

(u − 1)z |τ |−1

1− (u − 1)(Aτ (z)− 1)

)−1/2

× exp

(
(u − 1)z |τ |−2

2
(
1− (u − 1)(Aτ (z)− 1− z |τ |−1)

))
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Conclusion

1 Studied objects:
endhered patterns in perfect matchings,
self-overlapping permutations.

2 Tools:
the symbolic method,
singularity analysis,
Goulden-Jackson cluster method,
Borinsky’s approach.

3 Results:
direct enumeration for endhered patterns of size 2,
enumeration and asymptotics for any endhered pattern,
enumeration and asymptotics of non-self-overlapping
permutations.

Thank you for your attention!

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) LIB, Université de Bourgogne
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