Asymptotics of consecutive patterns in permutations and matchings

(joint with Célia Biane and Sergey Kirgizov)

LIB, University of Burgundy

Applied Mathematics Webinar "Al-Khwarizmi"

September 17, 2024

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Part I

Patterns in permutations

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB. University of Burgundy

2/29

Permutation patterns

Let $\tau = \tau_1 \dots \tau_p$ and $\sigma = \sigma_1 \dots \sigma_n$ be two permutations, p < n.

1 τ occurs in σ if $\exists i_1 < \ldots < i_p : \sigma_{i_i} < \sigma_{i_s} \Leftrightarrow \tau_j < \tau_s$

2 τ tightly occurs in σ if $\exists i : \sigma_{i+j} < \sigma_{i+s} \Leftrightarrow \tau_j < \tau_s$

3 τ very tightly occurs in σ if $\exists i, h \forall j : \sigma_{i+j} = \tau_j + h$

Example: p = 3, n = 6, $\tau = 132$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Permutation patterns

Let $\tau = \tau_1 \dots \tau_p$ and $\sigma = \sigma_1 \dots \sigma_n$ be two permutations, p < n.

1 τ occurs in σ if $\exists i_1 < \ldots < i_p : \sigma_{i_j} < \sigma_{i_s} \Leftrightarrow \tau_j < \tau_s$

2 τ tightly occurs in σ if $\exists i : \sigma_{i+j} < \sigma_{i+s} \Leftrightarrow \tau_j < \tau_s$

3 τ very tightly occurs in σ if $\exists i, h \forall j : \sigma_{i+j} = \tau_j + h$

Example: p = 3, n = 6, $\tau = 132$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Permutation patterns

Let $\tau = \tau_1 \dots \tau_p$ and $\sigma = \sigma_1 \dots \sigma_n$ be two permutations, p < n. **1** τ occurs in σ if $\exists i_1 < \dots < i_p : \sigma_{i_j} < \sigma_{i_s} \Leftrightarrow \tau_j < \tau_s$ **2** τ tightly occurs in σ if $\exists i : \sigma_{i+j} < \sigma_{i+s} \Leftrightarrow \tau_j < \tau_s$ **3** τ very tightly occurs in σ if $\exists i, h \forall j : \sigma_{i+i} = \tau_i + h$

Example: p = 3, n = 6, $\tau = 132$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Enumeration methods for very tight patterns

There are two cases.

- 2 Patterns can overlap

1 Patterns cannot overlap \rightarrow inclusion-exclusion principle.

 \rightarrow cluster method.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Enumeration of patterns that cannot overlap

- Let $\tau \in S_p$ be a pattern that cannot overlap.
- Let $a_{n,k}(\tau)$ be the number of permutations $\sigma \in S_n$ with k very tight occurrences of τ .

<u>Theorem</u> (Myers, 2002):

$$a_{n,k}(\tau) = \sum_{i=k}^{\lfloor n/(p-1) \rfloor} (-1)^{i-k} \binom{i}{k} \binom{n-(p-1)i}{i} (n-(p-1)i)!$$

Proof: the inclusion-exclusion principle.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

$$A_{1234}(z) = 1 +$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

$$A_{1234}(z) = 1 + z + z$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

 $A_{1234}(z) = 1 + z + z^2 +$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings **B. University of Burgundy**

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_i = 0$).

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings 6/29

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_i = 0$).

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

 $A_{1324}(z) = 1 + z^3$ $A_{1234}(z) = 1 + z + z^2 + z^3$ $A_{3412}(z) = 1 + z^3$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings LIB, University of Burgundy

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

 $A_{1324}(z) = 1 + z^3$ $A_{1234}(z) = 1 + z + z^2 + z^3$ $A_{3412}(z) = 1 + z^2$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings LIB, University of Burgundy

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{p-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting by *j* positions along the diagonal (otherwise, $c_j = 0$).

Enumeration of patterns that can overlap

- Let $\tau \in S_p$ be a pattern that can overlap.
- Let $a_{n,k}(\tau)$ be the number of permutations $\sigma \in S_n$ with k very tight occurrences of τ .

Theorem (Claesson, 2022):

-p

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} u^{k} = \sum_{i=1}^{\infty} p_{i} \left(z + \frac{(u-1)}{2} \right)$$

$$\sum_{n,k\geq 0} a_{n,k}(\tau) z^n u^k = \sum_{n=0} n! \left(z + \frac{(u-1)^2}{1 - (u-1)(A_\tau(z) - 1)} \right)$$

Proof: the cluster method of Goulden and Jackson.

 $\backslash n$

Asymptotics for $a_{n,k}(12)$

Asymptotics (Bóna, 2007):

$$\frac{a_{n,k}(12)}{n!} \sim \frac{e^{-1}}{k!}$$

as $n \to \infty$.

• This is a Poisson distribution Pois(1) with parameter $\lambda = 1$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Asymptotics for $a_{n,k}(\tau)$ with $A_{\tau}(z) = 1$, p > 2

- Suppose that $au \in S_p$ cannot overlap, i.e. $A_{ au}(z) = 1$.
- Generating function of permutations:

$$P(z) = \sum_{n=0}^{\infty} n! \, z^n$$

Generating function (Claesson, 2022):

$$\sum_{n,k\geq 0} a_{n,k}(\tau) z^n u^k = P\Big(z + (u-1)z^p\Big)$$

Asymptotics (Kirgizov, N., 2024+):

$$\frac{a_{n,k}(\tau)}{n!} \sim \frac{1}{k!} \cdot \frac{1}{n^{k(p-2)}}$$

as $n \to \infty$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Asymptotics for $a_{n,k}(\tau)$ with $A_{\tau}(z) \neq 1$, p > 2

- Suppose that $au \in S_p$ can overlap, $A_{ au}(z) = 1 + z^m + \dots$
- Generating function (Claesson, 2022):

$$\sum_{n,k\geq 0} a_{n,k}(\tau) \, z^n u^k = P\left(z + \frac{(u-1)z^p}{1 - (u-1)(A_\tau(z) - 1)}\right)$$

• Asymptotics (Kirgizov, N., 2024+): as $n \to \infty$,

$$\frac{a_{n,k}(\tau)}{n!} \sim \begin{cases} \frac{1}{k!} \cdot \frac{1}{n^{k(p-2)}} & \text{if } m = p-1\\ \frac{1}{n^{k(p-2)}} \cdot \sum_{s=1}^{k} \frac{1}{s!} \binom{k-1}{s-1} & \text{if } m = p-2\\ \frac{1}{n^{km+(p-2-m)}} & \text{if } m < p-2 \end{cases}$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Interlude

Self-overlapping permutations

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB. University of Burgundy

Self-overlapping permutations

Permutation $\sigma \in S_n$ is **self-overlapping** if there is k < n:

- **1** $\{1, \ldots, k\}$ is invariant under σ ,
- **2** $\{n-k+1,\ldots,n\}$ is invariant under σ ,

3 $\sigma_1 \ldots \sigma_k$ and $\sigma_{n-k+1} \ldots \sigma_n$ are isomorphic.

It is always possible to choose $k \leq n/2$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings Structure of self-overlapping permutations

• Let $\sigma \in S_n$ and $\sigma_1 < \sigma_n$.

Then σ is non-self-overlapping iff $A_{\sigma}(z) = 1$.

• Every permutation $\sigma \in S_n$ can be decomposed as

$$\sigma = \sigma_1 \oplus \ldots \oplus \sigma_m \oplus \tau \oplus \sigma_m \oplus \ldots \oplus \sigma_1$$

where

 σ_i are non-self-overlapping,
 τ is empty or non-self-overlapping.

Asymptotics of non-self-overlapping permutations

Generating functions (Kirgizov, N., 2023+):

$$P(z) = rac{1 + N(z)}{1 - N(z^2)},$$

where

- P(z) is the OGF of permutations,
- N(z) is the OGF of non-self-overlapping permutations.

Asymptotics of non-self-overlapping permutations

Generating functions (Kirgizov, N., 2023+):

$$P(z)=\frac{1+N(z)}{1-N(z^2)}\,,$$

where

- P(z) is the OGF of permutations,
- N(z) is the OGF of non-self-overlapping permutations.

Asymptotics (Kirgizov, N., 2023+):

$$\mathbb{P}(\sigma \text{ is non-self-overlapping}) = 1 - \sum_{k=1}^{r-1} \frac{\mathfrak{no}_k}{(n)_{2k}} + O\left(\frac{1}{n^{2r}}\right) ,$$

where

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Part II

Patterns in matchings

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB. University of Burgundy

15/29

Matchings

• A (perfect) matching is an involution without fixed points.

A matching of size *n* consists of 2*n* points and *n* arcs:

• There are (2n-1)!! matchings of size *n*.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Endhered patterns

Endhered pattern in a matching:

- starting points form an interval,
- ending points form an interval.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB, University of Burgundy

17/29

Endhered patterns

Endhered pattern in a matching:

- starting points form an interval,
- ending points form an interval.

Endhered patterns are encoded by permutations:

 $\leftrightarrow \tau =$

 $\tau = 132$

• $b_{n,k}(\tau) = \#\{\text{matchings of size } n \text{ with } k \text{ patterns } \tau\}.$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Endhered twists

Left endhered twist: reverse all runs of consecutive left points.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings 18/29

Endhered twists

Right endhered twist: reverse all runs of consecutive right points.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings 18/29

(Wilf) equivalent patterns

• Left twist: relabeling $1, \ldots, p \rightarrow p, \ldots, 1$ in a pattern.

Right twist: reversing a pattern.

$$\bullet b_{n,k}(\tau) = b_{n,k}(\operatorname{letw}(\tau)) = b_{n,k}(\operatorname{retw}(\tau)).$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Pattern $\tau = 21$, recurrences

• Generating:
$$b_{n+1,k} =$$

Pattern $\tau = 21$, recurrences

• Generating:
$$b_{n+1,k} =$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Generating:
$$b_{n+1,k} = b_{n,k-1} + b_{n,k-1}$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings niversity of Burgundy

• Generating:
$$b_{n+1,k} = b_{n,k-1} + + 2(k+1)b_{n,k+1}$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings 20/29

Generating: $b_{n+1,k} = b_{n,k-1} + 2(n-k)b_{n,k} + 2(k+1)b_{n,k+1}$

• Generating:
$$b_{n+1,k} = b_{n,k-1} + 2(n-k)b_{n,k} + 2(k+1)b_{n,k+1}$$

Insertion:

$$b_{n+1,k} = \binom{n}{k} b_{n-k+1,0}$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB, University of Burgundy

20/29

• Generating:
$$b_{n+1,k} = b_{n,k-1} + 2(n-k)b_{n,k} + 2(k+1)b_{n,k+1}$$

Insertion:

$$b_{n+1,k} = \binom{n}{k} b_{n-k+1,0}$$

Inclusion-exclusion:

$$b_{n+1,0} = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} (2k+1)!!$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

20/29

Pattern $\tau = 21$, generating function and asymptotics

Generating function:

$$B(z,u) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} b_{n,k} \frac{z^n}{n!} u^k$$

Exact form:

$$\frac{\partial B}{\partial z}(z,u) = \frac{e^{z(u-1)}}{\sqrt{(1-2z)^3}}$$

• Asymptotics: as $n \to \infty$,

$$\frac{b_{n,k}}{(2n-1)!!} \sim \frac{e^{-1/2}}{2^k k!}$$

(Poisson distribution $\operatorname{Pois}(1/2)$ with parameter $\lambda = 1/2$)

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings 21/29

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting right by *j* positions (otherwise, $c_i = 0$). Here, we suppose that $\tau_1 < \tau_p$.

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting right by *j* positions (otherwise, $c_j = 0$). Here, we suppose that $\tau_1 < \tau_p$.

$$A_{123}(z) = 1 + z + z$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$, where $c_i = 1$ iff the pattern module is 10.0 for a set of z_j .

where $c_j = 1$ iff the pattern matchs itself after shifting right by *j* positions (otherwise, $c_j = 0$). Here, we suppose that $\tau_1 < \tau_p$.

$$A_{123}(z) = 1 + z + z^2$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting right by *j* positions (otherwise, $c_i = 0$). Here, we suppose that $\tau_1 < \tau_p$.

$$A_{123}(z) = 1 + z + z^2$$

$$A_{213}(z) = 1 +$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB. University of Burgundy

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting right by *j* positions (otherwise, $c_i = 0$). Here, we suppose that $\tau_1 < \tau_p$.

$$A_{123}(z) = 1 + z + z^2$$

$$A_{213}(z) = 1 +$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB, University of Burgundy

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting right by *j* positions (otherwise, $c_i = 0$). Here, we suppose that $\tau_1 < \tau_p$.

$$A_{123}(z) = 1 + z + z^2$$

$$A_{213}(z) = 1 +$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB. University of Burgundy

Autocorrelation polynomial of $\tau \in S_p$ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting right by *j* positions (otherwise, $c_i = 0$). Here, we suppose that $\tau_1 < \tau_p$.

 $A_{123}(z) = 1 + z + z^2$

$$A_{213}(z)=1$$

$$A_{2143}(z) = 1 + z^2$$

--/--

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of consecutive patterns in permutations and matchings

Asymptotics for $b_{n,k}(\tau)$ with $A_{\tau}(z) = 1$, p > 2

Let τ ∈ S_p be a non-self-overlapping pattern, i.e. A_τ(z) = 1.
 Generating function of matchings:

$$M(z) = \sum_{n=0}^{\infty} (2n-1)!! z^n$$

Generating function (Kirgizov, N., 2023+):

$$\sum_{n,k\geq 0} b_{n,k}(\tau) \, z^n u^k = M\Big(z + (u-1)z^p\Big)$$

Asymptotics (Kirgizov, N., 2023+):

$$\frac{b_{n,k}(\tau)}{(2n-1)!!} \sim \frac{1}{k! \, 2^{k(p-1)}} \cdot \frac{1}{n^{k(p-2)}}$$

as $n \to \infty$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Asymptotics for $b_{n,k}(\tau)$ with $A_{\tau}(z) \neq 1$, p > 2

- Let $au \in S_{
 ho}$ be self-overlapping, $A_{ au}(z) = 1 + z^m + \dots$
- Generating function (Kirgizov, N., 2023+):

$$\sum_{n,k\geq 0} b_{n,k}(\tau) \, z^n u^k = M\left(z + \frac{(u-1)z^p}{1 - (u-1)(A_\tau(z) - 1)}\right)$$

• Asymptotics (Kirgizov, N., 2023+): as $n \to \infty$,

$$\frac{b_{n,k}(\tau)}{(2n-1)!!} \sim \begin{cases} \frac{1}{k! \, 2^{k(p-1)}} \cdot \frac{1}{n^{k(p-2)}} & \text{if } m = p-1\\ \frac{1}{(2n)^{k(p-2)}} \sum_{s=1}^{k} \frac{1}{s! \, 2^{s}} \binom{k-1}{s-1} & \text{if } m = p-2\\ \frac{1}{2(2n)^{km+(p-2-m)}} & \text{if } m < p-2 \end{cases}$$

24/29

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Part III

Ideas of proofs

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB. University of Burgundy

25/29

Asymptotics of factorially divergent series (Borinsky)

$$a_n = \alpha^{n+\beta} \Gamma(n+\beta) \left(c_0 + \frac{c_1}{\alpha(n+\beta-1)} + \frac{c_2}{\alpha^2(n+\beta-1)(n+\beta-2)} + \ldots \right)$$

Properties:

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

LIB. University of Burgundy

26/29

Extracting asymptotics for permutation patterns

•
$$P(z) = \sum_{n=0}^{\infty} n! z^n \qquad \Rightarrow \qquad (\mathcal{A}_1^1 P)(z) = 1$$

•
$$G(z) = z + \frac{(u-1)z^{\rho}}{1-(u-1)(A_{\tau}(z)-1)} \quad \Rightarrow \quad (\mathcal{A}_{1}^{1}G)(z) = 0$$

Composition:

$$(\mathcal{A}_{1}^{1}(P \circ G))(z) = \frac{1 - (u - 1)z^{p-1}}{1 - (u - 1)(\mathcal{A}_{\tau}(z) - 1 - z^{p-1})} \\ \times \exp\left(\frac{(u - 1)z^{p-2}}{1 - (u - 1)(\mathcal{A}_{\tau}(z) - 1 - z^{p-1})}\right)$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

Extracting asymptotics for matching patterns

•
$$M(z) = \sum_{n=0}^{\infty} (2n-1)!! z^n \qquad \Rightarrow \qquad \left(\mathcal{A}_{1/2}^2 M\right)(z) = \frac{1}{\sqrt{2\pi}}$$

•
$$G(z) = z + \frac{(u-1)z^p}{1-(u-1)(A_{\tau}(z)-1)} \quad \Rightarrow \quad (\mathcal{A}^2_{1/2}G)(z) = 0$$

Composition:

$$(\mathcal{A}_{1/2}^2(M \circ G))(z) = \frac{1}{\sqrt{2\pi}} \left(1 + \frac{(u-1)z^{p-1}}{1 - (u-1)(A_\tau(z) - 1)} \right)^{-1/2} \\ \times \exp\left(\frac{(u-1)z^{p-2}}{2(1 - (u-1)(A_\tau(z) - 1 - z^{p-1}))} \right)$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of consecutive patterns in permutations and matchings

University of Burgundy

Conclusion

Studied objects:

- consecutive patterns in permutations and matchings,
- self-overlapping permutations.
- 2 Tools:
 - the symbolic method,
 - singularity analysis,
 - Goulden-Jackson cluster method,
 - Borinsky's approach.
- 3 Results:
 - asymptotics for any very tight pattern in permutations,
 - enumeration and asymptotics for any endhered pattern,
 - enumeration and asymptotics of non-self-overlapping permutations.

Thank you for your attention!