## Задачи к курсу — 2

Классификация замощений плоскости правильными многоугольниками, которые могут пересекаться только по вершине или стороне (то есть замощений «ребро-к-ребру») начинается с классификации возможных типов вершин. Под *типом вершины* подразумевается порядок, в котором встречаются плитки при обходе вершины; его можно записать в виде последовательности чисел, отвечающих количеству сторон соответствующих плиток. Например, тип каждой вершины в квадратном паркете (клетчатой бумаге) есть (4,4,4,4) или сокращённо (4<sup>4</sup>). Все возможные типы вершин указаны в таблице ниже.

| Тип | $3^{6}$ | $3^4, 6$ | $3^3, 4^2$   | $3^2, 4, 3, 4$ | $1 \mid 3^2, 4, 12$ |           | 3, 12 | $3^2, 6^2$      | 3, 6, 3, 6 | $3, 4^2,$ | 6   3, 4, | 6, 4  |
|-----|---------|----------|--------------|----------------|---------------------|-----------|-------|-----------------|------------|-----------|-----------|-------|
|     | a       | a        | a            | a              | b                   | b         | )     | b               | a          | b         | а         | ı     |
| Тип | 3,7     | 7,42     | 3, 8, 24     | 3, 9, 18       | 3, 10, 15           | $3, 12^2$ | $4^4$ | 4, 5, 20        | 4, 6, 12   | $4,8^{2}$ | $5^2, 10$ | $6^3$ |
|     | c       |          | $\mathbf{c}$ | c              | c                   | a         | a     | $^{\mathrm{c}}$ | a          | a         | c         | a     |

**Упражнение 1.** а) Проверьте, что для каждого типа вершины, отмеченного в таблице буквой «а», существует замощение плоскости правильными многоугольниками, все вершины которого имеют указанный тип (такие замощения называются  $Apxume\partial obumu$ ).

- б) Для каждого типа вершины, отмеченного буквой «b», приведите пример какого-нибудь замощения плоскости правильными многоугольниками, содержащее вершины указанного типа.
- в) Докажите, что ни одно замощение плоскости правильными многоугольниками не может иметь вершину, тип которой отмечен в таблице буквой «с».

**Определение 1.** Замощение плоскости правильными многоугольниками называется k-Apxu-meдовым, если оно содержит вершины в точности k различных типов.

**Упражнение 2.** а) Докажите, что ни одно 2-Архимедово замощение не может содержать вершину типа  $(4, 8^2)$ .

- б) Докажите, что если 2-Архимедово замощение обладает вершинами типа  $(3,12^2)$ , то оно обладает также вершинами типа (3,4,3,12).
- в) Покажите, что замощений, удовлетворяющих условиям пункта б), бесконечно много.

**Определение 2.** Замощение плоскости правильными многоугольниками называется *эквитранзитивным*, если любая его плитка может быть переведена в любую другою равную ей плитку движением, переводящим замощение само в себя (то есть являющимся симметрией замощения).

Упражнение 3. Какие из Архимедовых замощений являются эквитранзитивными?

**Определение 3.** Замощение называется *односторонним*, если каждое его ребро является стороной не более, чем одной плитки.

**Упражнение 4.** Приведите пример одностороннего эквитранзитивного замощения квадратами, которые имеют размеры — а) 1, 2; — б) 1, 2, 3; — в) 1, 2, 3, 4.

**Упражнение 5.** Докажите, что одностороннее эквитранзитивное замощение квадратами трёх размеров x, y и z (где x < y < z) возможно тогда и только тогда, когда z = x + y.

**Упражнение 6.** Приведите примеры не являющихся изоэдрическими моноэдральных замощений какими-либо n-мондами и k-гексами (для таких замощений должны найтись две плитки, которые невозможно перевести одна в другую ни одним движением, сохраняющим замощение).

- Задача 1. а) (1 балл) Приведите три примера пары типов вершин, допускающих бесконечное количество 2-Архимедовых замощений с вершинами указанного типа.
- б) (1 балл) Приведите пример пары типов вершин, для которых соответствующее 2-Архимедово замощение единственно.
- Задача 2. а) (1 балл) Существует ли 15-Архимедово замощение?
- б) (2 балла) Существует ли периодическое 14-Архимедово замощение?
- Задача 3. (1 балл) Приведите примеры трёх эквитранзитивных замощений правильными многоугольниками «ребро-к-ребру», не являющихся Архимедовыми.
- Задача 4. (1 балл) Найдите все изоэдрические замощения, которые допускает протоплитка 7-мино, изображённая справа.



- Задача 5. (1 балл) Приведите пример одностороннего эквитранзитивного замощения квадратами, которые имеют размеры 1, 2, 3, 4, 5.
- Задача 6. (1 балл) Приведите пример одностороннего эквитранзитивного замощения квадратами размеров 1, 2, 3, 4, 6, группа симметрий которого обладает осевой симметрией.
- Задача 7. (2 балла) Доказано, что все односторонние эквитранзитивные замощения квадратами четырёх размеров можно поделить на пять групп. В каждой из групп три размера квадратов имеют вид x, y (где x < y) и x + y, а четвёртый есть 2x, 2y, 2x + y, 2y + x и 2x + 2y. Приведите примеры искомого замощения для каждой из указанных пяти четвёрок.
- Задача 8. (2 балла) Пусть G либо группа cn (группа симметрий «свастики» с n хвостами), либо группа dn (группа симметрий правильного n-угольника). Для каждой такой группы G приведите пример моноэдрального замощения, группа симметрий которого совпадает с G.

**Примечание.** Для зачёта необходимо набрать 12 баллов (в сумме из этого и предыдущего листочка). Другой вариант получения зачёта — написать программу, которая бы позволяла пользователю рисовать различные замощения плоскости многоугольниками. В случае желания получить зачёт вторым способом просьба обсудить эту возможность с Хайдаром для уточнения технического задания.