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ABSTRACT

The local extremality criterion from [3] for the volume of hypercube sec-

tions at sub-diagonals of order less than the dimension misses a term. The

results regarding the main diagonal of the hypercube do not change but

the results about its sub-diagonals of lower order have to be corrected by

taking this additional term in account which is the purpose of this cor-

rigendum. The only significant change to the main results of [3] is that

the volume of the sections of the hypercube [0, 1]d by a hyperplane H

orthogonal to a sub-diagonal of order at least 4 and less than d is never

locally extremal when H is close to the center of [0, 1]d.

1. Introduction

Consider a hyperplane H of Rd whose distance to the center of the unit hyper-

cube [0, 1]d is a number t at most
√
d/2. When t is fixed and H is allowed to

vary, the (d − 1)-dimensional volume V of H ∩ [0, 1]d can be thought of as a

function of H. A criterion is given in [3] for the local extremality of V when

H is orthogonal to a sub-diagonal of [0, 1]d of order at least 4. Here, a sub-

diagonal of [0, 1]d of order n means a diagonal of a n-dimensional face of [0, 1]d.

This criterion misses a term in the special case when n is less than d and the

purpose of this corrigendum is to correct it as well as the results obtained from

this criterion regarding the local extremality of V when H is orthogonal to a

sub-diagonal of the hypercube [0, 1]d of order less than d. Note that the result

from [3] regarding the main diagonals of the hypercube [0, 1]d (sub-diagonals

of order d) do not change. Recall that H is the hyperplane of Rd made of the

points x such that a·x = b where a is a non-zero vector from Rd and b is a real
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number. By symmetry, it is assumed that a belongs to [0,+∞]d\{0}. Moreover,

b can be expressed as a function of t as

b =
1

2

d∑
i=1

ai − t

With these notations and under the assumption that t is fixed, V is considered

a function of a. The error in [3] lies in the proof of Theorem 3.1 where the second

derivative of Lλ with respect to aj at the point a of Rd whose n first coordinates

are 1/
√
n and whose last d− n coordinates are equal to 0 is

(1)
∂2Lλ

∂a2j
=

∂2

∂a21

V

∥a∥
−
√
n

∂

∂a1

V

∥a∥

for all integers j satisfying 1 ≤ j ≤ d and not just when 1 ≤ j ≤ n. In particular,

the last equation at the bottom of Page 570 in [3] should be replaced by (1).

Likewise, the first equation at the top of Page 571 in [3] should be

d∑
j=1

d∑
k=1

xjxk
∂2Lλ

∂aj∂ak
=

[
∂2

∂a21

V

∥a∥
−
√
n

∂

∂a1

V

∥a∥
− ∂2

∂a1∂a2

V

∥a∥

] n∑
i=1

x2
i

+
∂2

∂a1∂a2

V

∥a∥

[
n∑

i=1

xi

]2
+

[
∂2

∂a2d

V

∥a∥
−

√
n

∂

∂a1

V

∥a∥

] d∑
i=n+1

x2
i .

The rest of the argument does not change. As a consequence, the local

extremality criterion stated by Theorems 3.1 and 5.3 from [3] has to be corrected

into the following (combined) statement.

Theorem 1.1: Consider an integer n such that 2 ≤ n ≤ d and assume that V

is twice continuously differentiable at the point a of Rd whose first n coordinates

are 1/
√
n and whose other coordinates are 0. If at that point,

(2)
∂2

∂a21

V

∥a∥
−
√
n

∂

∂a1

V

∥a∥
− ∂2

∂a1∂a2

V

∥a∥
is negative and, when n is less than d,

(3)
∂2

∂a2d

V

∥a∥
−
√
n

∂

∂a1

V

∥a∥

is also negative, then V has a strict local maximum on Sd−1 ∩ [0,+∞[d at a.

Similarly, if (2) is positive at point a and, when n is less than d, (3) is positive

at a as well, then V admits a strict local minimum on Sd−1 ∩ [0,+∞[d at that
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point. Finally, in the case when n is less than d, if (2) and (3) are both non-

zero and have opposite signs at point a, then V does not have a local extremum

(even a weak one) on Sd−1 ∩ [0,+∞[d at a.

In other words, the expressions (15) in the statement of Theorem 3.1 and

(44) in the statement of Theorem 5.3 from [3] should be

∂2

∂a2d

V

∥a∥
−
√
n

∂

∂a1

V

∥a∥

rather than just

∂2

∂a2d

V

∥a∥
.

This criterion is further given in a different form as Theorem 1.5 in [3]. This

theorem should also be modified as will be explained in Section 2.

This missing term in the local extremality criterion has consequences on some

of the main results reported in [3]. Fortunately, the only significant change is

that Theorem 1.1 from [3] should be corrected as follows.

Theorem 1.2: If d ≥ 4 and t is close enough to 0, then the (d−1)-dimensional

volume of H ∩ [0, 1]d is strictly locally maximal when H is orthogonal to a

diagonal of [0, 1]d and not locally extremal when H is orthogonal to a sub-

diagonal of [0, 1]d of order at least 5 and less than d.

In particular, in the case when the hyperplane H is close to the center of

[0, 1]d, while V is still strictly locally maximal when H is orthogonal to a main

diagonal of [0, 1]d, this is not the case when H is orthogonal to a lower order

sub-diagonal. Theorem 1.2 can be proven using the same techniques as for

Theorem 1.1 from [3]: it suffices to show that, when t is equal to 0 while n

is at least 5 and less than d, (3) is positive at the point a of Rd whose first n

coordinates are equal to 1/
√
n and whose d−n other coordinates are equal to 0.

This is possible by using the following integral expression of (3) at a obtained

by combining Equations (19) and (20) from [3]:

(4)
∂2

∂a2d

V

∥a∥
−
√
n

∂

∂a1

V

∥a∥
= − 1

π

∫ +∞

−∞

[
n cos

(
u√
n

)

+

(
u2

3
− n

)√
n

u
sin

(
u√
n

)](√
n

u
sin

(
u√
n

))n−1

cos(2tu)du.
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However, Theorem 1.2 has been established in the meantime by Gergely Am-

brus and Barnabás Gárgyán using a different argument [1] and it should be

attributed to them. Further note that they extended it to sub-diagonals of or-

der 3 and 4, which is not possible with Theorem 1.1 (see for instance Section 3).

In addition, Theorem 1.2 is generalized to a range of values of t away from 0

in [2]. For these reasons, the proof that when t is equal to 0 and n is at least 5,

the right-hand side of (4) is positive is omitted from this corrigendum.

Another result from [3] has to be slightly modified although in a much lighter

way. Theorem 1.3 from [3] should be corrected as follows.

Theorem 1.3: If 14 ≤ n < d and t satisfies

(5)

√
n

2
− 1√

n
min

{
n− 14

6
,

(2n)1/(n−3)

(2n)1/(n−3) − 1

}
< t <

√
n

2
,

then the (d− 1)-dimensional volume of H ∩ [0, 1]d is not locally extremal (even

weakly so) when H is orthogonal to an order n sub-diagonal of [0, 1]d.

Note that, compared to Theorem 1.3 from [3], only the left-hand side of (5)

has changed and the range for t given by (5) is still asymptotic to
√
n/log n

as n goes to infinity. A proof of Theorem 1.3 is given in Section 2 using the

tools from [3]. The analysis reported in Section 6 of [3] of how local extrema

at sub-diagonals of order n behave when n is low and t varies from 0 to
√
n/2

also has to be corrected, which is done below in Section 3.

2. The sub-diagonals of the hypercube

Recall that in [3], at the point a from Rd whose first n coordinates are equal to

1/
√
n and whose other coordinates are equal to 0, (2) is expressed as

(6)
∂2

∂a21

V

∥a∥
−
√
n

∂

∂a1

V

∥a∥
− ∂2

∂a1∂a2

V

∥a∥
=

⌊z⌋∑
i=0

(−1)i
√
n

(n− 3)!

(
n

i

)
(z− i)n−3pi,n(z)

when n is at least 4 where

(7) pi,n(z) =
i(n− i)

n− 1
−
(n
2
− i
) z − i

n− 2
+

2n(z − i)2

(n− 1)(n− 2)

and z is related to t via the change of variables

(8) z =
n

2
− t

√
n.
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At the same point a, a similar expression of (3) can be obtained by combining

Lemma 2.5, Lemma 5.1, and Equation (32) from [3]:

(9)
∂2

∂a2d

V

∥a∥
−
√
n

∂

∂a1

V

∥a∥
=

⌊z⌋∑
i=0

(−1)i
√
n

(n− 3)!

(
n

i

)
(z − i)n−3qi,n(z).

when n is at least 4 where

(10) qi,n(z) =
n

12
−
(n
2
− i
) z − i

n− 2
+

n(z − i)2

(n− 1)(n− 2)

and again, z and t are related via the change of variables (8).

In particular, in order to correct Theorem 1.5 in [3], it suffices to multiply the

expression (5) in its statement by qi,n(z). The following more general statement

is obtained as a consequence of (6), (9), and Theorem 1.1.

Theorem 2.1: Assume that 4 ≤ n ≤ d. If

(11)

⌊z⌋∑
i=0

(−1)i
(
n

i

)
(z − i)n−3pi,n(z)

is negative and, when n is less than d,

(12)

⌊z⌋∑
i=0

(−1)i
(
n

i

)
(z − i)n−3qi,n(z)

is also negative, where z = n/2 − t
√
n, then V has a strict local maximum

when H is orthogonal to an order n sub-diagonal of [0, 1]d. If however, (11) is

positive and, when n is less than d, (12) is also positive, then V has a strict local

minimum when H is orthogonal to an order n sub-diagonal of [0, 1]d. Finally,

in the case when n is less than d, if (11) and (12) are both non-zero and have

opposite signs, then V does not have a local extremum (even a weak one) when

H is orthogonal to an order n sub-diagonal of [0, 1]d.

Theorem 1.3 is now established using the tools from [3].

Proof of Theorem 1.3. Assume that 14 ≤ n < d and that t satisfies (5). Observe

that by (8), this requirement on t can be rewritten in terms of z as

(13) 0 < z < min

{
n− 14

6
,

(2n)1/(n−3)

(2n)1/(n−3) − 1

}
.

According to Lemma 4.4 from [3], (11) is negative. Hence, by Theorem 2.1, it

suffices to show that (12) is positive. This will be done by using Proposition 4.3
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from [3]. Consider an integer i such that 0 ≤ i ≤ z and observe that

qi,n(z) =
fi(z)− gi(z)

(n− 1)(n− 2)

where

(14) fi(z) =
n(n− 1)(n− 2)

12
− n(n− 1)

2
(z − i) + nz2

and

gi(z) = i(n+ 1)z − i2.

Since z is less than (n− 14)/6, it follows from (14) that

(15) fi(z) ≥ n(n− 1)

and in particular, fi(z) is positive. In addition, if i+ 1 is at most z,

(16)
fi(z)

fi+1(z)
= 1− n(n− 1)

2fi+1(z)

and, since fi(z) is monotonically increasing with i, then so is the ratio fi(z)/fi+1(z).

It then follows from Proposition 4.3 from [3] that if

(17) z <
1

1−
(

f0(z)

nf1(z)

)1/(n−3)
,

then

(18)

⌊z⌋∑
i=0

(−1)i
(
n

i

)
(z − i)n−3fi(z) > 0.

However, combining (15) and (16) shows that f0(z)/f1(z) is at least 1/2. In

particular, (13) implies (17) which proves that (18) holds.

Now observe that, when i is positive, so is gi(z). Moreover,

(19)
gi(z)

gi+1(z)
=

(
1− 1

i+ 1

)(
1 +

1

(n+ 1)z − i− 1

)
when i+ 1 is at most z. In particular, the ratio gi(z)/gi+1(z) is monotonically

increasing. Hence, by Proposition 4.3 from [3], if

(20) z < 1 +
1

1−
(

2g1(z)

(n− 1)g2(z)

)1/(n−3)
,
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then

(21) −
⌊z⌋∑
i=1

(−1)i
(
n

i

)
(z − i)n−3gi(z) > 0.

According to (19), the ratio g1(z)/g2(z) is at least 1/2. As a consequence,

(13) implies (20) which proves that (21) holds.

Finally, observe that g0(z) is equal to 0. Hence, (21) still holds when the sum

in the left-hand side is extended down to i equal to 0. Summing the resulting

inequality with (18) shows that (12) is positive, as desired.

3. Low order sub-diagonals

Think of (11) as a function of z. As shown in [3] using symbolic computation,

for any integer n such that 4 ≤ n ≤ 300, this function has two roots ρ−n and

ρ+n (labeled in such a way that ρ+n < ρ−n ) in the interval ]0, n/2[. Moreover,

this function is positive when ρ+n < z < ρ−n and negative when 0 ≤ z < ρ+n
or ρ−n < z <

√
n/2. This allowed to determine whether V is locally extremal

when H is orthogonal to a diagonal of the hypercube [0, 1]d for all t such that

0 < t <
√
d/2 and all n such that 4 ≤ d ≤ 300 (see for instance Proposition 6.1

and the bottom of Page 592 in [3]). The corresponding analysis for the sub-

diagonals of order less than d has to be corrected in order to take into account

the missing term in the local extremality criterion.

Consider an integer n at least 4 and less than d. If n is equal to 4,

⌊z⌋∑
i=0

(−1)i
(
n

i

)
(z − i)n−3qi,n(z) =

1

3
z(z − 1)(2z − 1)

when 0 < z ≤ 1 and

(22)

⌊z⌋∑
i=0

(−1)i
(
n

i

)
(z − i)n−3qi,n(z) = −1

3
(z − 1)(z − 2)(2z − 3)

when 1 ≤ z ≤ 2. In particular, (12) vanishes when z is equal to 1/2, 1, 3/2, or

2. In addition, (12) is positive when 0 < z < 1/2 or 3/2 < z < 2 and negative

when 1/2 < z < 1 or 1 < z < 3/2. The following proposition is obtained from

Theorem 2.1 as a consequence. In the statement of this proposition, ρ−4 is one

of the above mentioned values obtained in [3]. Note that

ρ−4 =
17 + (17− 12

√
2)1/3 + (17 + 12

√
2)1/3

12
.
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which is about 1.71229. Further note that ρ+4 is equal to 3/4 and therefore

1− ρ+4
2

=
5

8
.

Proposition 3.1: Assume that d is greater than 4. If 5/8 < t < 3/4, then the

(d− 1)-dimensional volume of H ∩ [0, 1]d is strictly locally maximal when H is

orthogonal to an order 4 sub-diagonal of [0, 1]d. However, if

t ∈
]
1− ρ−4

2
,
1

4

[
then the (d − 1)-dimensional volume of H ∩ [0, 1]d is strictly locally minimal

when H is orthogonal to an order 4 sub-diagonal of [0, 1]d. Finally, if

t ∈
]
0, 1− ρ−4

2

[
∪
]
1

4
,
1

2

[
∪
]
1

2
,
5

8

[
∪
]
3

4
, 1

[
then that volume is not locally extremal (even weakly so) when H is orthogonal

to an order 4 sub-diagonal of [0, 1]d.

It should be mentioned that, since the right-hand side of (22) is equal to 0

when z is equal to 2, Theorem 2.1 does not allow to extend Theorem 1.2 down

to sub-diagonals of order 4. Now if n is equal to 5,

⌊z⌋∑
i=0

(−1)i
(
n

i

)
(z − i)n−3qi,n(z) =

5

12
z2(z − 1)2

when 0 < z ≤ 1,

⌊z⌋∑
i=0

(−1)i
(
n

i

)
(z − i)n−3qi,n(z) = −5

3
(z − 1)2(z − 2)2

when 1 ≤ z ≤ 2, and

⌊z⌋∑
i=0

(−1)i
(
n

i

)
(z − i)n−3qi,n(z) =

5

2
(z − 2)2(z − 3)2.

when 2 ≤ z ≤ 5/2. Therefore, (12) vanishes when z is equal to 1 or 2. Moreover,

(12) is positive when 0 < z < 1 or 2 < z < 5/2 and negative when 1 < z < 2.

Since ρ−5 is equal to 2 and ρ+5 to 1, Theorem 2.1 implies the following.

Proposition 3.2: Assume that d is greater than 5. If

t ∈

[
0,

√
5

2
− 2√

5

[
∪

]√
5

2
− 2√

5
,

√
5

2
− 1√

5

[
∪

]√
5

2
− 1√

5
,

√
5

2

[



CORRIGENDUM TO “LOCAL EXTREMA FOR HYPERCUBE SECTIONS” 9

then the (d− 1)-dimensional volume of H ∩ [0, 1]d is not locally extremal (even

weakly so) when H is orthogonal to an order 5 sub-diagonal of [0, 1]d.

Above dimension 5 the relative behavior of (11) and (12) becomes steadier. In

particular one obtains using symbolic computation that for any integer n such

that 4 ≤ n ≤ 300, there exist two values σ−
n and σ+

n in the interval ]0, n/2[,

labeled with the convention that σ+
n < σ−

n , such that (12) vanishes when z is

equal to σ−
n or σ+

n , is positive when 0 ≤ z < σ+
n or σ−

n < z < n/2, and negative

when σ+
n < z < σ−

n . These computations also show that σ+
n is less than ρ+n and

that σ−
n is less than ρ−n but greater than ρ+n for all the considered values of n.

In particular the following statement is obtained from Theorem 2.1.

Proposition 3.3: Assume that 6 ≤ n ≤ 300 and that n < d. There exists two

numbers σ−
n and σ+

n independent from d such that if

t ∈
]√

n

2
− ρ−n√

n
,

√
n

2
− σ−

n√
n

[
then the (d − 1)-dimensional volume of H ∩ [0, 1]d is strictly locally maximal

when H is orthogonal to an order n sub-diagonal of [0, 1]d. However, if

t ∈
]√

n

2
− ρ+n√

n
,

√
n

2
− σ+

n√
n

[
then the (d − 1)-dimensional volume of H ∩ [0, 1]d is strictly locally minimal

when H is orthogonal to an order n sub-diagonal of [0, 1]d. Finally, if

t ∈
[
0,

√
n

2
− ρ−n√

n

[
∪
]√

n

2
− σ−

n√
n
,

√
n

2
− ρ+n√

n

[
∪
]√

n

2
− σ+

n√
n
,

√
n

2

[
then that volume is not locally minimal or maximal (even weakly so) when H

is orthogonal to an order n sub-diagonal of [0, 1]d.
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