Interaction Homme-Machine Interaction multimodale

Jeudi 4 novembre 2010

Intervenante

Laurence Nigay, professeur à l'Université Joseph Fourier Grenoble 1 Laboratoire d'Informatique de Grenoble (LIG) - Équipe Ingénierie de l'Interaction Homme-Machine B.P. 53 - 38041 Grenoble cedex 9 Laurence.nigay@imag.fr http://iihm.imag.fr/nigay/

Laurence Nigay est Professeur à l'Université Joseph Fourier et responsable de l'équipe "Ingénierie de l'Interaction Homme-Machine" (IIHM) du LIG. Le CNRS lui a décerné la médaille de bronze en 2002 pour ses travaux de recherche. Depuis septembre 2004, elle est membre de l'Institut Universitaire de France.

Elle est responsable depuis 2006 du Master 2 Professionnel Génie Informatique (M2Pro GI). Elle enseigne les modèles (conception ergonomique et conception logicielle) pour l'Interaction Homme-Machine, l'interaction multimodale, l'interaction sur supports mobiles et les collecticiels en M2Pro GI, en 3^{ème} année de Polytech' Grenoble filière RICM (Réseaux Informatiques et Communication Multimédia), en 1^{ère} année de Polytech' Grenoble filière TIS (Technologies de l'Information pour la Santé) et en M2 Recherche.

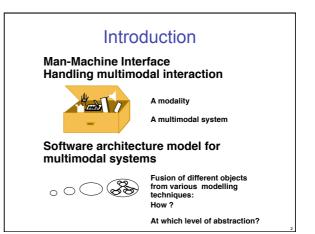
Ses travaux de thèse présentés en 1994 ont trait à l'interaction multimodale et à ses aspects logiciels. Ses travaux de recherche actuels ont trait à la conception et à la modélisation logicielles des systèmes interactifs. Parmi les systèmes, ses travaux portent particulièrement sur les interfaces utilisateur qui intègrent les aspects innovants de la technologie en communication homme-machine : les systèmes multimodaux, les systèmes sur supports mobiles et les systèmes de réalité augmentée et les collecticiels. Elle a effectué plusieurs séjours à l'Université de Carnegie-Mellon (USA) et a été visiteur scientifique à l'Université de Glasgow pendant un an (2002). Elle a été coresponsable du groupe de travail international WG 2.7 "Ingénierie de l'interaction" de l'IFIP jusqu'en juillet 2004 et a participé pendant 5 ans aux travaux du projet européen ESPRIT AMODEUS puis le réseau européen TMR-TACIT. Elle a ensuite participé au réseau d'excellence européen SIMILAR (FP6, 2003-2007) sur la multimodalité et a été coresponsable du groupe de travail sur l'interaction multimodale et celui sur les collecticiels et est actuellement coresponsable du groupe de travail sur l'informatique mobile et ubiquitaire. Elle est aussi membre du comité de programme des colloques AVI, CHI, MobileHCI, DSVIS, EHCI, INTERACT, EIS, IHM et UBIMOB. Elle a publié plus de 150 articles dans des conférences internationales, chapitres dans des livres, articles de revues et est co-auteur du livre "Design Principles for Interactive Software" (Chapman&Hall, Groupe WG2.7 de l'IFIP).

Contenu du cours

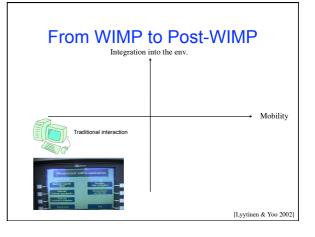
Le cours a pour thème la conception et la réalisation des systèmes interactifs. Parmi ces systèmes, nous étudions les interfaces utilisateur qui intègrent les aspects de la technologie actuelle en interaction homme-machine : les interfaces multimodales. Nous soulignons aussi que la multimodalité est un vecteur intégrateur de nombreuses techniques d'interaction innovantes comme les interfaces tangibles, manipulables (Embodied User Interface) et les interfaces sur supports mobiles.

Le cours comprend trois parties :

- Introduction : domaine en évolution permanente, panorama des modalités d'interaction et exemples de systèmes multimodaux
- Espaces de conception et de classification des systèmes multimodaux : cette partie est dédiée à la conception ergonomique des interfaces multimodales
- Plateforme logicielle : Lien entre la conception et une approche à composants

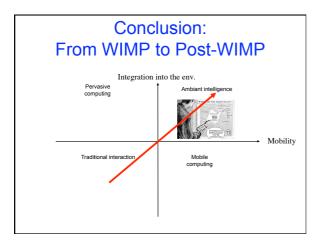

Les concepts avancés d'interaction seront illustrés au moyen de nombreux exemples par le biais de vidéos et démonstrations.

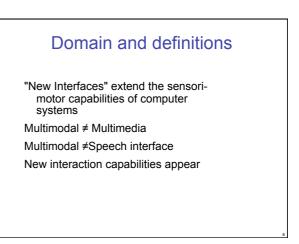
Mots-clefs


Multimodalité, modalité d'interaction, système interactif, interface homme-machine, espace de conception, langage d'interaction, dispositif physique.

Multimodality: Introduction

Domain Definitions Path to evolution





From WIMP	to Post-WIMP
Traditional interaction	Mobile computing Palace Hotel Admiran's Inn Hotel 1929 A A

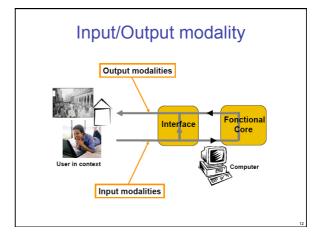
Conclusion: From WIMP to Post-WIMP					
Integration i	nto the env.				
Pervasive computing	·	Mobility			
Traditional interaction	Mobile computing	2			

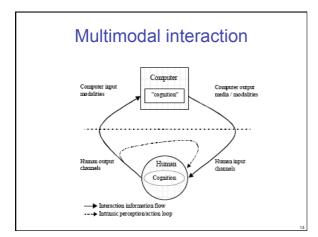
Laurence Nigay –Interaction multimodale

Media - Modality

- Media
 - material (signal on a channel)
 - the support of communication
- Modality
 - a channel or path of communication between the human and the computer
 - sensorial (audition, vision, etc.)
 - of communicating (voice, gestures, facial expressions, etc.)
 - A modality is a process of receiving and producing
 - chunks of information

Multimedia - Multimodality


- · Multimedia system
 - transport signals of different kinds
 - For ex.: a sound clip attached to a presentation


Multimodal system

- interpret signs belonging to various sensory and communication modalities
 - For ex.: the combined input of speech and typing in a word processor

Multimodal and crossmodal

- Multimodal interaction makes use of several input and/or feedback modalities in interacting with a computer system.
 - Examples of modalities: manual gestures, gaze, touch, speech, head & body movements
 - Modality: human sensory channel, different representation modality, or different input method
- Crossmodal interaction makes use of a different human sensory modality to present information typically presented through another modality.

Why multimodal?

- Most technologies are mature
- Seek to optimize the distribution of information over different modalities
- For adaptive, cooperative and flexible interaction among people

Why multimodal?

- Naturalness
- provide more "natural" interfaces Usability
 Usability / flexibility
- improve ease-of-use
- Robustness/Efficiency/Accuraccy
- decrease error rates (Mutual disambiguation of recognition errors)
 Perception
- Relieve burden on the visual channel
- Support users with disabilities

Natural interaction and multimodality

- Natural interaction is the long-term goal of being able to communicate with machines in the same ways in which humans communicate with one another
 - Input/output audiovisual speech, facial expression, gesture, gaze, body posture, physical action, touch, etc.
- · Natural interaction is multimodal by nature

Why multimodal?

- · Flexibility for Robutness
 - Advantages for error recovery
 - · Users intuitively pick the modality that is less error-prone
 - Language is often simplified
 Users intuitively switch modality after an error, so that the same problem is not repeated
- Flexibility for
 - Users with disability (permanent or temporary)
 - Variable usage context (mobile support)
- The flexibility of a multimodal interface can accommodate a wide range of users, tasks, and environments for which any given single mode may not suffice

Input Multimodality

- Because of the user's circumstances including her task, her background, her training, her knowledge, and the physical and interactive behaviour of the computer interface – the user may well have preferences as to how she communicates with the computer.
 - A familiar example is that if the user is engaged in a task which occupies her hands, she may prefer to use speech.
 - Another example: Suppose that the user wishes to book a flight from somewhere in Europe to Las Vegas. She may not know what is the nearest international airport, so she would prefer to indicate her destination by pointing on a map – or at the very least, by choosing from an appropriately filtered list of airports.

Why multimodal?

• What do these persons have in common?

Why multimodal?

- Enabling the user
- New multimodal technologies enable the user to be better engaged in the interaction to receive more information through several modalities
- Multimodal interaction makes using of information technology possible for people with special needs, e.g., for blind and visually impaired people

Why multimodal?

- The combination of human output channels effectively (multimodal input interaction) increases the bandwidth of the human machine channel.
 - This has been discovered in many empirical studies of multimodal human computer interaction

Why multimodal? Nevertheless...

- Adding extra output modality requires more neurocomputational resources and will lead to deteriorated output quality resulting in reduced effective bandwidth.
- Two types of effects are usually observed:
 - a slowdown of all output processes, and
 - interference errors due to the fact that attention cannot be divided between the number of output channels.
- Two examples of this: writing when speaking, and speaking when driving a car.

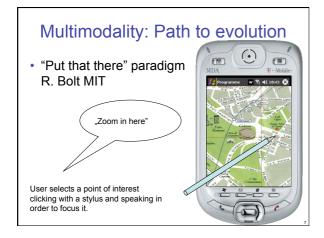
Three paradigms for multimodality

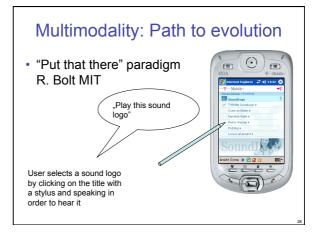
- · Computer as tool
- Multiple input modalities are used to enhance direct manipulation behavior of the system
 - the computer is a passive tool and tries to understand the user through all the different input modalities that the system recognizes
 - the user is responsible for initiating the actionsfollows the principles of direct manipulation
 - [Shneiderman, 1982]

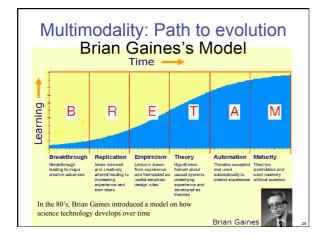
Three paradigms for multimodality

- Computer as partner
- The multiple modalities are used to increase the anthropomorphism of the user interface

 agent based conversational user interfaces
 - multimodal output is important: talking heads and other humanlike presentation modalities
 - speech recognition is a common input modality in these systems, and speech synthesis is used as an output modality


Three paradigms for multimodality


- Proactive computing (ubicomp, PUI, ...)
- The multiple modalities are used to sense the user and the environment
 - multimodal (multisensory) input is important
 - the functionality of the system depends on the level of deduction (AI) the system is capable of protective functionality is often in the background and
 - proactive functionality is often in the background and only indirectly visible for the user, predicting his/her actions and needs


Multimodality: Path to evolution

Since 1980 "Put that there" paradigm
 R. Bolt MIT

SIGCHI

Readings

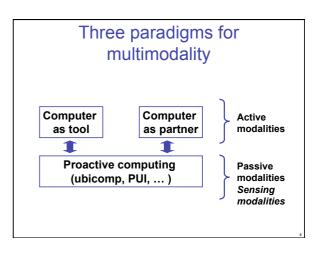
- ACM SIGCHI: ACM's Special Interest Group on Computer-Human Interaction

 http://www.sigchi.org/
- ICMI conference
- International Conference on Multimodal Interfaces
 CHI conference
- Computer Human Interface
- UIST conference
- User Interface Software and technology
 MobileHCI conference
 - Human Computer Interaction with Mobile Devices and Services

Multimodal systems

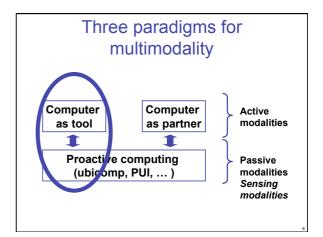
Application domains Examples

Application domains

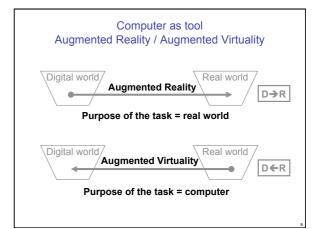


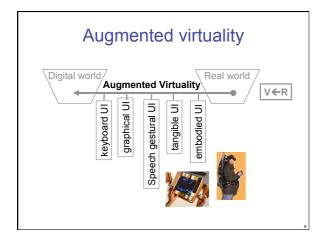
Three paradigms for multimodality

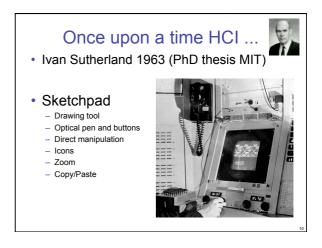
Computer as tool

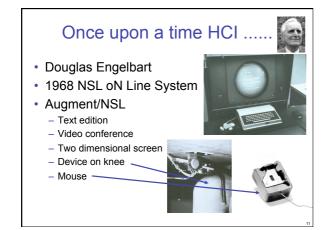

 Multiple input modalities are used to enhance direct manipulation behavior of the system

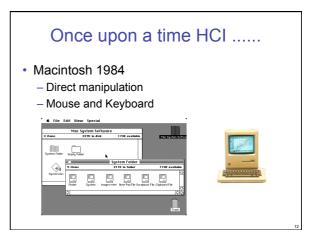
- Computer as partner
 The multiple modalities are used to increase the anthropomorphism of the user interface
- Proactive computing (ubicomp, PUI, ...)
 The multiple modalities are used to sense the user and the environment

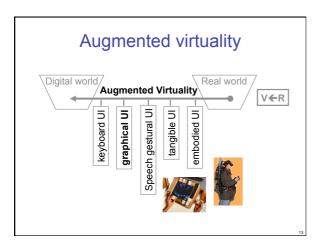

Active/Passive modalities

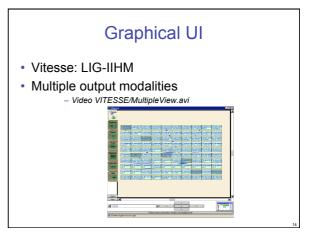

- Active modalities are used by the user to issue a command to the computer (e.g., a voice command)
- Passive modalities are used to capture relevant information for enhancing the realization of the task, information that is not explicitly expressed by the user to the computer such as eye tracking location/orientation tracking etc.
- Combination of active and passive modalities

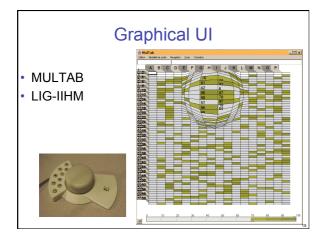


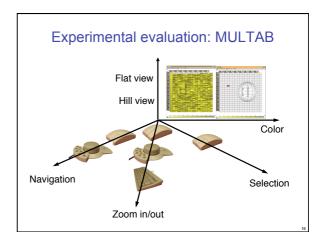

Computer as tool Multimodality

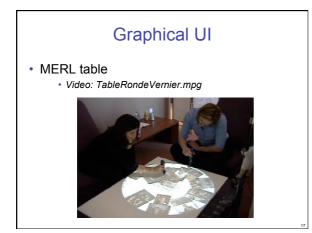

- Computer as tool
- The user is responsible for initiating the actions
- Multiple input/output modalities are used to enhance direct manipulation behavior of the system
 - Interaction modalities

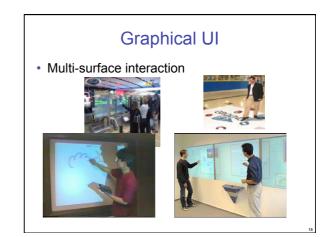


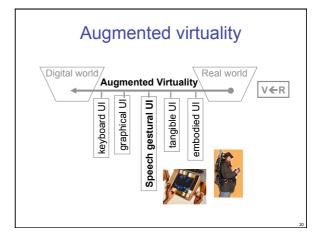












Manipulation and stereo

- · Input modalities
 - 3D gesture
 - Speech
- · Sensing modalities
 - Head tracker
 - Eye gaze tracker

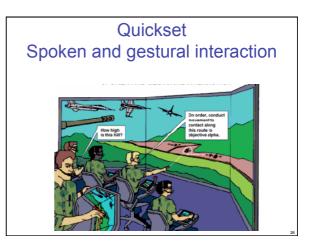
Meditor: Multimode Text Editor

- MEDITOR: Y. Bellick LIMSI-Paris
- · Combines keyboard, Braille terminal, a French text-to-speech synthesiser, and a speech recognition system
- · Allows Blind people to perform simple Document editing tasks

Meditor

Meditor Commands

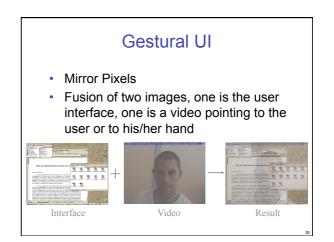
- To put a word in italic The user says "*italic*" while clicking on any character of the word on the Braille terminal.
- To place a character into an exponent position
- The user says "character exponent" while clicking on the corresponding character.
- To delete a part of the text
- 1) The user says "begin selection" while clicking on the first character of the string to be deleted, 2) then says "end selection" while clicking on the last character, and 3) says "delete" to complete the command. The message feedback "selection deleted" is then generated by the speech-synthesizer.

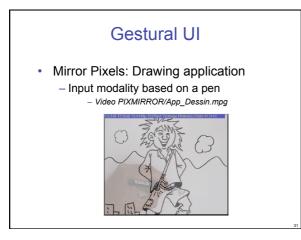

Speech + gesture

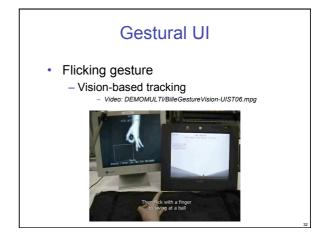
- VoicePaint LIG-IIHM
 - Graphical editor
 - Mouse + speech
 - · Change colors using speech while drawing using the mouse

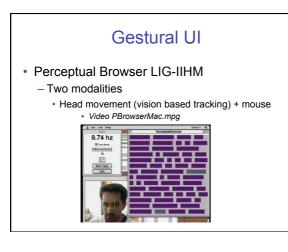
Quickset Spoken and gestural interaction

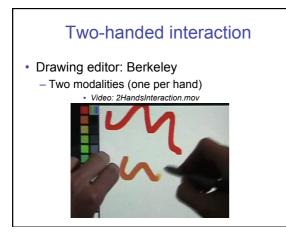

- Speech
- Pen input
 - Pointing (selection)Gesture recognition

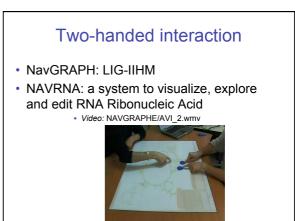


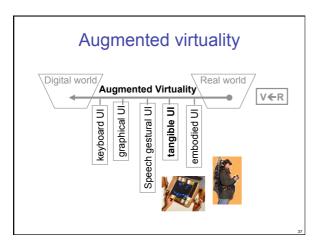


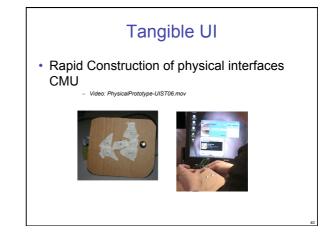


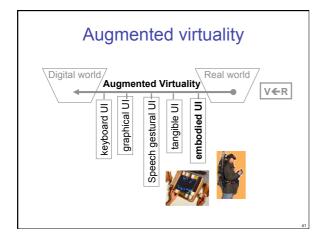


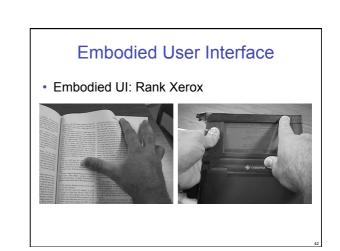










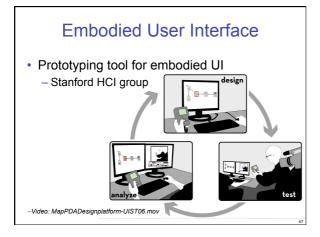


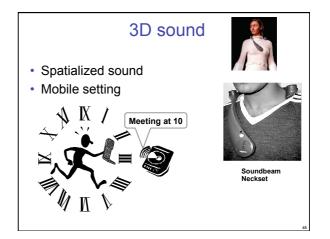
Embodied User Interface

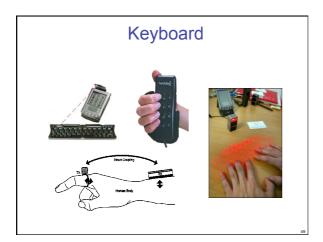
Embodied User Interface

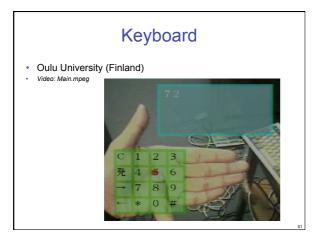
• Tilt and gesture based user input – Compaq project

Rock'n'Scroll Video: RocknScroll.mov

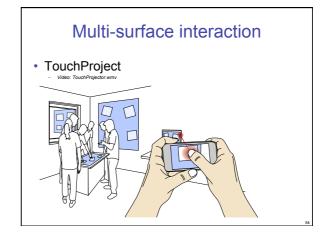

Embodied User Interface

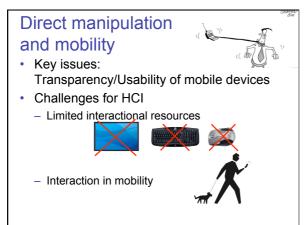

· Camera phone based motion sensing

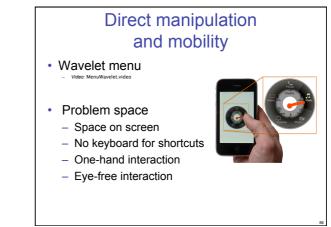

Uni. of California, Berkeley & IBM *Video*: Phone3DMvt-UIST06.mov

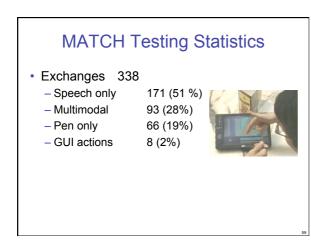


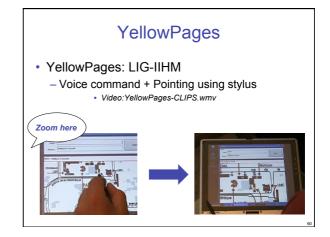
Laurence Nigay – Interaction multimodale

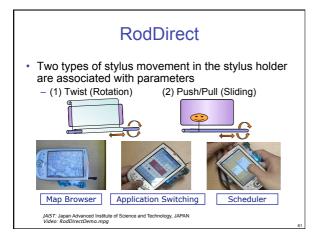






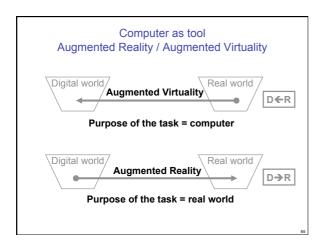

- Multimodal Access to City Help
- A Multimode Portable Device that accepts speech and pen gestures created by ATT&T

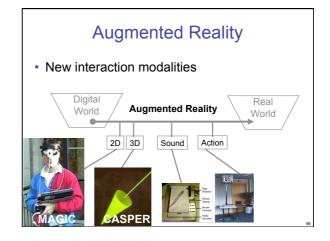


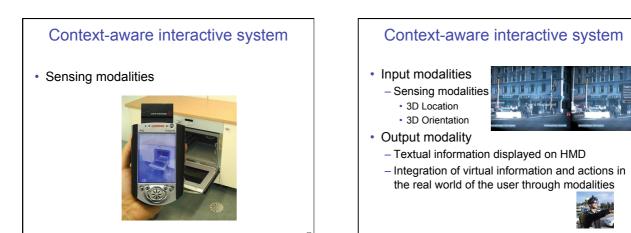

MATCH

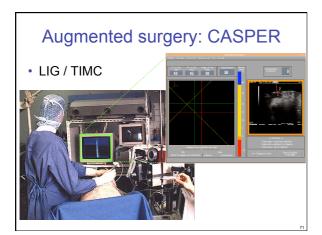
- Part of a multi-million, multi-year contract from DARPA
- Enables users to interact using speech, pen, or synchronized combinations of speech and pen
- Essentially a testbed for designing portable multimodal applications

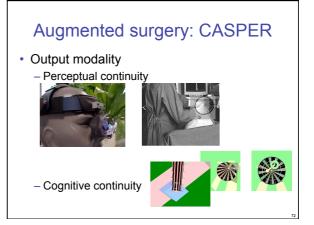
• Video: DEMOMULTI/CityPlannerATT.mpeg

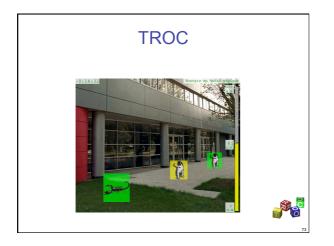


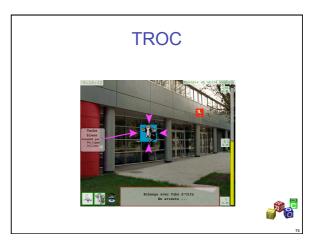


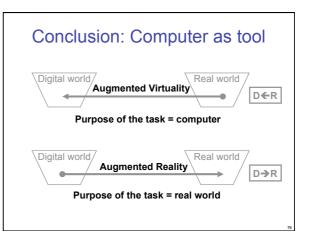


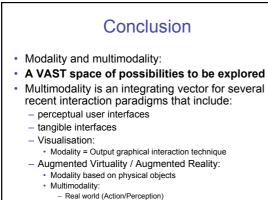


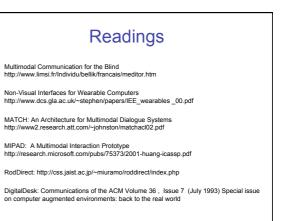


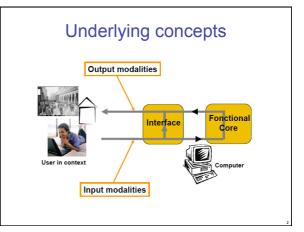




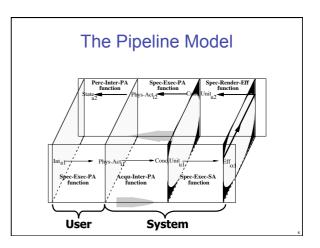


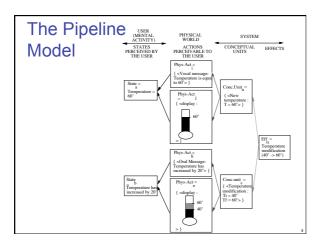


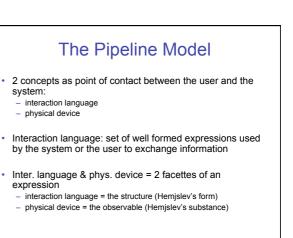



Real world (Action/Perception)
 Digital world (Action/Perception)

Readings

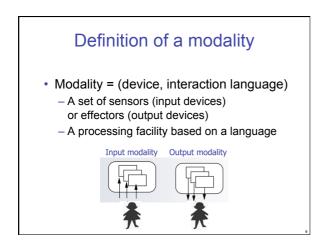

- Berkeley Institute of Design Uni. of California at Berkeley http://bid.berkeley.edu/
 Stanford HCI group http://hci.stanford.edu/research/
- Georgia Tech http://www.gvu.gatech.edu
- MIT Media Lab http://www.media.mit.edu/research/
- Carnegie Mellon Uni. HCI Institute http://
- www.hcii.cmu.edu/
- Uni. of Glasgow Multimodal Interaction Group http://www.dcs.gla.ac.uk/~stephen/
- Microsoft Research http://research.microsoft.com/research/





Underlying concepts The Pipeline Model

- A data flow model:
 - user's intention -> user's physical actions
 - system's acquisition function: user's physical actions -> input conceptual units
 - system's action:
 - input conceptual units -> an effect (a system state change) - system's rendering function:
 - effect -> output conceptual units
 - output conceptual units -> system's physical actions
 - user's perception, interpretation, evaluation · systems' physical actions -> new mental model

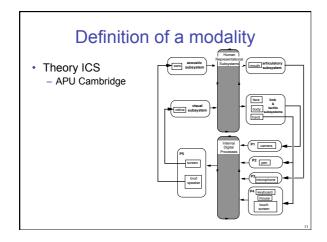

.

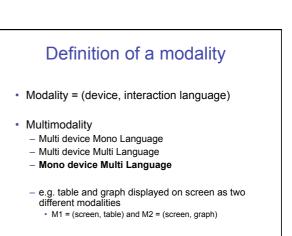
The Pipeline Model: the utility

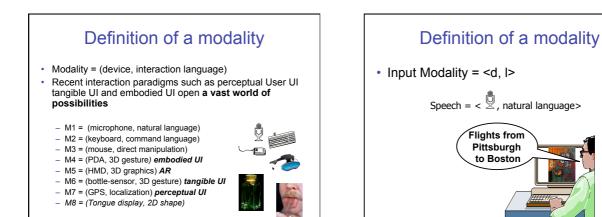
- A bridge between user and system perspectives using simple concepts: L&D
 - interaction language
 - physical device
- Derivation of properties that may be of interest for user modelers: the CARE props.
- complementarity, assignment, redundancy, equivalence
 Classification of interactionally rich systems in terms of
- L&D: the UOM method
- multiplicity of L&D
- in a given state, options for the system/the user between multiple L&D
- in a given state, usage by the system/the user of L&D
- Implication on software architectures – which components are L-dependent, D-dependent, etc.

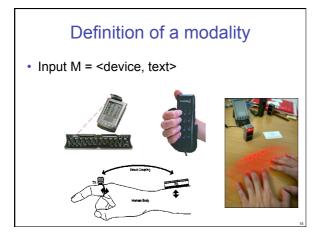
Underlying concepts Definition of a modality

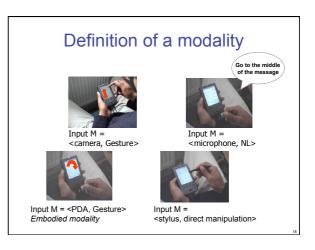
- Built-in cognitive capability of the system for interpretation and rendering
- Input modality Interpretation function: sequence of transformations from input "raw information"
- Output modality Rendering function: sequence of transformations to output "raw information"

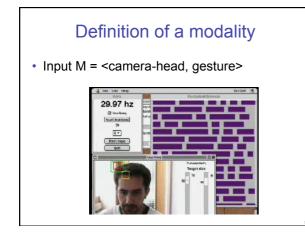


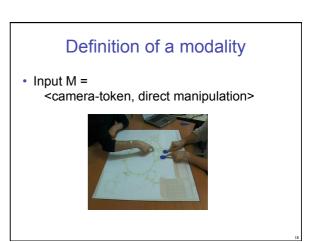

Definition of a modality

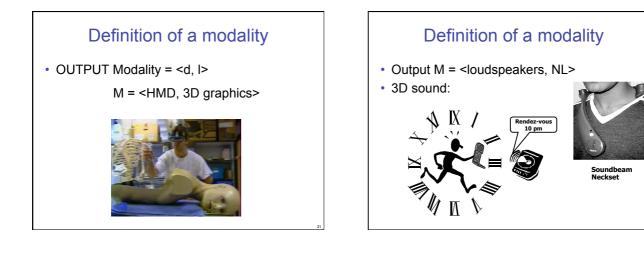

• Modality = (device, interaction language)

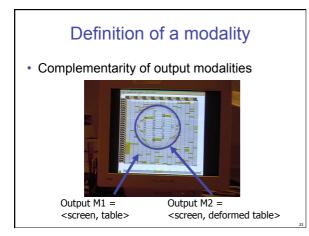

 A set of sensors (input devices) or effectors (output devices)
 Perception/Action

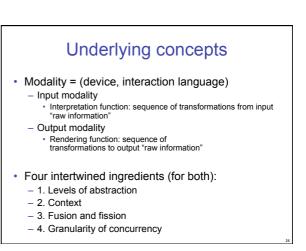

- A processing facility based on a language Cognition

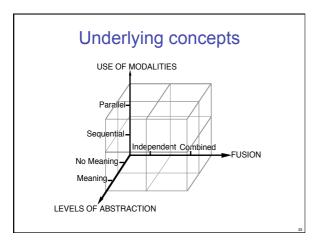


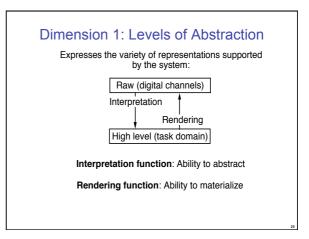



Laurence Nigay – Interaction multimodale


Definition of a modality • Input M = <bottle-sensor, gesture>


Definition of a modality Input Modalities (sensing modalities)


- M1 = <GPS, localization>
- M2= <magnetometer, orientation>



Dimension 1: Levels of Abstraction

Interpretation function Ability to abstract to	Rendering function Ability to materialize from	
Digital signal	Symbolic representation of meaning Pre-stored text message (text to speech)	
Word or a pattern of words		
Meaningful sentence	Pre-recorded vocal message	

MEANING / NO MEANING

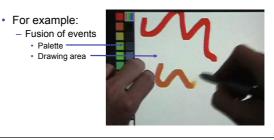
Dimension 1: Levels of Abstraction

- The capacity of abstraction may vary with the context
- Example : VI text editor
 - command mode: text is processed -> high level
 - input mode: text is recorded only -> raw
- Context of commands
 high level interpretation
- Context of task-domain data
 low level interpretation

Dimension 2: Use of Modalities

- · Supported use of modalities
- Sequential: Use of the modalities one after another
- Parallel: Use of multiple modalities simultaneously
 Multiple devices used simultaneously

Dimension 3: Fusion

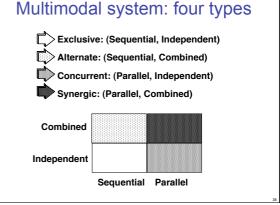

- Fusion: Combination of chunks
- It occurs at multiple levels of abstraction
- Lowest level: chunks from distinct modalities
- Higher levels: chunks from dictinct contexts

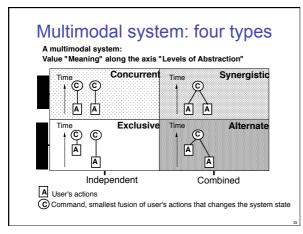
Dimension 3: Fusion

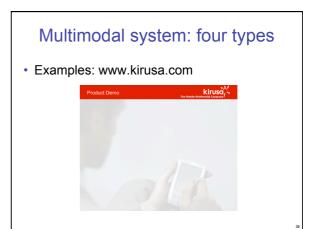
- · Lowest level: chunks from distinct modalities
- Independent: (Absence of fusion) Independent interpretation/rendering process for each modality
- Combined: (Presence of fusion) Fusion of data expressed using different modalities
 - "Put that there" paradigm
 - => Combination of different types of data

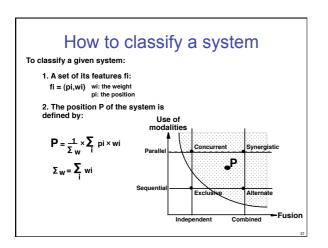
Dimension 3: Fusion

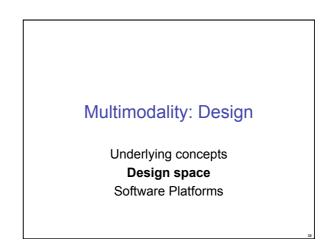
- Higher levels: chunks from dictinct contexts
- Single input channel, multiple context

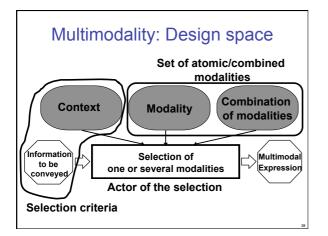


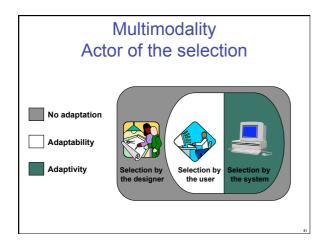

Multimodal versus multimedia

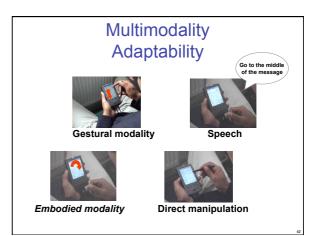

A multimodal system:

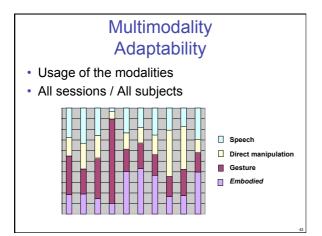

Value "Meaning" along the axis "Levels of Abstraction"

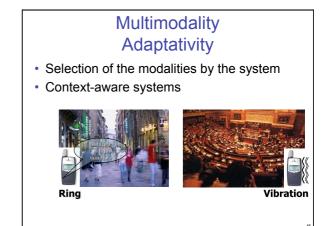

=> Four types of multimodal systems

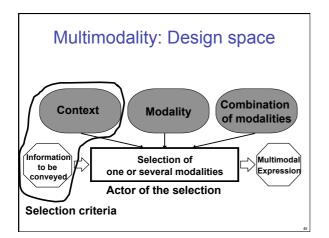


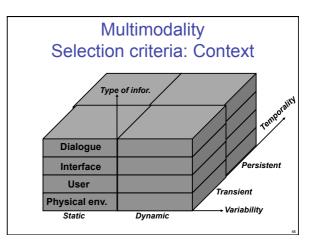


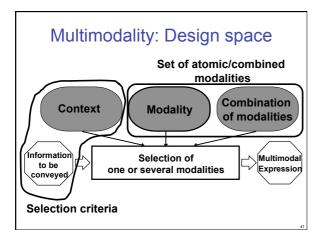


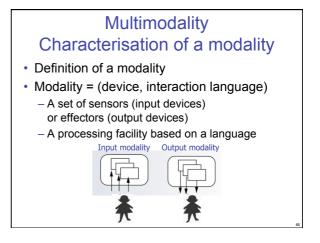


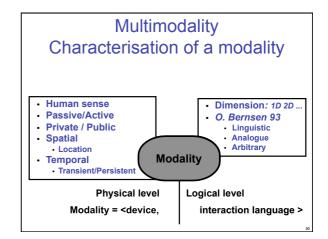


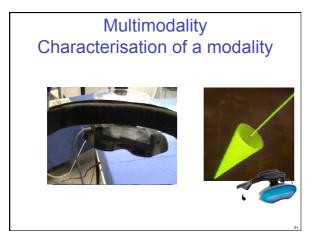


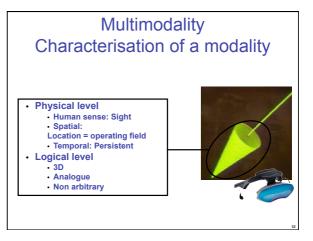


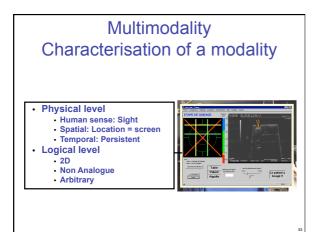


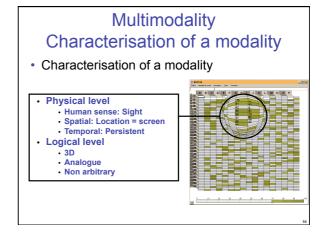


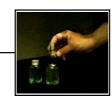


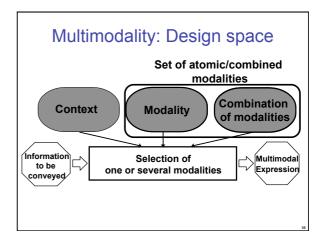

Multimodality Characterisation of a modality


- ACTIVE MODALITIES
 - For inputs, active modalities are used by the user to issue a command to the computer such as a pedal to move a laparoscope in a CAS system.


• PASSIVE - IMPLICIT MODALITIES


 Passive modalities are used to capture relevant information for enhancing the realization of the task, information that is not explicitly expressed by the user to the computer (PUI). For example tracking position.

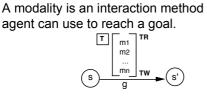

Multimodality Characterisation of a modality

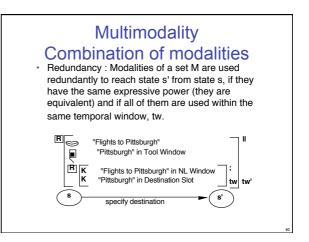

· Phycons as input modalities

Physical level Human manipulation Spatial: Location = desk
Temporal: Persistent Logical level

• 3D gesture

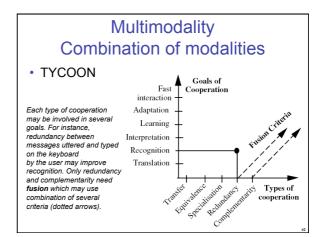
Analogue
 Non Arbitrary

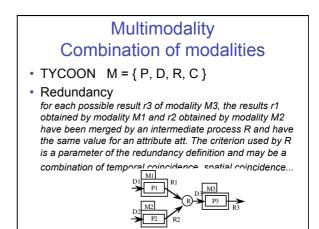

Multimodality Combination of modalities

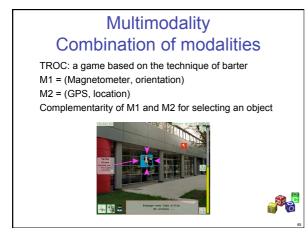

- · Several studies
- UOM 94 / TYCOON 95 / CARE 95
- CARE properties
 - Relationships between Devices, Interaction languages and Tasks
 - · C : Complementarity
 - A : AssignmentR : Redundancy
 - E : Equivalence

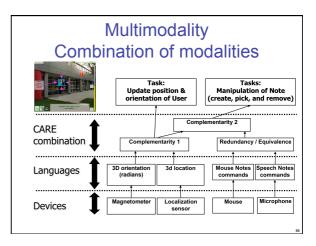
Combination of modalities Tasks CARE properties angu Assignmen Redundancy Equivalence Permanent Total Transient Partia ٠

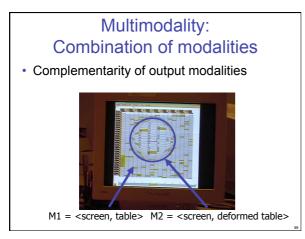
Multimodality


Multimodality Combination of modalities CARE properties · The formal expression of the CARE properties relies on the notions of state, goal, modality, and temporal relationships. · A modality is an interaction method that an

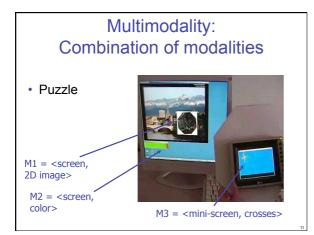


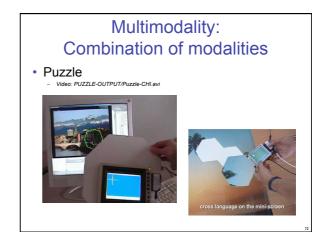

Multimodality Combination of modalities

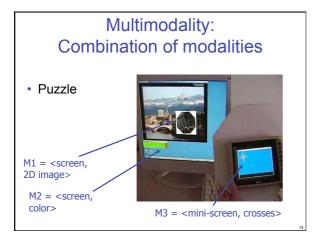

- Redundancy : Modalities of a set M are used redundantly to reach state s' from state s, if they have the same expressive power (they are equivalent) and if all of them are used within the same temporal window, tw.
 - Redundancy (s, M, s', tw) ⇔ Equivalence (s, M, s') ∧ (Sequential (M, tw) ∨ Parallel (M, tw))
 Parallel (M, tw) ⇔ (Card (M) > 1) ∧ (Duration(tw) ≠ ∞) ∧
 - $\begin{array}{l} \text{Parallel} (M, tw) \Leftrightarrow (Card (M) > 1) \land (Duration(tw) \neq \infty) \land \\ (\exists t \subseteq tw \cdot \forall m \in M \land Active (m, t)) \\ \cdot \text{ Sequential } (M, tw) \Leftrightarrow (Card (M) > 1) \land (Duration (tw) \neq \infty) \land \end{array}$
 - $(\forall t \in \mathsf{tw} \cdot (\forall m, m' \in \mathsf{M} \cdot \mathsf{Active}(m, t)) \Rightarrow \neg \mathsf{Active}(m', t)) \land (\forall m \in \mathsf{M} \cdot \exists t \in \mathsf{tw} \cdot \mathsf{Active}(m, t))$



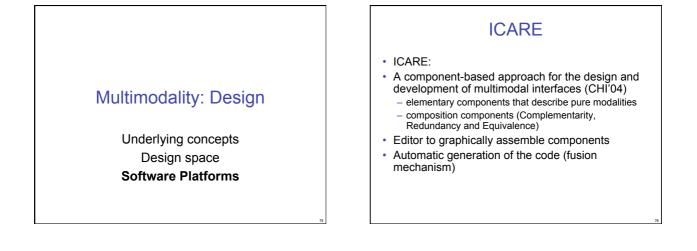
Multimodality Combination of modalities

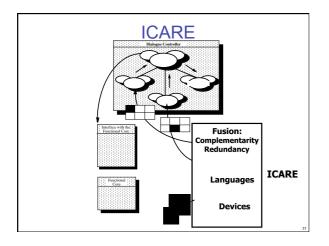

- Several studies
 UOM 94 / TYCOON 95 / CARE 95
- New combination space
 - Different schemas and aspects of combinations
 - 5 aspects: temporal, spatial, articulatory,
 - syntactic and semantic - 5 schemas: [Allen 83]

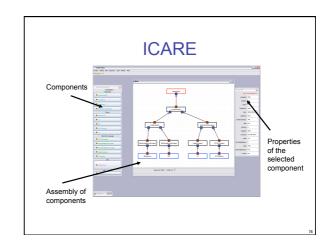

	Multimodality: Combination of modalities							
	Combination schemas							
cts		_						
aspects	Temporal	Anachronism	Sequence	Concomitance	Coincidence	Parallelism		
5 0	Spatial	Separation	Adjacency	Intersection	Overlaid	Collocation		
	Articulatory	Independence	Fission	Fission Duplication	Partial Duplication	Total Duplication		
noi	Syntactic	Difference	Completion	Divergence	Extension	Twin		
S	Semantic	Concurrency	Complementarity	Complementarity & Redundancy	Partial Redundancy	Total Redundancy		



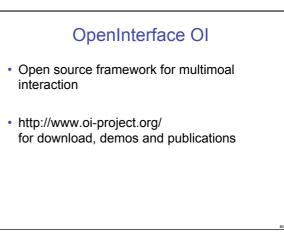
 Combination of modalities Combination of M1 = <screen, table=""> and M2 = <screen, deformed="" table=""></screen,></screen,> 						
Temporal	Anachronism	Sequence	Concomitance	Coincidence	Parallelism	
Spatial	Separation	Adjacency	Intersection	Overlaid	Collocation	
Articulatory	Independence	Fission	Fission Duplication	Partial Duplication	Total Duplication	
Syntactic	Difference	Completion	Divergence	Extension	Twin	
	Concurrency	Complementarity	Complementarity	Partial	Total	

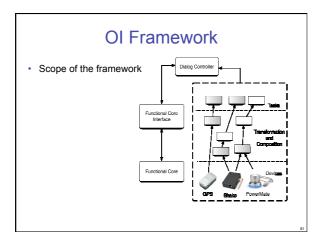

Multimodality:

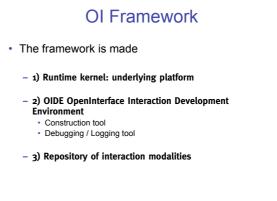


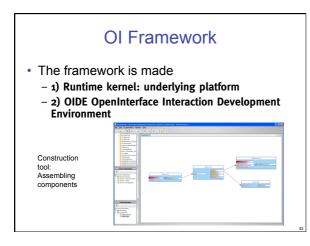


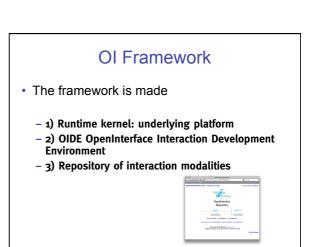
Multimodality: Combination of modalities • Combination of M2 = <screen, color=""> and M3 = <mini-screen, crosses=""></mini-screen,></screen,>						
Temporal	Anachronism	Sequence	Concomitance	Coincidence	Parallelism	
Spatial	Separation	Adjacency	Intersection	Overlaid	Collocation	
Articulatory	Independence	Fission	Fission Duplication	Partial Duplication	Total Duplication	
Syntactic	Difference	Completion	Divergence	Extension	Twin	
Semantic	Concurrency	Complementarity	Complementarity & Redundancy	Partial Redundancy	Total Redundancy	
74						

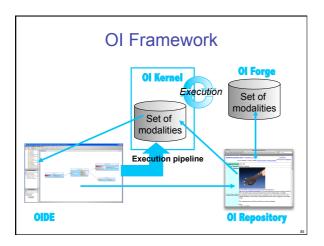


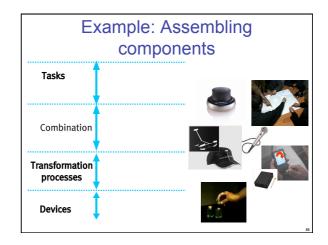

h

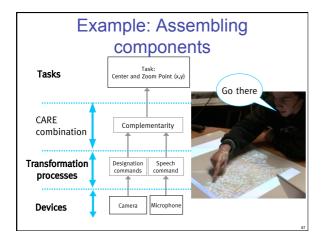


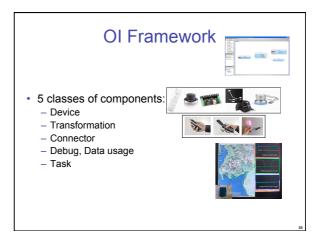


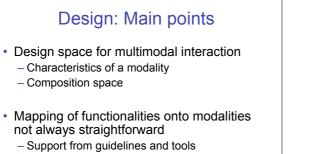




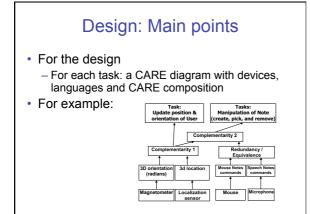








- Experimental study


Design: Main points

- · Design space for multimodal interaction - Characteristics of a modality

 - Composition space

· For the design

- For each task: a CARE diagram with devices, languages and CARE
 - composition
 - · Characteristics of the devices and languages
 - · Description of the CARE composition based on the composition space

Bernsen, N. Modality Theory in support of multimodal interface design. Proceedings of Intelligent Multi-Media Multi-Modal Systems, (1994), pp. 37-44 Bouchet, J., Nigay, L., Ganille, T. ICARE Software Components for Rapidly Developing Multimodal Interfaces. Proceedings of ICMI'04, ACM Press, pp. 251-258 251-258 http://lihm.imag.fr/publication/ Coutaz, J., et al. Four easy pieces for assessing the usability of multimodal interaction: The CARE properties, Proceedings of Interact'95, Chapman&Hall, pp. 115-120 http://lihm.imag.fr/publication/ Martin, J. C. TYCOON: Theoretical Framework and Software Tools for Multimodal Interfaces. Intelligence and Multimodality in Multimedia Interfaces, AAAI Press (1997)

- Nigay, L., Coutaz, J. The CARE Properties and Their Impact on Software Design. Intelligence and Multimodality in Multimedia Interfaces, (1997) http:// iihm.imag.fr/publication/ .
- Vernier, F., Nigay, L. A Framework for the Combination and Characterization of Output Modalities, Proceedings of DSV-IS2000, Springer-Verlag, pp. 32-48 http://iihm.imag.fr/publication/ OpenInterface http://www.oi-project.org/ •

•

.