From Proofs to Programs, Graphs and Dynamics. Geometric perspectives on computational complexity

> Thomas Seiller CNRS, LIPN (Paris 13 Univ.)

Cologne-Twente Workshop 2018 June 18th 2018, Paris

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Logic, Programs and Complexity

- Graphings and Logic
- Formalising a Conjecture
- The Classification Problem and Barriers
- Entropy and Lower Bounds

Proof Theory

Proof are formalized as trees constructed from a set of rules.

イロン イヨン イヨン イヨン

Example

June 18th, 2018 4/37

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Cut Elimination

Cut: using a lemma

$$\frac{\vdots \qquad \vdots}{\Gamma, A \vdash B \qquad \Delta \vdash A}{\Delta, \Gamma \vdash B} \operatorname{cut}$$

Theorem (Gentzen)

If A is prouvable, there exists a cut-free proof of A.

The main interest of this result lies in its proof: a (local) procedure of cut-elimination is exhibited.

• First Layer: Types | Formulas

• First Layer: Types | Formulas

• Integers: nat := $\forall X \ (X \to X) \to (X \to X)$

• First Layer: Types | Formulas

- Integers: nat := $\forall X \ (X \to X) \to (X \to X)$
- ▶ Functions from integers to integers: $nat \rightarrow nat$

• First Layer: Types | Formulas

- Integers: nat := $\forall X \ (X \to X) \to (X \to X)$
- ▶ Functions from integers to integers: $nat \rightarrow nat$

• Second Layer: Programs | Proofs

• First Layer: Types | Formulas

- Integers: nat := $\forall X (X \rightarrow X) \rightarrow (X \rightarrow X)$
- ▶ Functions from integers to integers: $nat \rightarrow nat$

• Second Layer: Programs | Proofs

▶ (Cut-free) Proofs of type nat are exactly "Church integers" (iterators $f \mapsto f^k$).

• First Layer: Types | Formulas

- Integers: nat := $\forall X \ (X \to X) \to (X \to X)$
- ▶ Functions from integers to integers: $nat \rightarrow nat$

• Second Layer: Programs | Proofs

▶ (Cut-free) Proofs of type nat are exactly "Church integers" (iterators $f \mapsto f^k$).

• Third Layer: Computation | Normalisation

• First Layer: Types | Formulas

- Integers: nat := $\forall X \ (X \to X) \to (X \to X)$
- ▶ Functions from integers to integers: nat → nat

• Second Layer: Programs | Proofs

▶ (Cut-free) Proofs of type nat are exactly "Church integers" (iterators $f \mapsto f^k$).

• Third Layer: Computation | Normalisation

Given [n] and [f], proofs of nat and nat → nat respectively, we can define the proof cut([f], [n]):

$$\begin{array}{ccc} [f] & [n] \\ \vdots & \vdots \\ \hline nat \vdash nat & \vdash nat \\ \hline \vdash nat & \end{array} _{cut}$$

• First Layer: Types | Formulas

- Integers: nat := $\forall X \ (X \to X) \to (X \to X)$
- ▶ Functions from integers to integers: nat → nat

• Second Layer: Programs | Proofs

▶ (Cut-free) Proofs of type nat are exactly "Church integers" (iterators $f \mapsto f^k$).

• Third Layer: Computation | Normalisation

Given [n] and [f], proofs of nat and nat → nat respectively, we can define the proof cut([f], [n]):

$$\begin{array}{cccc}
[f] & [n] \\
\vdots & \vdots \\
\underline{nat \vdash nat} & \vdash nat \\
\hline
\vdash nat
\end{array}$$
cut

• The cut elimination procedure applied to [f][n] corresponds (step by step) to the computation of f(n). The cut-free proof it produces is equal to [f(n)].

Geometry of Interaction is a mathematical model of proofs' dynamics.

Logic	Computer Science	
Formulas	Types	
Proof	Program	
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	
Proof	Data	
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	
Cut Rule	Application	
$\operatorname{cut}(\pi, \rho)$	f(n)	
Cut elimination	Computation	
$\operatorname{cut}(\pi, \rho) \rightsquigarrow \mu \vdash \operatorname{Nat}$	$f(n) \rightsquigarrow m : \operatorname{nat}$	
(Linear) Negation	Test	

Geometry of Interaction is a mathematical model of proofs' dynamics.

Logic	Computer Science	GoI
Formulas	Types	
Proof	Program	
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	
Proof	Data	
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	
Cut Rule	Application	
$\operatorname{cut}(\pi, \rho)$	f(n)	
Cut elimination	Computation	
$\operatorname{cut}(\pi, \rho) \rightsquigarrow \mu \vdash \operatorname{Nat}$	$f(n) \rightsquigarrow m : \operatorname{nat}$	
(Linear) Negation	Test	

Geometry of Interaction is a mathematical model of proofs' dynamics.

Logic	Computer Science	GoI
Formulas	Types	
Proof	Program	Operator
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	$F\in \mathscr{L}(\mathbb{H}\oplus\mathbb{H})$
Proof	Data	Operator
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	$N \in \mathscr{L}(\mathbb{H})$
Cut Rule	Application	
$\operatorname{cut}(\pi, \rho)$	f(n)	
Cut elimination	Computation	
$\operatorname{cut}(\pi, \rho) \rightsquigarrow \mu \vdash \operatorname{Nat}$	$f(n) \rightsquigarrow m : \operatorname{nat}$	
(Linear) Negation	Test	

Geometry of Interaction is a mathematical model of proofs' dynamics.

Logic	Computer Science	GoI
Formulas	Types	
Proof	Program	Operator
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	$F \in \mathscr{L}(\mathbb{H} \oplus \mathbb{H})$
Proof	Data	Operator
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	$N \in \mathscr{L}(\mathbb{H})$
Cut Rule	Application	Functional Equation
$\operatorname{cut}(\pi, \rho)$	f(n)	$\begin{cases} F(x \oplus y) &= x' \oplus y' \\ N(x') &= x \end{cases}$
Cut elimination	Computation	
$\operatorname{cut}(\pi, \rho) \rightsquigarrow \mu \vdash \operatorname{Nat}$	$f(n) \rightsquigarrow m : \operatorname{nat}$	
(Linear) Negation	Test	

Geometry of Interaction is a mathematical model of proofs' dynamics.

Logic	Computer Science	GoI
Formulas	Types	
Proof	Program	Operator
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	$F\in \mathscr{L}(\mathbb{H}\oplus\mathbb{H})$
Proof	Data	Operator
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	$N \in \mathscr{L}(\mathbb{H})$
Cut Rule	Application	Functional Equation
$\operatorname{cut}(\pi, \rho)$	f(n)	$\begin{cases} F(x \oplus y) &= x' \oplus y' \\ N(x') &= x \end{cases}$
Cut elimination	Computation	Construction of a solution
$\operatorname{cut}(\pi, \rho) \rightsquigarrow \mu \vdash \operatorname{Nat}$	$f(n) \rightsquigarrow m : \operatorname{nat}$	$\operatorname{Ex}(F,A)(y) = y' \in \mathcal{L}(\mathbb{H})$
(Linear) Negation	Test	

Geometry of Interaction is a mathematical model of proofs' dynamics.

Logic	Computer Science	GoI
Formulas	Types	
Proof	Program	Operator
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	$F\in \mathscr{L}(\mathbb{H}\oplus\mathbb{H})$
Proof	Data	Operator
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	$N \in \mathscr{L}(H)$
Cut Rule	Application	Functional Equation
$\operatorname{cut}(\pi, \rho)$	f(n)	$\begin{cases} F(x \oplus y) &= x' \oplus y' \\ N(x') &= x \end{cases}$
Cut elimination	Computation	Construction of a solution
$\operatorname{cut}(\pi, \rho) \rightsquigarrow \mu \vdash \operatorname{Nat}$	$f(n) \rightsquigarrow m : \operatorname{nat}$	$\operatorname{Ex}(F,A)(y) = y' \in \mathcal{L}(\mathbb{H})$
(Linear) Negation	Test	Orthogonality \downarrow

Geometry of Interaction is a mathematical model of proofs' dynamics.

Logic	Computer Science	GoI
Formulas	Types	Sets of Operators
Proof	Program	Operator
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	$F\in \mathscr{L}(\mathbb{H}\oplus\mathbb{H})$
Proof	Data	Operator
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	$N \in \mathscr{L}(\mathbb{H})$
Cut Rule	Application	Functional Equation
$\operatorname{cut}(\pi, \rho)$	f(n)	$\begin{cases} F(x \oplus y) &= x' \oplus y' \\ N(x') &= x \end{cases}$
Cut elimination	Computation	Construction of a solution
$\operatorname{cut}(\pi, \rho) \rightsquigarrow \mu \vdash \operatorname{Nat}$	$f(n) \rightsquigarrow m : \operatorname{nat}$	$\operatorname{Ex}(F,A)(y) = y' \in \mathcal{L}(\mathbb{H})$
(Linear) Negation	Test	Orthogonality \downarrow

E.g. nat \rightarrow nat is defined as $\{f \mid \forall n \in \text{nat}, \forall t \in \text{nat}^{\perp}, \text{Ex}(f, n) \perp t\}$.

・ロト ・ 日 ト ・ 日 ト ・ 日

• 1st Layer: Types | Formulas: Descriptive complexity

Informally

Descriptive Complexity (DC) studies types of logics whose individual sentences characterise exactly particular complexity classes.

• 2nd Layer: Programs | Proofs: Implicit complexity

• 3rd Layer: Computation | Normalisation: Constrained Linear Logic

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• 1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)

The class NPTIME is the set of problems definable by existential second order boolean formulas.

• 2nd Layer: Programs | Proofs: Implicit complexity

• 3rd Layer: Computation | Normalisation: Constrained Linear Logic

・ロト ・同ト ・ヨト ・ヨ

• 1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)

The class NPTIME is the set of problems definable by existential second order boolean formulas.

• 2nd Layer: Programs | Proofs: Implicit complexity

Informally

Implicit Computational Complexity (ICC) studies algorithmic complexity only in terms of restrictions of languages and computational principles, for instance considering restrictions on recursion schemes.

• 3rd Layer: Computation | Normalisation: Constrained Linear Logic

• 1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)

The class NPTIME is the set of problems definable by existential second order boolean formulas.

• 2nd Layer: Programs | Proofs: Implicit complexity

Example Theorem (Bellantoni and Cook 92)

The class FPTIME is the smallest class of functions containing constants, projections, successors, predecessor and conditional (if $a \mod 2 = 0$), and closed under Predicative Recursion on Notation and Safe Composition.

• 3rd Layer: Computation | Normalisation: Constrained Linear Logic

• 1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)

The class NPTIME is the set of problems definable by existential second order boolean formulas.

• 2nd Layer: Programs | Proofs: Implicit complexity

Example Theorem (Bellantoni and Cook 92)

The class FPTIME is the smallest class of functions containing constants, projections, successors, predecessor and conditional (if $a \mod 2 = 0$), and closed under Predicative Recursion on Notation and Safe Composition.

• 3rd Layer: Computation | Normalisation: Constrained Linear Logic

Informally

Constrained Linear Logic studies restrictions of proof systems in which the cut-elimination procedure has a bounded complexity.

・ロト ・回 ト ・ ヨト ・ ヨ

• 1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)

The class NPTIME is the set of problems definable by existential second order boolean formulas.

• 2nd Layer: Programs | Proofs: Implicit complexity

Example Theorem (Bellantoni and Cook 92)

The class FPTIME is the smallest class of functions containing constants, projections, successors, predecessor and conditional (if $a \mod 2 = 0$), and closed under Predicative Recursion on Notation and Safe Composition.

• 3rd Layer: Computation | Normalisation: Constrained Linear Logic

Example Theorem (Girard, Scedrov and Scott 92)

 $\label{eq:proofs} \textit{Proofs of nat} \rightarrow \textit{nat in Bounded Linear Logic compute exactly the} \\ \textit{polynomial-time computable functions FPTIME.} \end{cases}$

Theorem (Girard '06)

Let $a, b \in \mathscr{L}(\mathbb{H})$ be operators with norm ≤ 1 . Then $\operatorname{Ex}(a, b)$ exists, is unique, and lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Image: A math a math

Theorem (Girard '06)

Let $a, b \in \mathscr{L}(\mathbb{H})$ be operators with norm ≤ 1 . Then $\operatorname{Ex}(a, b)$ exists, is unique, and lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Conjecture

Different von Neumann algebras = different degrees of expressivity.

Image: A math a math

Theorem (Girard '06)

Let $a, b \in \mathcal{L}(\mathbb{H})$ be operators with norm ≤ 1 . Then Ex(a, b) exists, is unique, and lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Conjecture

Different von Neumann algebras = different degrees of expressivity.

This wild idea rests upon the following results:

- $\mathscr{L}(\mathbb{H})$ models pure lambda-calculus (Turing-complete);
- the type II_{∞} hyperfinite factor $\mathscr{R}_{0,1}$ models ELEM;
- a sub-algebra of $\mathcal{R}_{0,1}$ characterises LOGSPACE (w/ Aubert);

イロト イポト イヨト イヨ

Theorem (Girard '06)

Let $a, b \in \mathcal{L}(\mathbb{H})$ be operators with norm ≤ 1 . Then Ex(a, b) exists, is unique, and lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Conjecture

Different von Neumann algebras = different degrees of expressivity.

This wild idea rests upon the following results:

- $\mathscr{L}(\mathbb{H})$ models pure lambda-calculus (Turing-complete);
- the type II_{∞} hyperfinite factor $\mathscr{R}_{0,1}$ models ELEM;
- a sub-algebra of $\mathcal{R}_{0,1}$ characterises LOGSPACE (w/ Aubert);

Correction: fix a von Neumann algebra *and* a maximal abelian sub-algebra (masa); expressivity then coincides with Dixmier's classification of masas.

Theorem (Girard '06)

Let $a, b \in \mathcal{L}(\mathbb{H})$ be operators with norm ≤ 1 . Then Ex(a, b) exists, is unique, and lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Conjecture

Different pairs $\mathfrak{A} \subset \mathfrak{N}$ = different degrees of expressivity.

This wild idea rests upon the following results:

- $\mathscr{L}(\mathbb{H})$ models pure lambda-calculus (Turing-complete);
- the type II_{∞} hyperfinite factor $\mathscr{R}_{0,1}$ models ELEM;
- a sub-algebra of $\mathcal{R}_{0,1}$ characterises LOGSPACE (w/ Aubert);

Correction: fix a von Neumann algebra *and* a maximal abelian sub-algebra (masa); expressivity then coincides with Dixmier's classification of masas.

- Logic, Programs and Complexity
- Graphings and Logic
- Formalising a Conjecture
- The Classification Problem and Barriers
- Entropy and Lower Bounds

Towards a logic of programs

Informal Definition

A program is a dynamical process possibly involving exchange/duplication/erasure/modification of information.

[Complexity] Implicit Computational Complexity. Size-change termination (Lee, Jones, Ben-Amram), mwp-polynomials (Jones, Kristiansen), Loop peeling (Moyen, Rubiano, Seiller).

[Semantics] Dynamic Semantics Geometry of Interaction (Girard), Game Semantics (Abramsky/Jagadeesan/Malacaria, Hyland/Ong), Interaction Graphs (Seiller).

Towards a logic of programs

Informal Definition

A program is a dynamical process possibly involving exchange/duplication/erasure/modification of information.

[Complexity] Implicit Computational Complexity. Size-change termination (Lee, Jones, Ben-Amram), mwp-polynomials (Jones, Kristiansen), Loop peeling (Moyen, Rubiano, Seiller).

[Semantics] Dynamic Semantics Geometry of Interaction (Girard), Game Semantics (Abramsky/Jagadeesan/Malacaria, Hyland/Ong), Interaction Graphs (Seiller).

[Compilation] Compilation techniques.

Work by U. Schöpp (cf. Habilitation thesis), Loop peeling (Moyen, Rubiano, Seiller)

[VLSI design] Synthesis methods for VLSI design.

Geometry of Synthesis programme (Ghica).

Abstract Programs

To make the conjecture more tractable, we consider concrete pairs $\mathfrak{A} \subset \mathfrak{N}$, based on the group measure space construction of Murray and von Neumann:

- Consider a group *G* acting on a measure space *X*, then:
 - X induces a hilbert space $L^2(X)$;
 - G induces unitaries acting on $L^2(X)$ generating an algebra \mathfrak{N} ;
 - ► *X* induces a maximal abelian subalgebra $\mathfrak{A} = L^{\infty}(X)$.

Note: The following setting generalises the construction above.

Abstract Programs

To make the conjecture more tractable, we consider concrete pairs $\mathfrak{A} \subset \mathfrak{N}$, based on the group measure space construction of Murray and von Neumann:

- Consider a group *G* acting on a measure space *X*, then:
 - X induces a hilbert space $L^2(X)$;
 - G induces unitaries acting on $L^2(X)$ generating an algebra \mathfrak{N} ;
 - ▶ *X* induces a maximal abelian subalgebra $\mathfrak{A} = L^{\infty}(X)$.

Note: The following setting generalises the construction above.

Definition

An abstract model of computation (AMC) is defined as a monoid action $\alpha : M \cap \mathbf{X}$ of a monoid $M = M(G, \mathbb{R})$ on a space \mathbf{X} . I.e. a morphism $\alpha : M \to \text{End}(\mathbf{X})$.

Definition

An *abstract program* is a α -graphing.
What's a graphing?

- (Multi)Graph = Collection of edges.
- Graphing = Collection of *realised edges*.
- $\bullet\,$ Replace vertices by subspaces of the underlying space X.
- Decide *how* (i.e. pick an element of M) the edges map sources to targets.

• Then quotient the set of such objects w.r.t. *refinement*:

A bit more on graphings

Graphings were introduced by Adams in the context of ergodic theory. They also appear as certain limits of graphs (cf. Aldous-Lyons conjecture).

A bit more on graphings

Graphings were introduced by Adams in the context of ergodic theory. They also appear as certain limits of graphs (cf. Aldous-Lyons conjecture).

Definition

Given an AMC α : $M \cap \mathbf{X}$, an α -graphing is a collection of pairs (S,m) where $S \subset \mathbf{X}$ and $m \in M$.

A bit more on graphings

Graphings were introduced by Adams in the context of ergodic theory. They also appear as certain limits of graphs (cf. Aldous-Lyons conjecture).

Definition

Given an AMC α : $M \cap \mathbf{X}$, an α -graphing is a collection of pairs (S,m) where $S \subset \mathbf{X}$ and $m \in M$.

One can consider restrictions of graphings:

- Discrete space: multigraphs;
- Deterministic Graphings: Dynamical Systems
- Probabilistic Graphings: Markov processes*

Execution

The functional equation:

$$F(x \oplus y) = x' \oplus y'$$
$$N(x') = x$$

can be expressed diagrammatically:

イロン イヨン イヨン イヨン

Execution

The functional equation:

$$F(x \oplus y) = x' \oplus y'$$
$$N(x') = x$$

can be expressed diagrammatically:

・ロト ・ 日 ト ・ ヨ ト ・ ヨ

Execution

The functional equation:

$$F(x \oplus y) = x' \oplus y'$$
$$N(x') = x$$

can be expressed diagrammatically:

A solution $F:: N : Y \to Y$ is then computed as a fixpoint.

Image: A match a ma

Execution as Paths

The execution F:: G of two graphs F, G is the graph of alternating paths of source and target in $V^F \Delta V^G$.

Image: A match a ma

Execution as Paths

The execution F:: G of two graphs F, G is the graph of alternating paths of source and target in $V^F \Delta V^G$.

・ コ ト ・ 日 ト ・ 回 ト ・

Execution as Paths

The execution F:: G of two graphs F, G is the graph of alternating paths of source and target in $V^F \Delta V^G$.

In some cases, cycles appear during this operation.

・ロト ・ 日 ト ・ 日 ト ・ 日

In some cases, cycles appear during this operation.

In some cases, cycles appear during this operation.

Remark

To define types, one needs to decide what these cycles mean.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ

In some cases, cycles appear during this operation.

Remark

To define types, one needs to decide what these cycles mean.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ

Orthogonality and Zeta

• Orthogonality in IG: defined by *measuring* cycles.

$$\llbracket F,G \rrbracket_m = \sum_{\pi \in \mathscr{C}(F,G)} m(\pi)$$

• This is related to Zeta functions of graphs (Ihara):

$$\zeta_G(z) = \prod_{\pi \in \mathscr{C}(G)} (1 - z^{\omega(\pi)})^{-1}$$

• The following property insures that types are defined properly:

$$\zeta_{F \circ (G+H)}(z) = \zeta_{F \circ G}(z)\zeta_{(F::G) \circ H}(z)$$

Execution in Graphings

Here the result of the execution is the graphing defined by the following set of edges: $\{a(db)^k ec\}_{k=0}^{\infty}$.

・ロト ・日ト・モート

Cycles in Graphings

(b) A cycle can become two (or more) cycles

Figure: Evolution of cycles through refinement

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hierarchies of models

Theorem (Seiller, APAL 2017)

For every AMC α , the set of α -graphings defines a non-degenerate model of Multiplicative-Additive Linear Logic.

• • • • • • • • • • • • • •

Hierarchies of models

Theorem (Seiller, APAL 2017)

For every AMC α , the set of α -graphings defines a non-degenerate model of Multiplicative-Additive Linear Logic.

Back to complexity:

- Within these models, consider the set of programs of type nat \rightarrow bool;
- Larger AMC implies more programs, i.e. more expressivity;
- Find some AMC characterising complexity classes.

- Logic, Programs and Complexity
- Graphings and Logic
- Formalising a Conjecture
- The Classification Problem and Barriers
- Entropy and Lower Bounds

イロン イヨン イヨン イヨン

AMC	det. model	non-det. model		prob. model
α_1	REGULAR	REGULAR	REGULAR	STOCHASTIC
:	÷		:	
α_k	D_k	N_k	$\operatorname{CO-N}_k$	\mathbf{P}_k
:	:	:	:	:
α_{∞}	LOGSPACE	NLOGSPACE	CONLOGSPACE	PLOGSPACE
β	PTIME	PTIME	PTIME	PTIME?
γ	PTIME	NPTIME	CONPTIME	PP?

- Only known correspondence between infinite hierarchies of mathematical objects and complexity classes.
- Indicates a strong connection between *geometry* and complexity: cf. AMC generalise *group actions*, use of (generalised) Zeta functions, (homotopy) equivalence between microcosms implies equality of the classes.

AMC	det. model	non-det. model		prob. model
α_1	REGULAR	REGULAR	REGULAR	STOCHASTIC
:	:	:		:
α_k	D_k	N_k	$\operatorname{CO-N}_k$	\mathbf{P}_k
:	:	:	:	:
$lpha_\infty$	LOGSPACE	NLOGSPACE	CONLOGSPACE	PLOGSPACE
β	PTIME	PTIME	PTIME	PTIME?
γ	PTIME	NPTIME	CONPTIME	PP?

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

AMC	det. model	non-det. model		prob. model
α_1	REGULAR	REGULAR	REGULAR	STOCHASTIC
:	÷	:	:	:
α_k	D_k	N_k	$\operatorname{CO-N}_k$	\mathbf{P}_k
:	:	:	:	:
α_{∞}	LOGSPACE	NLOGSPACE	CONLOGSPACE	PLOGSPACE
β	PTIME	PTIME	PTIME	PTIME?
γ	PTIME	NPTIME	CONPTIME	PP?

ヘロン ヘロン ヘビン ヘビン

AMC	det. model	non-det. model		prob. model
α_1	REGULAR	REGULAR	REGULAR	STOCHASTIC
:	÷	:	:	:
α_k	D_k	N_k	$\operatorname{CO-N}_k$	\mathbf{P}_k
÷	:	:	:	:
α_{∞}	LOGSPACE	NLOGSPACE	CONLOGSPACE	PLOGSPACE
β	PTIME	PTIME	PTIME	PTIME?
γ	PTIME	NPTIME	CONPTIME	PP?

ヘロン ヘロン ヘビン ヘビン

AMC	det. model	non-det. model		prob. model
α_1	REGULAR	REGULAR	REGULAR	STOCHASTIC
:	÷	:	:	:
α_k	D_k	N_k	$\operatorname{CO-N}_k$	\mathbf{P}_k
÷	:	:	:	:
α_{∞}	LOGSPACE	NLOGSPACE	CONLOGSPACE	PLOGSPACE
β	PTIME	PTIME	PTIME	PTIME?
γ	PTIME	NPTIME	CONPTIME	PP?

ヘロン ヘロン ヘビン ヘビン

AMC	det. model	non-det. model		prob. model
α_1	REGULAR	REGULAR	REGULAR	STOCHASTIC
	:		:	•
α_k	D_k	N_k	$\operatorname{CO-N}_k$	\mathbf{P}_k
:	:	:	:	:
$lpha_\infty$	LOGSPACE	NLOGSPACE	CONLOGSPACE	PLOGSPACE
β	PTIME	PTIME	PTIME	PTIME?
γ	PTIME	NPTIME	CONPTIME	PP?

Conjecture (Weak Conjecture)

If $\alpha \sim_{\text{full}} \beta$ then $\alpha \sim_{\text{O.E.}} \beta$.

Corollary

If $\alpha : M \cap \mathbf{X}$ and $\beta : N \cap \mathbf{Y}$ are separable (by e.g. ℓ^2 -Betti numbers), they characterise different complexity classes.

T. Seiller, CNRS

Strong Conjecture

Definition

An abstract model of computation (AMC) is defined as a monoid action $\alpha : M \cap \mathbf{X}$ of a monoid M on a space \mathbf{X} . I.e. a morphism $\alpha : M \to \text{End}(\mathbf{X})$.

Definition

An *abstract program* is a α -graphing.

Conjecture (Strong Conjecture)

Computational complexity of programs coincides with some tractable equivalences on monoid actions.

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Logic, Programs and Complexity
- Graphings and Logic
- Formalising a Conjecture
- The Classification Problem and Barriers
- Entropy and Lower Bounds

イロン イヨン イヨン イヨン

Complexity Theory, Today

• A number of separation results exist, most of them are from the 70s, but a lot of questions remain open. E.g. we know LOGSPACE \subseteq PSPACE, but not which of these are strict:

 $LOGSPACE \subset NLOGSPACE \subset NC \subset P \subset NP \subset PSPACE.$

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Complexity Theory, Today (well, in 2006)

June 18th, 2018 28/37

・ロト ・ 日 ト ・ ヨ ト ・ ヨ

Complexity Theory, Today

- Separation results were obtained, most of them in the 70s, but a lot of questions remain open. E.g. we know LOGSPACE \subseteq PSPACE, but not which of these are strict: LOGSPACE \subset NLOGSPACE \subset NC \subset P \subset NP \subset PSPACE.
- In fact, three major results are *negative results* (called *barriers*) showing that known proof methods for separation of complexity classes are inefficient w.r.t. currently open problems. They are: relativisation (1975), natural proofs (1995), and algebrization (2008).

• Thus: no proof methods for (new) separation results exist today.

• (Proviso) A single research program is considered as viable for obtaining new results: Mulmuley's *Geometric Complexity Theory* (GCT).

Barriers in Computational Complexity.

Morally, there are two barriers (here for PTIME vs. NPTIME):

- Relativization/Algebrization: Proof methods that are oblivious to the use/disuse of oracles are ineffective.
 - ▶ There exists oracles *A*, *B* such that:

 $\operatorname{Ptime}^{\mathscr{A}^{\sim}} \neq \operatorname{NPtime}^{\mathscr{A}}$

 $\mathsf{Ptime}^{\mathscr{B}} = \mathsf{NPtime}^{\mathscr{B}^{\sim}}$

- Natural Proofs: Proof methods expressible as (Large, Constructible) predicates on boolean functions are ineffective.
 - ► A natural proof for P/POLY implies that no pseudo-random generators (in P/POLY) have exponential hardness.

Conclusion: Lack of proof methods for separation.

イロト イポト イヨト

Barriers in Computational Complexity.

Morally, there are two barriers (here for PTIME vs. NPTIME):

- Relativization/Algebrization: Proof methods that are oblivious to the use/disuse of oracles are ineffective.
 - ▶ There exists oracles *A*, *B* such that:

 $\operatorname{Ptime}^{\mathscr{A}^{\sim}} \neq \operatorname{NPtime}^{\mathscr{A}}$

 $\operatorname{Ptime}^{\mathscr{B}} = \operatorname{NPtime}^{\mathscr{B}^{\sim}}$

- Natural Proofs: Proof methods expressible as (Large, Constructible) predicates on boolean functions are ineffective.
 - ► A natural proof for P/POLY implies that no pseudo-random generators (in P/POLY) have exponential hardness.

Conclusion: Lack of proof methods for separation.

イロト イポト イヨト

Geometric Complexity Theory

• GCT's aim is to prove PTIME \neq NPTIME using techniques from algebraic geometry (Mulmuley and Sohoni).

Geometric Complexity Theory

- GCT's aim is to prove PTIME \neq NPTIME using techniques from algebraic geometry (Mulmuley and Sohoni).
- Related to Algebraic complexity and Valiant's classes, GCT proposes a strategy for proving the permanent (VNPTIME-complete) cannot be embedded in the determinant (in VPTIME).

Geometric Complexity Theory

- GCT's aim is to prove PTIME \neq NPTIME using techniques from algebraic geometry (Mulmuley and Sohoni).
- Related to Algebraic complexity and Valiant's classes, GCT proposes a strategy for proving the permanent (VNPTIME-complete) cannot be embedded in the determinant (in VPTIME).
- Mulmuley did not expect results within the next 100 years. Recently several drawbacks, closing the easiest path to GCT (Ikenmeyer).
Geometric Complexity Theory

- GCT's aim is to prove PTIME \neq NPTIME using techniques from algebraic geometry (Mulmuley and Sohoni).
- Related to Algebraic complexity and Valiant's classes, GCT proposes a strategy for proving the permanent (VNPTIME-complete) cannot be embedded in the determinant (in VPTIME).
- Mulmuley did not expect results within the next 100 years. Recently several drawbacks, closing the easiest path to GCT (Ikenmeyer).
- Initiated after a proof of lower bound for a restricted algebraic PRAM model, which we note PRAM⁻. This model defines a class NC⁻ lying within NC (still quite large) and shows it is strictly contained within PTIME. **Considered by some as the strongest lower bounds result so far.**

イロト イボト イヨト イヨト

Why barriers do not apply to this approach:

• (Relativisation/Algebrization)

・ロト ・回 ト ・ ヨト ・ ヨ

Why barriers do not apply to this approach:

- (Relativisation/Algebrization)
 - How to describe oracles in this setting?

1

• • • • • • • • • • • • •

Why barriers do not apply to this approach:

- (Relativisation/Algebrization)
 - How to describe oracles in this setting?
 - ► It has to be defined *explicitly*, i.e. extend the AMC by adding a new computational principle as a map o: O → O;

Why barriers do not apply to this approach:

- (Relativisation/Algebrization)
 - How to describe oracles in this setting?
 - ► It has to be defined *explicitly*, i.e. extend the AMC by adding a new computational principle as a map o: O → O;
 - Impact the invariants: if $\alpha : M \cap \mathbf{X}$ and $\beta : N \cap \mathbf{Y}$ are separable, there are no reasons to believe that $\alpha + o : M \cap \mathbf{X}$ and $\beta + o : N \cap \mathbf{Y}$ are separable.

Why barriers do not apply to this approach:

- (Relativisation/Algebrization)
 - How to describe oracles in this setting?
 - ► It has to be defined *explicitly*, i.e. extend the AMC by adding a new computational principle as a map o: O → O;
 - Impact the invariants: if $\alpha : M \cap \mathbf{X}$ and $\beta : N \cap \mathbf{Y}$ are separable, there are no reasons to believe that $\alpha + o : M \cap \mathbf{X}$ and $\beta + o : N \cap \mathbf{Y}$ are separable.

• (Natural Proofs)

Why barriers do not apply to this approach:

- (Relativisation/Algebrization)
 - How to describe oracles in this setting?
 - ► It has to be defined *explicitly*, i.e. extend the AMC by adding a new computational principle as a map o: O → O;
 - Impact the invariants: if $\alpha : M \cap \mathbf{X}$ and $\beta : N \cap \mathbf{Y}$ are separable, there are no reasons to believe that $\alpha + o : M \cap \mathbf{X}$ and $\beta + o : N \cap \mathbf{Y}$ are separable.
- (Natural Proofs)
 - ▶ The approach violates the constructivity axiom of the Natural Proof barrier.

Why barriers do not apply to this approach:

- (Relativisation/Algebrization)
 - How to describe oracles in this setting?
 - ► It has to be defined *explicitly*, i.e. extend the AMC by adding a new computational principle as a map $o: \mathbf{O} \rightarrow \mathbf{O}$;
 - Impact the invariants: if $\alpha : M \cap \mathbf{X}$ and $\beta : N \cap \mathbf{Y}$ are separable, there are no reasons to believe that $\alpha + o : M \cap \mathbf{X}$ and $\beta + o : N \cap \mathbf{Y}$ are separable.
- (Natural Proofs)
 - The approach violates the constructivity axiom of the Natural Proof barrier.
 - More importantly, we can argue that if barriers exists in this setting then the separation problem is undecidable.

イロン イヨン イヨン イヨン

Why barriers do not apply to this approach:

- (Relativisation/Algebrization)
 - How to describe oracles in this setting?
 - ► It has to be defined *explicitly*, i.e. extend the AMC by adding a new computational principle as a map $o: \mathbf{O} \rightarrow \mathbf{O}$;
 - Impact the invariants: if $\alpha : M \cap \mathbf{X}$ and $\beta : N \cap \mathbf{Y}$ are separable, there are no reasons to believe that $\alpha + o : M \cap \mathbf{X}$ and $\beta + o : N \cap \mathbf{Y}$ are separable.
- (Natural Proofs)
 - The approach violates the constructivity axiom of the Natural Proof barrier.
 - More importantly, we can argue that if barriers exists in this setting then the separation problem is undecidable.
 - Uniformity seems to be easily expressed (while the Natural Proofs barrier applies to non-uniform classes).

イロト イボト イヨト イヨト

- Logic, Programs and Complexity
- Graphings and Logic
- Formalising a Conjecture
- The Classification Problem and Barriers
- Entropy and Lower Bounds

イロン イヨン イヨン イヨン

Entropy and Cells

We now only consider *deterministic topological graphings*.

Definition

Let **X** be a topological space and $f : \mathbf{X} \to \mathbf{X}$ be a continuous partial map. For any finite open cover \mathcal{U} of **X**, we define:

$$H^{k}_{\mathbf{X}}(f,\mathcal{U}) = \frac{1}{k} H^{0}_{f^{-k+1}(\mathbf{X})}(\mathcal{U} \vee f^{-1}(\mathcal{U}) \vee \cdots \vee f^{-(k-1)}(\mathcal{U}))$$

The *entropy* of *f* is then defined as $h(f) = \sup_{\mathcal{U} \in FCov(\mathbf{X})} h(f, \mathcal{U})$, where $h(f, \mathcal{U})$ is again defined as the limit $\lim_{n\to\infty} H^n_{\mathbf{X}}(f, \mathcal{U})$.

Proposition

Let G be a deterministic graphing, with entropy h(G). The cardinality of the k-th cell decomposition of **X** w.r.t. G, as a function c(k) of k, is asymptotically bounded by $g(k) = 2^k 2^{h([G])}$, i.e. c(k) = O(g(k)).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

イロン イロン イヨン イヨン

June 18th, 2018 35/37

イロン イロン イヨン イヨン

イロン イロン イヨン イヨン

June 18th, 2018 35/37

June 18th, 2018 35/37

イロン イヨン イヨン イヨン

June 18th, 2018 35/37

イロン イロン イヨン イヨン

June 18th, 2018 35/37

イロン イロン イヨン イヨン

イロン イヨン イヨン イヨン

イロン イヨン イヨン イヨン

イロト イヨト イヨト イヨト

• The *k*-cell decomposition has the following property: if two points belong to the same cell, they are both accepted or both rejected.

Image: A math a math

- The *k*-cell decomposition has the following property: if two points belong to the same cell, they are both accepted or both rejected.
- The graphing *f* computes a language \mathcal{L} in *k* steps if the *k*-cell decomposition is a refinement of the partition corresponding to \mathcal{L} .

- The *k*-cell decomposition has the following property: if two points belong to the same cell, they are both accepted or both rejected.
- The graphing *f* computes a language \mathcal{L} in *k* steps if the *k*-cell decomposition is a refinement of the partition corresponding to \mathcal{L} .

- The *k*-cell decomposition has the following property: if two points belong to the same cell, they are both accepted or both rejected.
- The graphing *f* computes a language \mathscr{L} in *k* steps if the *k*-cell decomposition is a refinement of the partition corresponding to \mathscr{L} .
- Show lower bounds by proving a given language is *too complex* for being refined this way. E.g.:

- The *k*-cell decomposition has the following property: if two points belong to the same cell, they are both accepted or both rejected.
- The graphing *f* computes a language \mathcal{L} in *k* steps if the *k*-cell decomposition is a refinement of the partition corresponding to \mathcal{L} .
- Show lower bounds by proving a given language is *too complex* for being refined this way. E.g.:
 - Bound the entropy of the graphing and deduce a bound on the number of connected components of the k-cell decomposition;

• • • • • • • • • • • • •

- The *k*-cell decomposition has the following property: if two points belong to the same cell, they are both accepted or both rejected.
- The graphing *f* computes a language \mathcal{L} in *k* steps if the *k*-cell decomposition is a refinement of the partition corresponding to \mathcal{L} .
- Show lower bounds by proving a given language is *too complex* for being refined this way. E.g.:
 - Bound the entropy of the graphing and deduce a bound on the number of connected components of the k-cell decomposition;
 - Produce a given language requiring more connected components.

• • • • • • • • • • • • •

Lower Bounds results

- Bound the number of connected components of the *k*-cell decomposition (Entropy, Regularity and Milnor-Thom theorem);
- Show a given language cannot be computed by a graphing in this class because it requires more connected components (Specific Proof).

The following theorems are proved using the strategy above (w/ L. Pellissier).

Theorem (Ben-Or 1983)

A set $W \subset \mathbf{R}^n$ with N connected components cannot be decided by a degree d algebraic decision tree of height less than $\log(N) - n$.

Theorem (Cucker 1992)

 $NC_{I\!\!R} \subsetneq Ptime_{I\!\!R}$

Theorem (Mulmuley 1999)

$$NC^{PRAM^{-}} \subsetneq Ptime$$

T. Seiller, CNRS

・ロト ・回 ト ・ ヨト ・ ヨ

From Proofs to Programs, Graphs and Dynamics. Geometric perspectives on computational complexity

> Thomas Seiller CNRS, LIPN (Paris 13 Univ.)

Cologne-Twente Workshop 2018 June 18th 2018, Paris

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A