
From Proofs to Programs, Graphs and Dynamics.
Geometric perspectives on computational complexity

Thomas Seiller
CNRS, LIPN (Paris 13 Univ.)

Cologne-Twente Workshop 2018
June 18th 2018, Paris

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 1 / 37



Logic, Programs and Complexity
Graphings and Logic

Formalising a Conjecture

The Classification Problem and Barriers

Entropy and Lower Bounds

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 2 / 37



Proof Theory

Proof are formalized as trees constructed from a set of rules.

axiom rules

hypotheses ` conclusion

A1 `A1
. . . An `An

A1, . . . ,An `B

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 3 / 37



Example

...
A`B

ax
A`A

ax
B`B ∧

A,B`A∧B
cut

A,A`A∧B
ctr

A`A∧B →`A→A∧B

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 4 / 37



Cut Elimination

Cut: using a lemma

...
Γ,A`B

...
∆`A

cut
∆,Γ`B

Theorem (Gentzen)
If A is prouvable, there exists a cut-free proof of A.

The main interest of this result lies in its proof: a (local) procedure of
cut-elimination is exhibited.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 5 / 37



Proofs as Programs – Curry-Howard – correspondence

First Layer: Types | Formulas

Ï Integers: nat :=∀X (X →X)→ (X →X)
Ï Functions from integers to integers: nat→ nat

Second Layer: Programs | Proofs

Ï (Cut-free) Proofs of type nat are exactly "Church integers" (iterators f 7→ f k).

Third Layer: Computation | Normalisation

Ï Given [n] and [f ], proofs of nat and nat→ nat respectively, we can define the
proof cut([f ], [n]):

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

Ï The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

→∗ ...
[f (n)]

` nat

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 6 / 37



Proofs as Programs – Curry-Howard – correspondence

First Layer: Types | Formulas
Ï Integers: nat :=∀X (X →X)→ (X →X)

Ï Functions from integers to integers: nat→ nat

Second Layer: Programs | Proofs

Ï (Cut-free) Proofs of type nat are exactly "Church integers" (iterators f 7→ f k).

Third Layer: Computation | Normalisation

Ï Given [n] and [f ], proofs of nat and nat→ nat respectively, we can define the
proof cut([f ], [n]):

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

Ï The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

→∗ ...
[f (n)]

` nat

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 6 / 37



Proofs as Programs – Curry-Howard – correspondence

First Layer: Types | Formulas
Ï Integers: nat :=∀X (X →X)→ (X →X)
Ï Functions from integers to integers: nat→ nat

Second Layer: Programs | Proofs

Ï (Cut-free) Proofs of type nat are exactly "Church integers" (iterators f 7→ f k).

Third Layer: Computation | Normalisation

Ï Given [n] and [f ], proofs of nat and nat→ nat respectively, we can define the
proof cut([f ], [n]):

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

Ï The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

→∗ ...
[f (n)]

` nat

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 6 / 37



Proofs as Programs – Curry-Howard – correspondence

First Layer: Types | Formulas
Ï Integers: nat :=∀X (X →X)→ (X →X)
Ï Functions from integers to integers: nat→ nat

Second Layer: Programs | Proofs

Ï (Cut-free) Proofs of type nat are exactly "Church integers" (iterators f 7→ f k).

Third Layer: Computation | Normalisation

Ï Given [n] and [f ], proofs of nat and nat→ nat respectively, we can define the
proof cut([f ], [n]):

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

Ï The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

→∗ ...
[f (n)]

` nat

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 6 / 37



Proofs as Programs – Curry-Howard – correspondence

First Layer: Types | Formulas
Ï Integers: nat :=∀X (X →X)→ (X →X)
Ï Functions from integers to integers: nat→ nat

Second Layer: Programs | Proofs
Ï (Cut-free) Proofs of type nat are exactly "Church integers" (iterators f 7→ f k).

Third Layer: Computation | Normalisation

Ï Given [n] and [f ], proofs of nat and nat→ nat respectively, we can define the
proof cut([f ], [n]):

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

Ï The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

→∗ ...
[f (n)]

` nat

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 6 / 37



Proofs as Programs – Curry-Howard – correspondence

First Layer: Types | Formulas
Ï Integers: nat :=∀X (X →X)→ (X →X)
Ï Functions from integers to integers: nat→ nat

Second Layer: Programs | Proofs
Ï (Cut-free) Proofs of type nat are exactly "Church integers" (iterators f 7→ f k).

Third Layer: Computation | Normalisation

Ï Given [n] and [f ], proofs of nat and nat→ nat respectively, we can define the
proof cut([f ], [n]):

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

Ï The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

→∗ ...
[f (n)]

` nat

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 6 / 37



Proofs as Programs – Curry-Howard – correspondence

First Layer: Types | Formulas
Ï Integers: nat :=∀X (X →X)→ (X →X)
Ï Functions from integers to integers: nat→ nat

Second Layer: Programs | Proofs
Ï (Cut-free) Proofs of type nat are exactly "Church integers" (iterators f 7→ f k).

Third Layer: Computation | Normalisation
Ï Given [n] and [f ], proofs of nat and nat→ nat respectively, we can define the

proof cut([f ], [n]):

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

Ï The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

→∗ ...
[f (n)]

` nat

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 6 / 37



Proofs as Programs – Curry-Howard – correspondence

First Layer: Types | Formulas
Ï Integers: nat :=∀X (X →X)→ (X →X)
Ï Functions from integers to integers: nat→ nat

Second Layer: Programs | Proofs
Ï (Cut-free) Proofs of type nat are exactly "Church integers" (iterators f 7→ f k).

Third Layer: Computation | Normalisation
Ï Given [n] and [f ], proofs of nat and nat→ nat respectively, we can define the

proof cut([f ], [n]):

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

Ï The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

→∗ ...
[f (n)]

` nat

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 6 / 37



Fourth Layer: Geometry of Interaction

Geometry of Interaction is a mathematical model of proofs’ dynamics.

Logic Computer Science

Formulas Types

Sets of Operators

Proof Program

Operator

π`Nat⇒Nat f : nat→ nat

F ∈L (H⊕H)

Proof Data

Operator

ρ `Nat n : nat

N ∈L (H)

Cut Rule Application

Functional Equation

cut(π,ρ) f (n)

{
F(x⊕y) = x′⊕y′
N(x′) = x

Cut elimination Computation

Construction of a solution

cut(π,ρ) µ`Nat f (n) m : nat

Ex(F,A)(y)= y′ ∈L (H)

(Linear) Negation Test

Orthogonality ‹

E.g. nat→ nat is defined as {f | ∀n ∈ nat,∀t ∈ nat‹ ,Ex(f ,n)‹ t}.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 7 / 37



Fourth Layer: Geometry of Interaction

Geometry of Interaction is a mathematical model of proofs’ dynamics.

Logic Computer Science GoI

Formulas Types

Sets of Operators

Proof Program

Operator

π`Nat⇒Nat f : nat→ nat

F ∈L (H⊕H)

Proof Data

Operator

ρ `Nat n : nat

N ∈L (H)

Cut Rule Application

Functional Equation

cut(π,ρ) f (n)

{
F(x⊕y) = x′⊕y′
N(x′) = x

Cut elimination Computation

Construction of a solution

cut(π,ρ) µ`Nat f (n) m : nat

Ex(F,A)(y)= y′ ∈L (H)

(Linear) Negation Test

Orthogonality ‹

E.g. nat→ nat is defined as {f | ∀n ∈ nat,∀t ∈ nat‹ ,Ex(f ,n)‹ t}.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 7 / 37



Fourth Layer: Geometry of Interaction

Geometry of Interaction is a mathematical model of proofs’ dynamics.

Logic Computer Science GoI

Formulas Types

Sets of Operators

Proof Program Operator
π`Nat⇒Nat f : nat→ nat F ∈L (H⊕H)

Proof Data Operator
ρ `Nat n : nat N ∈L (H)

Cut Rule Application

Functional Equation

cut(π,ρ) f (n)

{
F(x⊕y) = x′⊕y′
N(x′) = x

Cut elimination Computation

Construction of a solution

cut(π,ρ) µ`Nat f (n) m : nat

Ex(F,A)(y)= y′ ∈L (H)

(Linear) Negation Test

Orthogonality ‹

E.g. nat→ nat is defined as {f | ∀n ∈ nat,∀t ∈ nat‹ ,Ex(f ,n)‹ t}.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 7 / 37



Fourth Layer: Geometry of Interaction

Geometry of Interaction is a mathematical model of proofs’ dynamics.

Logic Computer Science GoI

Formulas Types

Sets of Operators

Proof Program Operator
π`Nat⇒Nat f : nat→ nat F ∈L (H⊕H)

Proof Data Operator
ρ `Nat n : nat N ∈L (H)

Cut Rule Application Functional Equation

cut(π,ρ) f (n)
{

F(x⊕y) = x′⊕y′
N(x′) = x

Cut elimination Computation

Construction of a solution

cut(π,ρ) µ`Nat f (n) m : nat

Ex(F,A)(y)= y′ ∈L (H)

(Linear) Negation Test

Orthogonality ‹

E.g. nat→ nat is defined as {f | ∀n ∈ nat,∀t ∈ nat‹ ,Ex(f ,n)‹ t}.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 7 / 37



Fourth Layer: Geometry of Interaction

Geometry of Interaction is a mathematical model of proofs’ dynamics.

Logic Computer Science GoI

Formulas Types

Sets of Operators

Proof Program Operator
π`Nat⇒Nat f : nat→ nat F ∈L (H⊕H)

Proof Data Operator
ρ `Nat n : nat N ∈L (H)

Cut Rule Application Functional Equation

cut(π,ρ) f (n)
{

F(x⊕y) = x′⊕y′
N(x′) = x

Cut elimination Computation Construction of a solution
cut(π,ρ) µ`Nat f (n) m : nat Ex(F,A)(y)= y′ ∈L (H)

(Linear) Negation Test

Orthogonality ‹

E.g. nat→ nat is defined as {f | ∀n ∈ nat,∀t ∈ nat‹ ,Ex(f ,n)‹ t}.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 7 / 37



Fourth Layer: Geometry of Interaction

Geometry of Interaction is a mathematical model of proofs’ dynamics.

Logic Computer Science GoI

Formulas Types

Sets of Operators

Proof Program Operator
π`Nat⇒Nat f : nat→ nat F ∈L (H⊕H)

Proof Data Operator
ρ `Nat n : nat N ∈L (H)

Cut Rule Application Functional Equation

cut(π,ρ) f (n)
{

F(x⊕y) = x′⊕y′
N(x′) = x

Cut elimination Computation Construction of a solution
cut(π,ρ) µ`Nat f (n) m : nat Ex(F,A)(y)= y′ ∈L (H)

(Linear) Negation Test Orthogonality ‹
E.g. nat→ nat is defined as {f | ∀n ∈ nat,∀t ∈ nat‹ ,Ex(f ,n)‹ t}.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 7 / 37



Fourth Layer: Geometry of Interaction

Geometry of Interaction is a mathematical model of proofs’ dynamics.

Logic Computer Science GoI

Formulas Types Sets of Operators
Proof Program Operator

π`Nat⇒Nat f : nat→ nat F ∈L (H⊕H)
Proof Data Operator
ρ `Nat n : nat N ∈L (H)

Cut Rule Application Functional Equation

cut(π,ρ) f (n)
{

F(x⊕y) = x′⊕y′
N(x′) = x

Cut elimination Computation Construction of a solution
cut(π,ρ) µ`Nat f (n) m : nat Ex(F,A)(y)= y′ ∈L (H)

(Linear) Negation Test Orthogonality ‹
E.g. nat→ nat is defined as {f | ∀n ∈ nat,∀t ∈ nat‹ ,Ex(f ,n)‹ t}.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 7 / 37



Logic and Complexity by Layers

1st Layer: Types | Formulas: Descriptive complexity

Informally
Descriptive Complexity (DC) studies types of logics whose individual sentences
characterise exactly particular complexity classes.

2nd Layer: Programs | Proofs: Implicit complexity

3rd Layer: Computation | Normalisation: Constrained Linear Logic

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 8 / 37



Logic and Complexity by Layers

1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)
The class NPTIME is the set of problems definable by existential second order
boolean formulas.

2nd Layer: Programs | Proofs: Implicit complexity

3rd Layer: Computation | Normalisation: Constrained Linear Logic

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 8 / 37



Logic and Complexity by Layers

1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)
The class NPTIME is the set of problems definable by existential second order
boolean formulas.

2nd Layer: Programs | Proofs: Implicit complexity

Informally
Implicit Computational Complexity (ICC) studies algorithmic complexity only
in terms of restrictions of languages and computational principles, for instance
considering restrictions on recursion schemes.

3rd Layer: Computation | Normalisation: Constrained Linear Logic

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 8 / 37



Logic and Complexity by Layers

1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)
The class NPTIME is the set of problems definable by existential second order
boolean formulas.

2nd Layer: Programs | Proofs: Implicit complexity

Example Theorem (Bellantoni and Cook 92)
The class FPTIME is the smallest class of functions containing constants,
projections, successors, predecessor and conditional (if a mod 2= 0), and closed
under Predicative Recursion on Notation and Safe Composition.

3rd Layer: Computation | Normalisation: Constrained Linear Logic

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 8 / 37



Logic and Complexity by Layers

1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)
The class NPTIME is the set of problems definable by existential second order
boolean formulas.

2nd Layer: Programs | Proofs: Implicit complexity

Example Theorem (Bellantoni and Cook 92)
The class FPTIME is the smallest class of functions containing constants,
projections, successors, predecessor and conditional (if a mod 2= 0), and closed
under Predicative Recursion on Notation and Safe Composition.

3rd Layer: Computation | Normalisation: Constrained Linear Logic

Informally
Constrained Linear Logic studies restrictions of proof systems in which the
cut-elimination procedure has a bounded complexity.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 8 / 37



Logic and Complexity by Layers

1st Layer: Types | Formulas: Descriptive complexity

Example Theorem (Fagin 74)
The class NPTIME is the set of problems definable by existential second order
boolean formulas.

2nd Layer: Programs | Proofs: Implicit complexity

Example Theorem (Bellantoni and Cook 92)
The class FPTIME is the smallest class of functions containing constants,
projections, successors, predecessor and conditional (if a mod 2= 0), and closed
under Predicative Recursion on Notation and Safe Composition.

3rd Layer: Computation | Normalisation: Constrained Linear Logic

Example Theorem (Girard, Scedrov and Scott 92)
Proofs of nat→ nat in Bounded Linear Logic compute exactly the
polynomial-time computable functions FPTIME.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 8 / 37



Fourth Layer: Geometry of Interaction

Theorem (Girard ’06)
Let a,b ∈L (H) be operators with norm É 1. Then Ex(a,b) exists, is unique, and
lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

This wild idea rests upon the following results:

L (H) models pure lambda-calculus (Turing-complete);

the type II∞ hyperfinite factor R0,1 models ELEM;

a sub-algebra of R0,1 characterises CONLOGSPACE and LOGSPACE (w/
Aubert);

Correction: fix a von Neumann algebra and a maximal abelian sub-algebra
(masa); expressivity then coincides with Dixmier’s classification of masas.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 9 / 37



Fourth Layer: Geometry of Interaction

Theorem (Girard ’06)
Let a,b ∈L (H) be operators with norm É 1. Then Ex(a,b) exists, is unique, and
lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Conjecture
Different von Neumann algebras = different degrees of expressivity.

This wild idea rests upon the following results:

L (H) models pure lambda-calculus (Turing-complete);

the type II∞ hyperfinite factor R0,1 models ELEM;

a sub-algebra of R0,1 characterises CONLOGSPACE and LOGSPACE (w/
Aubert);

Correction: fix a von Neumann algebra and a maximal abelian sub-algebra
(masa); expressivity then coincides with Dixmier’s classification of masas.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 9 / 37



Fourth Layer: Geometry of Interaction

Theorem (Girard ’06)
Let a,b ∈L (H) be operators with norm É 1. Then Ex(a,b) exists, is unique, and
lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Conjecture
Different von Neumann algebras = different degrees of expressivity.

This wild idea rests upon the following results:

L (H) models pure lambda-calculus (Turing-complete);

the type II∞ hyperfinite factor R0,1 models ELEM;

a sub-algebra of R0,1 characterises LOGSPACE (w/ Aubert);

Correction: fix a von Neumann algebra and a maximal abelian sub-algebra
(masa); expressivity then coincides with Dixmier’s classification of masas.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 9 / 37



Fourth Layer: Geometry of Interaction

Theorem (Girard ’06)
Let a,b ∈L (H) be operators with norm É 1. Then Ex(a,b) exists, is unique, and
lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Conjecture
Different von Neumann algebras = different degrees of expressivity.

This wild idea rests upon the following results:

L (H) models pure lambda-calculus (Turing-complete);

the type II∞ hyperfinite factor R0,1 models ELEM;

a sub-algebra of R0,1 characterises LOGSPACE (w/ Aubert);

Correction: fix a von Neumann algebra and a maximal abelian sub-algebra
(masa); expressivity then coincides with Dixmier’s classification of masas.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 9 / 37



Fourth Layer: Geometry of Interaction

Theorem (Girard ’06)
Let a,b ∈L (H) be operators with norm É 1. Then Ex(a,b) exists, is unique, and
lies in the unit ball of the von Neumann algebra generated by a and b.

(unit ball of) a von Neumann algebra = set of (untyped) programs

Conjecture
Different pairs A⊂N = different degrees of expressivity.

This wild idea rests upon the following results:

L (H) models pure lambda-calculus (Turing-complete);

the type II∞ hyperfinite factor R0,1 models ELEM;

a sub-algebra of R0,1 characterises LOGSPACE (w/ Aubert);

Correction: fix a von Neumann algebra and a maximal abelian sub-algebra
(masa); expressivity then coincides with Dixmier’s classification of masas.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 9 / 37



Logic, Programs and Complexity

Graphings and Logic
Formalising a Conjecture

The Classification Problem and Barriers

Entropy and Lower Bounds

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 10 / 37



Towards a logic of programs

Informal Definition
A program is a dynamical process possibly involving
exchange/duplication/erasure/modification of information.

[Complexity] Implicit Computational Complexity.
Size-change termination (Lee, Jones, Ben-Amram), mwp-polynomials (Jones,
Kristiansen), Loop peeling (Moyen, Rubiano, Seiller).

[Semantics] Dynamic Semantics
Geometry of Interaction (Girard), Game Semantics
(Abramsky/Jagadeesan/Malacaria, Hyland/Ong), Interaction Graphs (Seiller).

[Compilation] Compilation techniques.
Work by U. Schöpp (cf. Habilitation thesis), Loop peeling (Moyen, Rubiano, Seiller)

[VLSI design] Synthesis methods for VLSI design.
Geometry of Synthesis programme (Ghica).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 11 / 37



Towards a logic of programs

Informal Definition
A program is a dynamical process possibly involving
exchange/duplication/erasure/modification of information.

[Complexity] Implicit Computational Complexity.
Size-change termination (Lee, Jones, Ben-Amram), mwp-polynomials (Jones,
Kristiansen), Loop peeling (Moyen, Rubiano, Seiller).

[Semantics] Dynamic Semantics
Geometry of Interaction (Girard), Game Semantics
(Abramsky/Jagadeesan/Malacaria, Hyland/Ong), Interaction Graphs (Seiller).

[Compilation] Compilation techniques.
Work by U. Schöpp (cf. Habilitation thesis), Loop peeling (Moyen, Rubiano, Seiller)

[VLSI design] Synthesis methods for VLSI design.
Geometry of Synthesis programme (Ghica).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 11 / 37



Abstract Programs

To make the conjecture more tractable, we consider concrete pairs A⊂N, based
on the group measure space construction of Murray and von Neumann:

Consider a group G acting on a measure space X, then:
Ï X induces a hilbert space L2(X);
Ï G induces unitaries acting on L2(X) generating an algebra N;
Ï X induces a maximal abelian subalgebra A=L∞(X).

Note: The following setting generalises the construction above.

Definition
An abstract model of computation (AMC) is defined as a monoid action α : M æX
of a monoid M =M〈G,R〉 on a space X. I.e. a morphism α : M →End(X).

Definition
An abstract program is a α-graphing.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 12 / 37



Abstract Programs

To make the conjecture more tractable, we consider concrete pairs A⊂N, based
on the group measure space construction of Murray and von Neumann:

Consider a group G acting on a measure space X, then:
Ï X induces a hilbert space L2(X);
Ï G induces unitaries acting on L2(X) generating an algebra N;
Ï X induces a maximal abelian subalgebra A=L∞(X).

Note: The following setting generalises the construction above.

Definition
An abstract model of computation (AMC) is defined as a monoid action α : M æX
of a monoid M =M〈G,R〉 on a space X. I.e. a morphism α : M →End(X).

Definition
An abstract program is a α-graphing.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 12 / 37



What’s a graphing?

(Multi)Graph = Collection of edges.

Graphing = Collection of realised edges.

Replace vertices by subspaces of the underlying space X.

Decide how (i.e. pick an element of M) the edges map sources to targets.

[0,1] [1,2] [3,4] [4,5]

α(a) : x 7→ 5−x

α(b) : x 7→ (x−1)2 +2

Then quotient the set of such objects w.r.t. refinement:

I1 + I2 α(b)(I1 + I2)

α(b)

eq. to

I1 I2α(b)(I1) α(b)(I2)

α(b) α(b)

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 13 / 37



A bit more on graphings

Graphings were introduced by Adams in the context of ergodic theory. They also
appear as certain limits of graphs (cf. Aldous-Lyons conjecture).

Definition
Given an AMC α : M æX, an α-graphing is a collection of pairs (S,m) where
S⊂X and m ∈M.

One can consider restrictions of graphings:

Discrete space: multigraphs;

Deterministic Graphings: Dynamical Systems

Probabilistic Graphings: Markov processes*

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 14 / 37



A bit more on graphings

Graphings were introduced by Adams in the context of ergodic theory. They also
appear as certain limits of graphs (cf. Aldous-Lyons conjecture).

Definition
Given an AMC α : M æX, an α-graphing is a collection of pairs (S,m) where
S⊂X and m ∈M.

One can consider restrictions of graphings:

Discrete space: multigraphs;

Deterministic Graphings: Dynamical Systems

Probabilistic Graphings: Markov processes*

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 14 / 37



A bit more on graphings

Graphings were introduced by Adams in the context of ergodic theory. They also
appear as certain limits of graphs (cf. Aldous-Lyons conjecture).

Definition
Given an AMC α : M æX, an α-graphing is a collection of pairs (S,m) where
S⊂X and m ∈M.

One can consider restrictions of graphings:

Discrete space: multigraphs;

Deterministic Graphings: Dynamical Systems

Probabilistic Graphings: Markov processes*

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 14 / 37



Execution

The functional equation: {
F(x⊕y) = x′⊕y′
N(x′) = x

can be expressed diagrammatically:

F

NX

X

Y

X

X

Y

A solution F ::N : Y →Y is then computed as a fixpoint.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 15 / 37



Execution

The functional equation: {
F(x⊕y) = x′⊕y′
N(x′) = x

can be expressed diagrammatically:

F

NX

X

Y

X

X

Y

A solution F ::N : Y →Y is then computed as a fixpoint.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 15 / 37



Execution

The functional equation: {
F(x⊕y) = x′⊕y′
N(x′) = x

can be expressed diagrammatically:

F

NX

X

Y

X

X

Y

A solution F ::N : Y →Y is then computed as a fixpoint.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 15 / 37



Execution as Paths

The execution F ::G of two graphs F,G is the graph of alternating paths of
source and target in VF∆VG.

1 2 3 4

F

G

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 16 / 37



Execution as Paths

The execution F ::G of two graphs F,G is the graph of alternating paths of
source and target in VF∆VG.

1 2 3 4

1
2

λ

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 16 / 37



Execution as Paths

The execution F ::G of two graphs F,G is the graph of alternating paths of
source and target in VF∆VG.

3 4

λ
2

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 16 / 37



Cycles

In some cases, cycles appear during this operation.

1 2 3 4

F

H

Remark
To define types, one needs to decide what these cycles mean.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 17 / 37



Cycles

In some cases, cycles appear during this operation.

1 2 3 4

Remark
To define types, one needs to decide what these cycles mean.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 17 / 37



Cycles

In some cases, cycles appear during this operation.

1 2

Remark
To define types, one needs to decide what these cycles mean.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 17 / 37



Cycles

In some cases, cycles appear during this operation.

1 2

1
3

Remark
To define types, one needs to decide what these cycles mean.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 17 / 37



Orthogonality and Zeta

Orthogonality in IG: defined by measuring cycles.

�F,G�m = ∑
π∈C (F,G)

m(π)

This is related to Zeta functions of graphs (Ihara):

ζG(z)= ∏
π∈C (G)

(1−zω(π))−1

The following property insures that types are defined properly:

ζF◦(G+H)(z)= ζF◦G(z)ζ(F ::G)◦H(z)

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 18 / 37



Execution in Graphings

[0,1] [1,2] [2,3] [3,4] [4,5]

a
x 7→ x+1

b

x 7→ x−1
c

x 7→ x+1

[1,1.5] [1.5,2] [2,3] [3,4]

d

x 7→ 2x−1
e

x 7→ 2x

Here the result of the execution is the graphing defined by the following set of
edges: {a(db)kec}∞k=0.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 19 / 37



Cycles in Graphings

[0,2] [3,5]

x 7→ 5−x

x 7→ x−3

[0,1] [1,2] [3,4] [4,5]

x 7→ 5−x

x 7→ 5−x

x 7→ x−3

(a) A cycle can become a longer cycle

[0,2] [3,5]

x 7→ x+3

x 7→ x−3

[0,1] [1,2] [3,4] [4,5]

x 7→ x−3

x 7→ x+3

(b) A cycle can become two (or more) cycles

Figure: Evolution of cycles through refinement

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 20 / 37



Hierarchies of models

Theorem (Seiller, APAL 2017)
For every AMC α, the set of α-graphings defines a non-degenerate model of
Multiplicative-Additive Linear Logic.

Back to complexity:

Within these models, consider the set of programs of type nat→ bool;

Larger AMC implies more programs, i.e. more expressivity;

Find some AMC characterising complexity classes.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 21 / 37



Hierarchies of models

Theorem (Seiller, APAL 2017)
For every AMC α, the set of α-graphings defines a non-degenerate model of
Multiplicative-Additive Linear Logic.

Back to complexity:

Within these models, consider the set of programs of type nat→ bool;

Larger AMC implies more programs, i.e. more expressivity;

Find some AMC characterising complexity classes.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 21 / 37



Logic, Programs and Complexity

Graphings and Logic

Formalising a Conjecture
The Classification Problem and Barriers

Entropy and Lower Bounds

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 22 / 37



Some Results

AMC det. model non-det. model prob. model
α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

Only known correspondence between infinite hierarchies of mathematical
objects and complexity classes.

Indicates a strong connection between geometry and complexity: cf. AMC

generalise group actions, use of (generalised) Zeta functions, (homotopy)
equivalence between microcosms implies equality of the classes.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 23 / 37



Some Results

AMC det. model non-det. model prob. model
α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

∼comp Mdet
α

Mndet
α

M
prob
α

Mα ∼O.E.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 24 / 37



Some Results

AMC det. model non-det. model prob. model
α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

∼comp ∼det

∼ndet

∼prob

∼full ∼O.E.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 24 / 37



Some Results

AMC det. model non-det. model prob. model
α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

∼comp ∼det

∼ndet

∼prob

∼full ∼O.E.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 24 / 37



Some Results

AMC det. model non-det. model prob. model
α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

∼comp ∼det

∼ndet

∼prob

∼full ∼O.E.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 24 / 37



Some Results

AMC det. model non-det. model prob. model
α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

Conjecture (Weak Conjecture)
If α∼full β then α∼O.E. β.

Corollary
If α : M æX and β : N æY are separable (by e.g. `2-Betti numbers), they
characterise different complexity classes.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 24 / 37



Strong Conjecture
Definition
An abstract model of computation (AMC) is defined as a monoid action α : M æX
of a monoid M on a space X. I.e. a morphism α : M →End(X).

Definition
An abstract program is a α-graphing.

Conjecture (Strong Conjecture)
Computational complexity of programs coincides with some tractable
equivalences on monoid actions.

∼comp ∼det

∼ndet

∼prob

∼full ∼O.E.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 25 / 37



Logic, Programs and Complexity

Graphings and Logic

Formalising a Conjecture

The Classification Problem and Barriers
Entropy and Lower Bounds

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 26 / 37



Complexity Theory, Today

A number of separation results exist, most of them are from the 70s, but a
lot of questions remain open. E.g. we know LOGSPACE ( PSPACE, but not
which of these are strict:
LOGSPACE ⊂ NLOGSPACE ⊂ NC ⊂ P ⊂ NP ⊂ PSPACE.

In fact, the three more important results are negative results (called
barriers) showing that known proof methods for separation of complexity
classes are inefficient w.r.t. currently open problems. They are:
relativisation (1975), natural proofs (1995), and algebrization (2008).

Thus: no proof methods for (new) separation results exist today.
(Proviso) A single research program is considered as viable for obtaining
new results: Mulmuley’s Geometric Complexity Theory (GCT). According to
Mulmuley, if GCT produces results, it will not be during our lifetimes (and
maybe not our children’s lifetime either). Recent ...

Well, this depends on the children ages and how long they live, but it is quite unlikely.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 27 / 37



Complexity Theory, Today (well, in 2006)

(NP-cap-coNP)/poly

NP/poly

PP/poly

NE/poly

(k>=5)-PBP

NC^1
PBP

L
QNC^1

CSL

+EXP

EXPSPACE EESPACE
EEXP

+L

+L/poly
+SAC^1

AL

P/poly

NC^2

P

BQP/poly

+P

M
odP

SF_2

Am
pM
P

SF_3

+SAC^0

AC^0[2]

QNC_f^0

ACC^0

QACC^0

NC

1NAuxPDA^p

SAC^1

AC^1

2-PBP

3-PBP

4-PBP

TC^0

TC^0/poly

AC^0

AC^0/poly

FOLL

M
AC^0

QAC^0

L/poly

AH

ALL

AvgP

HalfP

NT

P-Close

P-Sel

P/log

UP
beta_2P

com
pNP

AM

AM
[polylog]

BPP^{NP}

QAM

Sigm
a_2PZPP^{NP}

IP

Delta_3P
SQG

BP.PP

QIP[2]
RP^{NP}

PSPACE

M
IP

M
IP*

QIP

AM
_{EXP}

IP_{EXP}

NEXP^{NP}

M
IP_{EXP}

EXPH

APP

PP

P^{#P[1]}

AVBPP

HeurBPP

EXP

AW
PP

A_0PP

Alm
ost-PSPACE

BPEXP

BPEE
M
A_{EXP}

M
P

Am
pP-BQP

BQP

Sigm
a_3P

BQP/log

DQP

NIQSZK
QCM

A
YQP

PH

AvgE

EE

NEE

E
Nearly-P

UE

ZPE

BH

P^{NP[log]}

BPP_{path}

P^{NP[log^2]}

BH_2

CH

EXP/poly

BPE

M
A_E

EH

EEE

PEXP

BPL

PL

SC

NL/poly

L^{DET}

polyL

BPP

BPP/log

BPQP

Check

FH

N.BPP

NISZK

PZK

TreeBQP W
APP

XOR-M
IP*[2,1]

BPP/m
log

QPSPACE

frIP

M
A

N.NISZK

NISZK_h

SZK

SBP

QM
IP_{le}

BPP//log

BPP/rlog

BQP/m
log

BQP/qlog

QRG
ESPACE

QSZK

QM
A

BQP/qpoly

BQP/m
poly

CFL

GCSL

NLIN

QCFL

Q

NLINSPACE

RG

CZK

C_=L

C_=P

Coh

DCFL

LIN

NEXP

Delta_2P P^{QM
A}

S_2P

P^{PP}

QS_2P

RG[1]

NE

RPE

NEEXP

NEEE

ELEM
ENTARY

PR

R

EP

M
od_3P

M
od_5P

NP

NP/one
RP^{Prom

iseUP}
US

EQP

LW
PP

ZQP

W
PP

RQP

NEXP/poly

EXP^{NP}

SEH

Few

P^{FewP}

SPP

FewL

LFew

NL
SPL

FewP

FewUL

LogFew

RP

ZPP

RBQP
YP

ZBQP

IC[log,poly]

QM
IP_{ne}

QM
IP

R_HL
UL

RL

M
AJORITY

PT_1

PL_{infty}

M
P^{#P}

SF_4

RNC

QNC

QP

NC^0

PL_1

QNC^0
SAC^0

NONE

PARITY

TALLY

REG

SPARSE

NP/log

NT*

UAP
QPLIN

betaP

com
pIP

RE

QM
A(2)

SUBEXP

YPP

L

PSPACE

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 28 / 37



Complexity Theory, Today

Separation results were obtained, most of them in the 70s, but a lot of
questions remain open. E.g. we know LOGSPACE ( PSPACE, but not which
of these are strict: LOGSPACE ⊂ NLOGSPACE ⊂ NC ⊂ P ⊂ NP ⊂ PSPACE.

In fact, three major results are negative results (called barriers) showing
that known proof methods for separation of complexity classes are
inefficient w.r.t. currently open problems. They are: relativisation (1975),
natural proofs (1995), and algebrization (2008).

Thus: no proof methods for (new) separation results exist today.
(Proviso) A single research program is considered as viable for obtaining
new results: Mulmuley’s Geometric Complexity Theory (GCT).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 29 / 37



Barriers in Computational Complexity.

Morally, there are two barriers (here for PTIME vs. NPTIME):
Relativization/Algebrization: Proof methods that are oblivious to the
use/disuse of oracles are ineffective.

Ï There exists oracles A ,B such that:

PTIMEA ∼ 6= NPTIMEA

PTIMEB = NPTIMEB∼

Natural Proofs: Proof methods expressible as (Large, Constructible)
predicates on boolean functions are ineffective.

Ï A natural proof for P/POLY implies that no pseudo-random generators (in
P/POLY) have exponential hardness.

Conclusion: Lack of proof methods for separation.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 30 / 37



Barriers in Computational Complexity.

Morally, there are two barriers (here for PTIME vs. NPTIME):
Relativization/Algebrization: Proof methods that are oblivious to the
use/disuse of oracles are ineffective.

Ï There exists oracles A ,B such that:

PTIMEA ∼ 6= NPTIMEA

PTIMEB = NPTIMEB∼

Natural Proofs: Proof methods expressible as (Large, Constructible)
predicates on boolean functions are ineffective.

Ï A natural proof for P/POLY implies that no pseudo-random generators (in
P/POLY) have exponential hardness.

Conclusion: Lack of proof methods for separation.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 30 / 37



Geometric Complexity Theory

GCT’s aim is to prove PTIME 6= NPTIME using techniques from algebraic
geometry (Mulmuley and Sohoni).

Related to Algebraic complexity and Valiant’s classes, GCT proposes a
strategy for proving the permanent (VNPTIME-complete) cannot be
embedded in the determinant (in VPTIME).

Mulmuley did not expect results within the next 100 years. Recently
several drawbacks, closing the easiest path to GCT (Ikenmeyer).

Initiated after a proof of lower bound for a restricted algebraic PRAM model,
which we note PRAM−. This model defines a class NC− lying within NC
(still quite large) and shows it is strictly contained within PTIME.
Considered by some as the strongest lower bounds result so far.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 31 / 37



Geometric Complexity Theory

GCT’s aim is to prove PTIME 6= NPTIME using techniques from algebraic
geometry (Mulmuley and Sohoni).

Related to Algebraic complexity and Valiant’s classes, GCT proposes a
strategy for proving the permanent (VNPTIME-complete) cannot be
embedded in the determinant (in VPTIME).

Mulmuley did not expect results within the next 100 years. Recently
several drawbacks, closing the easiest path to GCT (Ikenmeyer).

Initiated after a proof of lower bound for a restricted algebraic PRAM model,
which we note PRAM−. This model defines a class NC− lying within NC
(still quite large) and shows it is strictly contained within PTIME.
Considered by some as the strongest lower bounds result so far.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 31 / 37



Geometric Complexity Theory

GCT’s aim is to prove PTIME 6= NPTIME using techniques from algebraic
geometry (Mulmuley and Sohoni).

Related to Algebraic complexity and Valiant’s classes, GCT proposes a
strategy for proving the permanent (VNPTIME-complete) cannot be
embedded in the determinant (in VPTIME).

Mulmuley did not expect results within the next 100 years. Recently
several drawbacks, closing the easiest path to GCT (Ikenmeyer).

Initiated after a proof of lower bound for a restricted algebraic PRAM model,
which we note PRAM−. This model defines a class NC− lying within NC
(still quite large) and shows it is strictly contained within PTIME.
Considered by some as the strongest lower bounds result so far.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 31 / 37



Geometric Complexity Theory

GCT’s aim is to prove PTIME 6= NPTIME using techniques from algebraic
geometry (Mulmuley and Sohoni).

Related to Algebraic complexity and Valiant’s classes, GCT proposes a
strategy for proving the permanent (VNPTIME-complete) cannot be
embedded in the determinant (in VPTIME).

Mulmuley did not expect results within the next 100 years. Recently
several drawbacks, closing the easiest path to GCT (Ikenmeyer).

Initiated after a proof of lower bound for a restricted algebraic PRAM model,
which we note PRAM−. This model defines a class NC− lying within NC
(still quite large) and shows it is strictly contained within PTIME.
Considered by some as the strongest lower bounds result so far.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 31 / 37



Our conjecture and Barriers

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a map o : O→O;
Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no

reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï The approach violates the constructivity axiom of the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.
Ï Uniformity seems to be easily expressed (while the Natural Proofs barrier

applies to non-uniform classes).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 32 / 37



Our conjecture and Barriers

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?

Ï It has to be defined explicitly, i.e. extend the AMC by adding a new
computational principle as a map o : O→O;

Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no
reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï The approach violates the constructivity axiom of the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.
Ï Uniformity seems to be easily expressed (while the Natural Proofs barrier

applies to non-uniform classes).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 32 / 37



Our conjecture and Barriers

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a map o : O→O;

Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no
reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï The approach violates the constructivity axiom of the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.
Ï Uniformity seems to be easily expressed (while the Natural Proofs barrier

applies to non-uniform classes).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 32 / 37



Our conjecture and Barriers

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a map o : O→O;
Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no

reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï The approach violates the constructivity axiom of the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.
Ï Uniformity seems to be easily expressed (while the Natural Proofs barrier

applies to non-uniform classes).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 32 / 37



Our conjecture and Barriers

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a map o : O→O;
Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no

reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)

Ï The approach violates the constructivity axiom of the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.
Ï Uniformity seems to be easily expressed (while the Natural Proofs barrier

applies to non-uniform classes).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 32 / 37



Our conjecture and Barriers

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a map o : O→O;
Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no

reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï The approach violates the constructivity axiom of the Natural Proof barrier.

Ï More importantly, we can argue that if barriers exists in this setting then the
separation problem is undecidable.

Ï Uniformity seems to be easily expressed (while the Natural Proofs barrier
applies to non-uniform classes).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 32 / 37



Our conjecture and Barriers

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a map o : O→O;
Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no

reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï The approach violates the constructivity axiom of the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.

Ï Uniformity seems to be easily expressed (while the Natural Proofs barrier
applies to non-uniform classes).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 32 / 37



Our conjecture and Barriers

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a map o : O→O;
Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no

reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï The approach violates the constructivity axiom of the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.
Ï Uniformity seems to be easily expressed (while the Natural Proofs barrier

applies to non-uniform classes).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 32 / 37



Logic, Programs and Complexity

Graphings and Logic

Formalising a Conjecture

The Classification Problem and Barriers

Entropy and Lower Bounds

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 33 / 37



Entropy and Cells

We now only consider deterministic topological graphings.

Definition

Let X be a topological space and f : X→X be a continuous partial map. For any
finite open cover U of X, we define:

Hk
X(f ,U )= 1

k
H0

f−k+1(X)(U ∨ f−1(U )∨·· ·∨ f−(k−1)(U )).

The entropy of f is then defined as h(f )= supU∈FCov(X) h(f ,U ), where h(f ,U ) is
again defined as the limit limn→∞Hn

X(f ,U ).

Proposition
Let G be a deterministic graphing, with entropy h(G). The cardinality of the k-th
cell decomposition of X w.r.t. G, as a function c(k) of k, is asymptotically bounded
by g(k)= 2k2h([G]), i.e. c(k)=O(g(k)).

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 34 / 37



Lower Bounds and Entropy

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff−1(yes)

f−1(no)

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .

Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .

Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds and Entropy

yes

no

ff
. . .

f
. . .

f

The k-cell decomposition has the following property: if two points belong to
the same cell, they are both accepted or both rejected.

The graphing f computes a language L in k steps if the k-cell
decomposition is a refinement of the partition corresponding to L .
Show lower bounds by proving a given language is too complex for being
refined this way. E.g.:

Ï Bound the entropy of the graphing and deduce a bound on the number of
connected components of the k-cell decomposition;

Ï Produce a given language requiring more connected components.

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 35 / 37



Lower Bounds results

Bound the number of connected components of the k-cell decomposition (Entropy,
Regularity and Milnor-Thom theorem);

Show a given language cannot be computed by a graphing in this class because it
requires more connected components (Specific Proof).

The following theorems are proved using the strategy above (w/ L. Pellissier).

Theorem (Ben-Or 1983)
A set W ⊂Rn with N connected components cannot be decided by a degree d
algebraic decision tree of height less than log(N)−n.

Theorem (Cucker 1992)

NCR (PtimeR

Theorem (Mulmuley 1999)

NCPRAM−
(Ptime

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 36 / 37



From Proofs to Programs, Graphs and Dynamics.
Geometric perspectives on computational complexity

Thomas Seiller
CNRS, LIPN (Paris 13 Univ.)

Cologne-Twente Workshop 2018
June 18th 2018, Paris

T. Seiller, CNRS Geometric perspectives on computational complexity June 18th, 2018 37 / 37


