
Description of the Thesis
Logic in the Hyperfinite Factor:

Geometry of Interaction and Complexity

Thomas Seiller∗

1 Context
Syntax and Semantics

From a historical point of view, logic is first and foremost the science of rea-
soning. It is at the beginning of the 20th century that the subject imposed itself
for the formalisation of mathematics — we will talk in this case of mathematical
logic. Traditionally, mathematical logic is a two-headed entity : on one hand sits
the syntax which describes how mathematical formulas and proofs can be writ-
ten — a (usually) finite description of the world —, and on the other hand lies
the semantics which study the models of a theory — the mathematical worlds or
structures. Syntax is concerned with provability : the rules describing a syntax
usually forbids one to write incorrect proofs, and one studies then the formulas
which are provable from a given set of axioms. Semantics, on the contrary, is
concerned with refutation : to show that a formula A is not a consequence of a
given set of axioms one will build a model of this theory in which the formula A
does not hold. These two faces of logic are put in correspondance by the comple-
teness theorem of Gödel : a formula A is provable if and only if it is satisfied in all
models.

Proof Theory

Proof theory, which studies formalisations of proofs, belongs to the syntac-
tic tradition of logic. Several derivation systems have been developed and the
differences between logical systems are translated as differences at the level of
provability and rules, as it is the case for classical and intuitionnistic logic. At
first sight, and for working mathematicians, the most important rule of a deri-
vation system is the modus ponens, generalized as the cut rule, which allows the
use of lemmas : from a proof of A ⇒ B and a proof of A, one can obtain a proof of
B. However, one of the most important results in proof theory, Gentzen’s Haupt-
satz [Gen64], states that this rule is redondant : if there exists a proof of B, then
there exists a proof of B that does not use the cut rule. If this result is important
in itself, it became fundamental after the discovery of the proofs-as-programs
correspondence, also known as the Curry-Howard correspondence.

∗Institut des Hautes Études Scientifiques (IHÉS), Le Bois-Marie, 35 route de Chartres, 91440
Bures-sur-Yvette, France

1

Curry-Howard Correspondance

At the beginning of the XXth century, Church introduced an axiomatisation of
the theory of functions : the λ-calculus [Chu41]. It turns out that all computable
functions can be represented in λ-calculus, making it an alternative approach
to the theory of computation, usually described in terms of Turing machines
[Tur37]. In this theory, the dynamics of computation is represented as a single
rewriting rule, called β-reduction : if t represents a function and u represents an
argument, then the application t(u) reduces — or β-reduces — to a term r repre-
senting the result of the computation of the function represented by t given the
argument represented by u. The Curry-Howard correspondence [Cur34, How80]
relates the cut-elimination procedure in logic to the β-reduction in λ-calculus.
In other terms, it relates the execution of a program to the elimination of "de-
tours", i.e. uses of the cut rule, in a proof. This lead to the study of computation
through deduction systems, and in particular through their dynamics — the cut-
elimination procedure.

In intuitionnistic logic, the implication A ⇒ B can be understood as a function
which given any proof of A produces a proof of B. This intuition is reinforced by
the Curry-Howard correspondence since a term representing a map from natural
numbers N to natural numbers will correspond to a proof of the formula Nat ⇒
Nat, where Nat is a formula representing the set of natural numbers.

Linear Logic

The Curry-Howard correspondence finds some of its most important applica-
tions through a back-and-forth between syntax and semantics : starting from a
mathematical model of computation, one discovers some operation and pulls it
back into the syntax. For instance, Girard introduced linear logic by pulling back
into the syntax a natural decomposition of the implication he discovered in a
model of the lambda-calculus [Gir88a]. Similarly, Ehrhard and Regnier [ER03,
ER06] introduced differential lambda-calculus and differential linear logic by
pulling back a notion of differentiation that existed in models of linear logic
[Ehr02].

As we just explained, it is through a study of denotational models of λ-calculus
[Gir88a] that Girard discovered that the implication ⇒ was naturally decompo-
sed in two independent operations. The first operation, the exponentiation — or
perennisation — allows the duplication of a proof of A : if a proof of A can be used
only once, a proof of !A can be used any number of times. The second operation
is a linear implication, written (, which produces from a proof a A a proof of
B, consuming A in the process. The implication A ⇒ B is then obtained as the
formula !A (B. Girard then introduced a syntax — linear logic — which takes
into account this semantical decomposition [Gir87].

Linear logic is sensible to ressource consumption, and therefore well-fitted for
the study of programs. Indeed, a proof of Nat (Nat in linear logic corresponds
to a function from natural numbers to natural numbers that uses its argument
only once, i.e. a linear map, while a proof of !Nat (Nat might use its argu-
ment any (finite) number of times. The re-use of ressources being associated to
the exponential connective !, one may then modify the rules of this connective to
obtain restrictions of linear logic which have a computational interest. For ins-
tance, Bounded Linear Logic [GSS92], Soft Linear Logic [Laf04] and Light Linear

2

Logic [Gir95b] are systems in which the proofs of !Nat (Nat correspond to Po-
lytime functions. Elementary Linear Logic [Gir95b, DJ03] characterizes in the
same way the functions computable in elementary time.

Proof Nets

Linear Logic was introduced with two deduction systems — two syntaxes —
to represent proofs : a sequent calculus and a kind of natural deduction with
multiple conclusions, called proof structures. Proof structures stand appart from
traditional deduction systems as the grammar that describes them is too permis-
sive and allows one to write objects that do not correspond to sequent calculus
proofs. It is however possible to characterize the proof structures that correspond
to proofs — the proof nets — from the others by means of correctness criterions.
These criterions are usually based on the topology or the geometry of the proof
structure in consideration. This particularity of proof structures has been the
starting point of Girard’s research program known as geometry of interaction : a
modeling of proofs — or more precisely paraproofs, namely an extended notion
of proof — and their dynamics (cut elimination) joint to a test-based reconstruc-
tion of logic. Indeed, the extension of syntax introduced by proof structures adds
a semantical flavor to the objects in the sense that the added syntactic objects
— which are not proofs — somehow play the role of counter-models. As a conse-
quence, one can use these additional objects to test the proofs and define an in-
teractive notion of type : a set of paraproofs which is orthogonal to a given set of
tests.

Geometry of Interaction : Modelling the Dynamics of Proofs

A Geometry of Interaction (GoI) construction, i.e. a construction that fulfills
the GoI research program [Gir89b], is in a first approximation a representation
of linear logic proofs that accounts for the dynamics of cut-elimination. A proof
is no longer a morphism from A to B — a function from A into B — but an ope-
rator acting on the space A ⊕B. As a consequence, the modus ponens is longer
represented as composition. The operation representing cut-elimination, i.e. the
obtention of a cut-free proof of B from a cut-free proof of A and a cut-free proof
of A (B, consists in constructing the solution to an equation called the feed-
back equation (illustrated in Figure 2). A GoI construction hence represent both
the proofs and their normalization. Contrarily to denotational semantics, a proof
π and its normalized form π′ are not represented by the same object. However,
they remain related since the normalization procedure has a semantical counter-
part — the execution formula Ex(·) — which satisfies Ex(π) = π′. This essential
difference between denotational semantics and GoI is illustrated in Figure 1.

Geometry of Interaction : Interactive Reconstruction of Logic

The GoI program is more ambitious than that : the aim is to obtain not only
a representation of proofs that accounts for their dynamics, but to reconstruct
logical operations from it. As we already mentioned, the objects of study in a GoI
construction are a generalization of the notion of proof — paraproofs, in the same

3

π ‖π‖

ρ ‖ρ‖

‖·‖

‖·‖

cut
elim

ination

(a) Denotational Semantics

π ‖π‖

ρ ‖ρ‖

‖·‖

‖·‖

cut
elim

ination

E
x(·)

(b) Geometry of Interaction

FIGURE 1 – Denotational Semantics vs Geometry of Interaction

P ∈L (H⊕K) represents a a program/proof of implication
A ∈L (H) represents an argument.
R ∈L (K) represents the result of the computation if :

R(ξ)= ξ′ ⇔∃η,η′ ∈H,
{

P(η⊕ξ) = η′⊕ξ′
A(η′) = η

a. Here, H and K are separable infinite-dimensional Hilbert spaces, and L (?)
denotes the set of operators acting on the Hilbert space? : bounded (or, equivalently,
continuous) linear maps from ? to ?.

(a) Formal statement

H

ξ
K

A

P
A(η)

H

ξ′
K

η

(b) Illustration of the equation

FIGURE 2 – The Feedback Equation

4

sense the proof structure where a generalization of the notion of sequent calcu-
lus proof. This point of view allows a reconstruction of logic as a description of
how paraproofs interact. It is therefore a sort of "discursive syntax" where para-
proofs are opposed one to another, where they argue together in a way reminis-
cent of game semantics, each one trying to prove the other wrong. This argument
terminates when one of them gives up. The discussion itself corresponds to the
execution formula, which describes the solution to the feedback equation and ge-
neralizes the cut-elimination procedure to this generalized notion of proofs. Two
paraproofs are then said orthogonal — denoted by the symbol ‹ — when this
arguement (takes place and) terminates. A notion of formula is then drawn from
this notion of orthogonality : a formula is a set of paraproofs A equal to its bi-
orthogonal closure A‹‹ or, equivalently, a set of paraproofs A = B‹ which is the
orthogonal to a given set of paraproofs B.

Drawing some intuitions from the Curry-Howard correspondence, one may
propose an alternative reading to this construction in terms of programs. Since
proofs correspond to well-behaved programs, paraproofs are a generalization of
those, representing somehow badly-behaved programs. If the orthogonality re-
lation represents negation from a logical point of view, it represents a notion of
testing from a computer science point of view. The notion of formula defined from
it corresponds to a notion of type, defined interactively from how (para)programs
behave. This point of view is still natural when thinking about programs : a pro-
gram is of type nat → nat because it produces a natural number when given a
natural number as an argument. On the logical side, this change may be more
radical : a proof is a proof of the formula Nat ⇒ Nat because it produces a proof
of Nat each time it is cut (applied) to a proof of Nat.

Geometry of Interaction : Logic issued from Proofs/Programs

Once the notion of type/formula defined, one can reconstruct the connectives :
from a "low-level" — between paraproofs — definition, one obtains a "high-level"
definition — between types. For instance, the connective ⊗ is first defined bet-
ween any two paraproofs a,b, and this definition is then extended to types by
defining A ⊗B = {a⊗b | a ∈ A,b ∈ B}‹‹ . As a consequence, the connectives are
not defined in an ad hoc way, but their definition is a consequence of their com-
putational meaning : the connectives are defined on proofs/programs and their
definition at the level of types is just the reflection of the interaction between
the execution — the dynamics of proofs — and the low-level definition on para-
proofs. Logic thus arises as generated by computation, by the normalization of
proofs : types/formulas are not there to tame the programs/proofs but only to des-
cribe their behavior. This is reminiscent of realizability in the sense that a type
is defined as the set of its (para-)proofs. Of course, the fact that we consider a ge-
neralized notion of proofs from the beginning has an effect on the construction :
contrarily to usual realizability models (except from classical realizability in the
sense of Krivine), the types A and A‹ (the negation of A) are in general both
non-empty. This is balanced by the fact that one can define a notion of success-
ful paraproofs, which corresponds in a way to the notion of winning strategy in
game semantics, This notion on paraproofs then yields a high-level definition : a
formula/type is true when it contains a successful paraproof.

5

Geometry of Interaction : Between Syntax and Semantics

A GoI construction is therefore neither a syntax, as it is too expressive and
gain from this a semantical flavor, neither a semantics, as it is too restrictive
and therefore keep some of the good properties of syntax. A GoI construction
provides an alternative, more homogeneous, approach to the traditional proofs
vs. models — syntax vs. semantics — opposition. It is a refoundation of logic in its
whole, where the usual theorems and properties of syntax, semantics, as well as
properties relating both them, can be stated. As an example of a purely syntactic
property, the Church-Rosser property is there understood as the associativity of
the execution formula, or rather conversely, the associativity of the execution
formula in GoI plays the role of the Church-Rosser property 1 :

Ex(Ex(F, A),B)=Ex(Ex(F,B), A)

In a similar way, the notion of completeness finds its counterpart in GoI as
the property called the internal completeness of a connective. For instance, the
connective ⊗ is internally complete if A⊗B (as defined above) is equal to the set
{a⊗b | a ∈ A,b ∈ B}, i.e. if every paraproof of A ⊗B (every proof of A ⊗B, every
model satisfying A⊗B) is obtained as the tensor of a paraproof of A and a para-
proof of B (is obtained from a tensor rule between a proof of A and a proof of B,
satisfies A and satisfies B).

Geometry of Interaction in the Hyperfinite Factor

Since the introduction of the GoI research program [Gir89b], a number of
constructions have been proposed by Girard in order to fulfill it [Gir89a, Gir88b,
Gir95a, Gir11]. In each of these construction, the notion of paraproof remains
the same 2 : an operator acting on a (separable) Hilbert space. In the first models,
the execution was represented as the so-called execution formula, which was ba-
sed upon the inversion of an operator. More recently, Girard showed that while
the execution was not always defined, the solution to the feedback equation still
exists and is unique (and satisfies associativity) as long as the operators involved
are of norm at most 1 [Gir06]. This can be stated as the following theorem.

Theorem 1 (Girard [Gir06]). If a ∈L (H⊕K), b ∈L (H) are operators of norm at
most 1, the solution to the feedback equation involving a and b exists, is unique,
and is an operator of norm at most 1 in the von Neumann algebra generated by a
and b.

This difficult and very technical result lead him to a new construction of a
geometry of interaction [Gir11] in which the operators considered are elements
of a chosen von Neumann algebra 3 : the hyperfinite factor of type II1. The notion
of orthogonality is then defined using a generalization of the determinant of ma-
trices called the Fuglede-Kadison determinant [FK52]. This construction will be
referred to as hyperfinite GoI in the following.

1. We use here the notation Ex(A,B) (two arguments) while we used Ex(π) (one argument) before-
hand. This slight difference comes from the fact that a proof is interpreted as a couple, a technical
detail we did not want to mention in order to simplify the discussion.

2. Even though the paper GoI3 is not using operators, it can be naturally presented in this way.
3. For technical reasons, they are chosen in this algebra but embedded in a bigger algebra : the

hyperfinite factor of type II∞.

6

First GoI Constructions and Computer Science

Since it offers a mathematical model of the execution of programs, the GoI
program naturally arose as a well-suited tool for the study of computational com-
plexity. For instance, it is by using the first construction of a geometry of inter-
action [Gir89a] that Abadi, Gonthier and Lévy [GAL92] showed the optimality
of Lamping’s reduction in lambda-calculus [Lam90]. The same construction was
also applied in implicit computational complexity [BP01], and was the main ins-
piration behind dal Lago’s context semantics [Lag09].

In spite of their seemingly deep abstraction, the GoI constructions offer a
mathematical model which is very close to actual computing. As an illustration
of this fact, let us mention the Geometry of Synthesis program initiated by Ghica
[Ghi07, GS10, GS11, GSS11]. This research program, inspired by geometry of
interaction, aims at obtaining logical synthesis methods for VLSI (Very Large
Systems Integration) designs.

2 Results presented in the thesis

2.1 Overview
This thesis is a study of the GoI constructions, with an emphasis on the hyper-

finite GoI construction and its applications to computational complexity. I develop
a combinatorial framework — called interaction graphs — which simultaneously
generalizes, unifies and simplifies all the previously known GoI constructions.
I then show that the hyperfinite GoI construction, as well as the combinatorial
approach just mentioned, provide a framework in which one can study both time
and space complexity.

Interaction Graphs

The Interaction Graphs provide a combinatorial framework that fulfills the
GoI research program. Proofs — or rather paraproofs — are represented by graphs,
while the execution/normalization corresponds to the construction of the graph of
alternating paths between two given graphs (illustrated by Figure 3). I showed
that this operation constructs the (necessarily unique) solution to the feedback
equation (Figure 2). The whole construction is parametrized by a map, and the-
refore abstracts a whole family of models. This framework :

— unifies the previously introduced GoI constructions : those are recovered
from insightful choices of the parameter ;

— generalizes these constructions : the framework is very flexible and can be
extended in many ways, it moreover avoids the constantly constraining is-
sue of divergence that one has to deal with when working with operators ;

— simplifies these constructions : the operators are replaced by graphs 4, and
the interpretations of proofs are finitely representable.

Moreover, this framework brings new insights about the GoI program. In par-
ticular :

— from a theoretical point of view, it puts into light a relation between cycles
and paths upon which all previously introduced GoI constructions are

4. When dealing with exponential connectives, we consider a generalization of graphs named gra-
phings which is in some way a geometric realization of a graph.

7

1 2 3 4

P

1 2

A

(a) Graphs P and A

1 2 3 4

P

A

(b) Graph PäA representing the application of A to P

3 4

(c) Alternating paths in PäA

3 4

(d) Graph R repre-
senting the result of
the execution of P ap-
plied to A

FIGURE 3 – Modeling execution (Interaction Graphs)

founded. As a consequence, the adjunctions 5 which insure the correctness
of Girard’s constructions are obtained as a corollary of this previously unk-
nown combinatorial identity ;

— from a practical point of view, we obtained a more down-to-earth model
based on a tractable notion of objects. This allows to obtain better insights
on how the constructions can be used in complexity theory.

Applications to Complexity

The second part of the thesis is concerned with the applications of the GoI
program to computational complexity. I show in this part that both time and
space complexity can be dealt with, focusing on the hyperfinite GoI construction
and the Interaction Graphs framework. Theses results can be thought as part
of implicit computational complexity (ICC), a field which studies languages and
computational devices constrained in their use of their ressources which corres-

5. This terminology, used by Girard, may lead a reader knowing about category-theory to a confu-
sion. This notion of adjunction is not the categorical notion of adjunction but refers to a specific
property in GoI constructions.

8

pond to complexity classes such as PSpace, Ptime, LogSpace, etc. The aim of ICC
is to study algorithmic complexity without making reference to external measure
conditions or particular models of computation, but only in terms of restrictions
of languages and computational principles. There are many ways in which such
constraints can be expressed, among which the constrained linear logic systems
such as Bounded Linear Logic, Light Linear Logic, etc.

The first result I obtained is about time complexity classes and is related to
known results and works in ICC. I showed a soundness result for Elementary
Linear Logic in both the frameworks of the hyperfinite GoI of Girard and the
interaction graphs. This result, which mainly states that one can interpret cor-
rectly proofs of Elementary Linear Logic in these frameworks, shows that the
latter are well-suited for the study of time complexity. Indeed, a result of Baillot
[Bai11] shows that it is possible to characterize the exponential hierarchy (inclu-
ding Ptime) as types in ELL.

On the other hand I developed, in a joint work with C. Aubert, a completely
new approach to computational complexity that was proposed by Girard [Gir12].
Based on insights and ideas from the hyperfinite GoI construction, this approach
is based on the use of the crossed product 6 construction to characterize com-
plexity classes as sets of operators on the hyperfinite factor of type II1. Introdu-
cing a suited notion of abstract machines — the pointer machines, we show how
they can be represented by operators induced by a group action. We use here the
setting of Interaction Graphs in order to explain how the construction relates to
the GoI program. This work corresponds to the last chapter of the thesis : we
show how this approach yields a characterization of the non-deterministic space
complexity class NL.

2.2 Interaction Graphs
The Trefoil Property [Sei12c, Ch. 5] [Sei12a]

Departing from the realm of infinite-dimensional vector spaces and linear
maps between them, we propose a graph-theoretical construction where (para-
)proofs are interpreted by finite objects 7. The graphs we consider are directed
and weighted, where the weights are taken in a monoid (Ω, ·).
Definition 1. A directed weighted graph is a tuple G, where VG is the set of
vertices, EG is the set of edges, sG and tG are two functions from EG to VG , the
source and target functions, and ωG is a function EG →Ω.

The construction is centered around the notion of alternating paths. Given
two graphs F and G, an alternating path is a path e1 . . . en such that e i ∈ EF

if and only if e i+1 ∈ EG . The set of alternating paths will be used to define the
interpretation of cut-elimination in the framework, i.e. the graph F ::G — the
execution of F and G — is defined as the graph of alternating paths between
F and G whose source and target are in the symmetric difference V F∆VG . The
weight of a path is naturally defined as the product of the weights of the edges it
contains.

6. Or rather a particular case of it : the wreath product construction.
7. Even though the graphs we consider can have an infinite set of edges, linear logic proofs are

represented by finite graphs (disjoint unions of transpositions).

9

As it is usual in mathematics, this notion of paths cannot be considered wi-
thout the associated notion of cycle : an alternating cycle between two graphs
F and G is a cycle which is an alternating path e1e2 . . . en such that e1 ∈ V F if
and only if en ∈ VG . For technical reasons, we actually consider the related no-
tion of 1-circuit, which is a cycle satisfying some technical property. We denote by
C (F,G) the set of 1-circuits in the following. We show that these notions of paths
and cycles satisfy a property we call the trefoil property which will turn out to
be fundamental. We also exhibit several other notions of graphs with their asso-
ciated notions of paths and cycles, proving in each case that the trefoil property
holds.

We will use Figure 4 to explain the trefoil property. In this figure, we consider
three graphs F, G, and H such that a given vertex (in any of the graphs) cannot
be a vertex in the three graphs simultaneously, i.e. the intersection V F ∩VG∩V H

is empty. The double arrows in Figure 4(a) represent the sets of edges (in any of
the graphs) that one can go through to go from one graph to the other : for ins-
tance the double arrow between V F and VG stands for the set of edges of F whose
target is an element of VG . We also represent the sets of cycles formed from edges
of F and G only (respectively edges of F and H only, respectively edges of G and
H only) by a red cycle (respectively blue, respectively green) in Figures 4(b), 4(c),
4(d), and 4(e). Finally, the set of cycles that contain at least one edge from each
graph is represented by a violet cycle in these figures. The coloured rectangles
in Figures 4(c), 4(d), and 4(e) represent the result of the execution between two
graphs, which one can understand as a box whose content is unknown. We then
notice that during the execution of two graphs, say F ans G, one "loses" the alter-
nating cycles composed of edges of F and G only. The trefoil property then states
that :

C (F ::G,H)∪C (F,G)∼=C (G ::H,F)∪C (G,H)∼=C (H ::F,G)∪C (H,F)

where ∼= denotes a weight-preserving bijection between the sets of 1-circuits.

Multiplicative-Additive Linear Logic [Sei12c, Ch. 6-7] [Sei12b] [Sei12a]

We then show how one can define the multiplicative and additive connectives
of Linear Logic, obtaining a construction that fulfills the GoI research program.
This construction is moreover parametrized by a map from the setΩ to RÊ0∪{∞},
and therefore yields not only one but a whole family of models. This parameter
is introduced to define the notion of orthogonality in our setting. Indeed, given
a map m and two graphs F,G we define �F,G�m as the sum

∑
π∈C (F,G) m(ω(π)),

where ω(π) is the weight of the cycle π.
We moreover show how, from any of these constructions, one can obtain a

∗-autonomous category GraphMLL with

&6∼= ⊗ and 1 6∼= ⊥, i.e. a non-degenerate
denotational semantics for Multiplicative Linear Logic (MLL). However, as in all
the versions of GoI dealing with additive connectives, our construction of addi-
tives does not define a categorical product. We solve this issue by introducing a
notion of observational equivalence within the model. We are then able to define
a categorical product from our additive connectives when considering classes of
observationally equivalent objects, thus obtaining a denotational semantics for
Multiplicative Additive Linear Logic (MALL).

10

V F

V H VG

(a) Representation of F,G,H

V F

V H VG

(b) Alternating cycles between F, G and H

V F

V H VG

(c) Alternating cycles between F ::G and H

V F

V H VG

(d) Alternating cycles between G ::H and F

V F

V H VG

(e) Alternating cycles between F ::G and H

FIGURE 4 – Graphical representation of the trefoil property

11

Cond

(∗-autonomous)

Behav

(closed under ⊗,(,&,⊕, (·)‹)
NO weakening, NO mix

•⊥ •1

•T •0

FIGURE 5 – The categorical models

One important point in this work is the fact that all results rely on a single
geometric property, the previously introduced trefoil property, which describes
how the sets of 1-circuits evolve during an execution. This property insures on its
own the four following facts :

— we obtain a ∗-autonomous category GraphMLL ;
— the observational equivalence is a congruence on this category ;
— the quotiented category Cond inherits the ∗-autonomous structure ;
— the quotiented category Cond has a full subcategory Behav with pro-

ducts.
This can be summarized in the following two theorems.

Theorem 2. For any map m : Ω→ R∪ {∞}, the categories Cond and GraphMLL
are non-degenerate categorical models of Multiplicative Linear Logic with multi-
plicative units.

Theorem 3. For any map m :Ω→R∪{∞}, the full subcategory Behav of Cond is
a non-degenerate categorical model of Multiplicative-Additive Linear Logic with
additive units.

The categorical model we obtain has two layers (see Figure 5). The first layer
consists in a non-degenerate (i.e. ⊗ 6= &

and 1 6= ⊥) ∗-autonomous category Cond,
hence a denotational model for MLL with units. The second layer is the full sub-
category Behav which does not contain the multiplicative units but is a non-
degenerate model (i.e. ⊗ 6= &

, ⊕ 6=& and 0 6= >) of MALL with additive units that
does not satisfy the mix and weakening rules.

12

[0,2] [3,5]

x 7→ 5− x

[0,1] [1,2] [3,4] [4,5]

x 7→ 5− x

x 7→ 5− x

FIGURE 6 – A graphing and one of its refinements

Graphings and Exponentials [Sei12c, Ch. 8] [Sei13]

In the following chapter, a generalization of graphs is introduced. This ge-
neralization allows one to define exponentials and second order quantification.
The main point about this generalization is that a vertex can always be cut in
an arbitrary (finite) number of sub-vertices, with the idea that these sub-vertices
are smaller (hence vertices have a size) and form a partition of the initial vertex
(where two sub-vertices have the same size). These notions could be introduced
and dealt with combinatorially, but we chose to use measure-theoretic notions in
order to ease the intuitions and some proofs. In fact, as we show at the beginning
of the chapter, a graphing — the notion which is introduced as a generalization
of the notion of graph — can be though of and used as a graph.

Definition 2 (Weighted Graphing). Let X = (X ,B,λ) be a measured space and
V F ∈ B a set of finite measure. A graphing over X of carrier V F is a countable
family F = {(ωF

e ,φF
e : SF

e → TF
e }e∈EF , where, for all e ∈ EF , ωF

e is an element of
Ω, and φF

e is a measure-preserving transformation between the measurable sets
SF

e ⊂V F and TF
e ⊂V F .

It is natural, as we are working with measure-theoretic notions, to identify
two graphings that differ only on a set of null measure. This leads to the defi-
nition of an equivalence relation between graphings : that of almost everywhere
equality. Moreover, since we want vertices to be decomposable into any finite
number of parts, we want to identify a graphing G with the graphing G′ obtained
by replacing an edge e ∈ EF by a finite family of edges e i ∈G′ (i = 1, . . . ,n) subject
to the conditions :

— the family {SG′
e i

}n
i=1 (resp. {TG′

e i
}n
i=1) is a partition of SG

e (resp. TG
e) ;

— for all i = 1, . . . ,n, φG′
e i

is the restriction of φG
e on SG′

e i
.

Such a graphing G′ is an example of a refinement of G, and one can easily genera-
lize the previous conditions to define a general notion of refinement of graphings.
Figure 6 gives the most simple example of refinement. To be a bit more precise,
we define, in order to ease the proofs, a notion of refinement up to almost eve-
rywhere equality. We then define a second equivalence relation on graphings by
saying that two graphings are equivalent if and only if they have a common refi-
nement (up to almost everywhere equality).

The objects under study are thus equivalence classes of graphings modulo
this equivalence relation. Most of the technical results on graphings contained
in this chapter aim at showing that these objects can actually be manipulated
as graphs : one can define paths and cycles and these notions are coherent with
the quotient by the equivalence relation just mentioned. As a consequence, given
two graphings F,G one can define their execution F ::G and a measurement of
their interaction �F,G�m, where m is a "measure" of 1-circuits. We then pinpoint

13

the notion of circuit-measuring map and show that for any choice of such maps
the execution and interaction satisfy the trefoil property. This implies, from the
previous chapters, that from this framework arises another family of models of
multiplicative-additive linear logic.

These models are however more interesting since one can define second-order
quantifiers and exponential connectives. As an example, we explain how one can
define an exponential connective ! which satisfies the functorial promotion rule,
i.e. the main rule governing this connective in linear logic. The end of the chapter
explains how one can interpret elementary linear logic, i.e. a restrained linear lo-
gic which captures the set of functions computable in elementary time, by means
of graphings. This leads to the following theorem, which is true for any interpre-
tation of elementary linear logic proofs and formulas.

Theorem 4. For any proof π of a sequent ` Γ in Elementary Linear Logic, the
interpretation ‖π‖ of π is a successful element in the interpretation ‖` Γ‖ of the
sequent `Γ.

Relations to Girard’s Constructions [Sei12c, Ch. 9] [Sei12b] [Sei12a]

We then study two particular constructions. Namely, we restrict ourselves to
graphs with weights in]0,1] endowed with the usual multiplication and to the
parameters m(x) = ∞ and m(x) = − log(1− x). The underlying intuition is that
these two particular models are combinatorial versions of Girard’s GoI construc-
tions. To make this correspondence formal, we first define a matrix associated to
any graph.

Definition 3. Let G be a weighted graph. The matrix MG is the weight matrix
of the contracted graph Ĝ defined as 8 :

V Ĝ = VG

EĜ = {(v,w) | EG(v,w) 6= ;}

ωĜ = (v,w) 7→ ∑
e∈EG (v,w)

ω(e)

In some cases, the obtained object is not a matrix, since some of the sums
used to compute weights may diverge. We thus stick to those graphs G for which
the obtained MG is a matrix of norm at most 1. This is coherent with the similar
restriction that appears in Girard’s constructions. We then relate the model ob-
tained for m(x)=− log(1− x) to Girard’s hyperfinite GoI where A,B were defined
to be orthogonal if and only if − log(detFK (1− AB)) 6= 0,∞, where detFK denotes
the Fuglede-Kadison determinant [FK52].

Theorem 5. Let F,G be weighted graphs and m be the map x 7→ − log(1− x).
Then :

�F,G�m = ∑
π∈C (F,G)

− log(1−ω(π))=− log(det(1−MFMG))

We then define a map Ψ which associates to each "graphs paraproof" an "hy-
perfinite paraproof". As a consequence of the last theorem and some other tech-
nical results, we are able to show that the map Ψ from the interaction graphs to

8. We write EG (v,w) the set of edges in G whose source is v and whose target is w. We moreover
omit the definition of the source and target maps which are straightforward.

14

.

m(x)=∞ m(x)=−log(1− x)

Interaction

Graphs

GoI

(Nilpotency)

GoI

(Determinant)

FIGURE 7 – Interaction Graphs and Girard’s Constructions

the hyperfinite GoI is a "morphism", i.e. it is coherent with the GoI constructions
of the connective ⊗,&, with the execution :: and the orthogonality relation ‹.

Theorem 6. Let m(x) =− log(1− x). Then, if a,b denote paraproof in the interac-
tion graph setting :

Ψ(a ::b) = Ψ(a) ::Ψ(b)

Ψ(a⊗b) = Ψ(a)⊗Ψ(b)

Ψ(a&b) = Ψ(a)&Ψ(b)

a‹ b ⇔ Ψ(a)‹Ψ(b)

where the right-hand operations are the hyperfinite GoI constructions.

The second model considered, where one uses the "dull" map m(x) = ∞, is
shown to correspond in the same way to the older constructions of Girard [Gir89a,
Gir88b, Gir95a], where orthogonality A ‹ B was defined in terms of the nilpo-
tency of AB. Figure 7 illustrates the results obtained in this chapter : among the
numerous constructions obtained, we recover Girard’s constructions for adequate
choices of the parameter map.

2.3 Computational Complexity
Time Complexity [Sei12c, Ch. 10]

The next chapter is then centered around the notion of subjective truth, and
studies the interpretations of sequent calculus proofs of linear logic in the hyper-
finite GoI framework. This notion was introduced by Girard because the usual
notion of truth, that one can define in older GoI constructions, was in some sense
basis-dependent (here basis denotes a Hilbert basis). Since the hyperfinite GoI
is not basis-dependent, one has to define a notion of viewpoint which generalizes
the notion of basis to the hyperfinite type II∞ factor. Then, the notion of success,
and therefore of truth, depends on the chosen viewpoint.

We first show that the notion of viewpoint is related to the notion of maxi-
mal abelian subalgebra (MASA), a well-studied field in the domain of operator

15

algebras. In doing so, we exhibit a connection between invariants of these sub-
algebras and the expressivity of the fragments of linear logic one can interpret.
In particular, we use an invariant described by Dixmier [Dix54] who considered
three types of MASAs (regular, semi-regular and singular) according to the alge-
bra generated by their normalizer. The results obtained can be summarized in
the following theorem.

Theorem 7. Let A be a maximal abelian subalgebra. If A is :
— singular then any interpretation of proofs w.r.t. A is trivial ;
— semi-regular then there is a (non-trivial) sound interpretation of MALL

w.r.t. A ;
— regular then there is a (non-trivial) sound interpretation of ELL w.r.t. A ;

The results shown in the thesis are actually a bit stronger in the case of
regular von Neumann subalgebras. As a consequence of a result from Connes,
Feldmann and Weiss [CFW81], we show that any exponential connective can be
soundly interpreted w.r.t A in this case, even though we restrict our study to the
exponential defined by Girard. This chapter also contains discussions about a fi-
ner invariant of MASAs, called the Pukansky invariant [Puk60], which is related
to the interpretation of exponential connectives.

To sum up, we have shown that Elementary Linear Logic can be correctly
interpreted in this setting, obtaining by the way a fine analysis of the different
interpretations that are possible according to the different choices of viewpoints.

Space Complexity [Sei12c, Ch. 11] [AS12]

The last chapter contains results obtained from a collaboration with C. Au-
bert, at the time a PhD candidate in Paris 13 University. This chapter is concer-
ned with a new approach to computational complexity proposed by Girard [Gir12]
and inspired from the hyperfinite GoI construction. We begin by a careful study
of the representation of binary lists in the interaction graphs setting. These re-
presentations yields operators in the hyperfinite type II1 factor R through the
"morphism" exhibited earlier in the thesis. We then consider the set of such re-
presentations as the set of "input tapes" for an abstract machine model yet to be
defined.

To obtain an adequate notion of machine, one has to be careful in the defini-
tions, since a single binary list has many different representations, and a suitable
notion of machine should not distinguish two distinct representations. Following
the idea proposed by Girard, we show that one can obtain such a suitable notion
by using the wreath product construction of operator algebras, a particular case
of the crossed product construction. This wreath product, denoted (

⊗
g∈G R)oG ,

is constructed from an algebra R and a group G. It contains two sub-algebras
that will be of particular interest to us :

— N, the first copy of R in the infinite tensor product ;
— G the algebra generated by the representations — the internalizations —

of the action of G onto the infinite tensor product defined as

h 7→ (
⊗
g∈G

xg 7→
⊗
g∈G

xh−1 g)

The following theorem then states that the operators in the algebra G act uni-
formly on the set of representations of a given integer, and therefore provides a
suitable notion of machines.

16

Theorem 8. Let N, M ∈N be two representations of an integer, and φ an element
of G. Then Nφ is nilpotent if and only if Mφ is nilpotent.

From this theorem, one can justify that the following definition makes sense :

Definition 4. Let φ ∈M6(C)⊗G⊗Mk(C) be an observation. We define the lan-
guage accepted by φ by (Nn denotes any representation of the integer n) :

[φ]= {n ∈N | φ(Nn ⊗1) nilpotent}

By extension, if P is a set of observations, we denote by [P] the set {[φ] | φ ∈ P}.

To sum up the construction, one has the following objects :
— an algebra containing representations of integers : the hyperfinite factor

R of type II1, embedded in K through the morphism π◦ ι0 ;
— an algebra containing the representations of machines, or algorithms :

the von Neumann sub-algebra G of K generated by the set of unitaries
{λ(σ) | σ ∈S } ;

— a notion of acceptance : if N is a representation of a integer and φ is a re-
presentation of a machine, we say that φ accepts N when φN is nilpotent.

We then exhibit two sets of operators P+ and PÊ0 in the algebra G, and intro-
duce a notion of abstract machine we call pointer machines 9. We show how these
machines can be represented faithfully as operators in P+ and PÊ0, which gives
an inclusion of the class co-NL into the classes [P+] and [PÊ0].

The next part consists in the proof of a technical lemma that states that for
every integer representation N and every operator in PÊ0 (which contains P+),
there exists two matrices (operators acting on a finite-dimensional Hilbert space)
M and φ̄ such that Nφ is nilpotent if and only if Mφ̄ is nilpotent. This shows
that one can check the nilpotency of matrices in order to decide wether the ope-
rator φ accepts the integer represented by N. An easy argument then shows that
checking the nilpotency of the product Mφ̄ can be done with a non-deterministic
Turing machine using logarithmic space. This converse inclusion therefore yields
the main theorem 10

Theorem 9.
co-NL= [P+]= [PÊ0]

3 Later Results
The work in my thesis have led to later results, in particular concerning com-

plexity theory. The results presented in the last chapter were extended to obtain
a characterization of the class L, exhibiting a relation between determinism and
an norm on operators [AS13]. This work also showed that our notion of pointer
machines and the more usual notion of two-way multi-head automata 11 [Har72]
are equivalent models of computation.

9. This notion of machines was later shown to be equivalent to the two-way multi-head automata
[AS13].

10. Although it is known that the classes co-NL and NL are equal [Imm88], we chose not to use
this result in our work. This leaves open the possibility of obtaining a new proof of this result in our
setting. It could also lead to a result in operator algebras mirroring this theorem.

11. This variant of automata is known to provide a characterization of NL and L [HKM08].

17

More recently I showed, using the interaction graphs framework, that the
notion of orthogonality in the hyperfinite GoI and the notion of interaction used
to characterize coNL and L are the same. The contributions of this work are :

— the obtention of simplified versions of the previously known characteriza-
tions (co-NL and L) ;

— the obtention of characterizations of new classes such as regular languages
and the class NL ;

— the definition of types corresponding to the classes characterized, a result
which opens the way of using arguments based on testing.

These results, together with the results presented in the thesis, show that
the GoI constructions are well-suited for the study of computational complexity.
In particular, it provides a framework where both time and space complexity
classes can be described and offers new methods and techniques for the study of
those. Indeed, on one hand the characterizations of complexity classes as sets of
operators thus obtained allows the use of tools and invariants of operator alge-
bras. On the other hand, the obtention of these characterizations as types in the
sense of GoI leads to the study of complexity classes by means of tests.

References
[AS12] Clément Aubert and Thomas Seiller. Characterizing co-NL by a group

action. Arxiv preprint arXiv :1209.3422, 2012.

[AS13] Clément Aubert and Thomas Seiller. Logarithmic space and permuta-
tions. Arxiv preprint, abs/1301.3189, 2013.

[Bai11] Patrick Baillot. Elementary linear logic revisited for polynomial time
and an exponential time hierarchy. In Hongseok Yang, editor, APLAS,
volume 7078 of Lecture Notes in Computer Science, pages 337–352.
Springer, 2011.

[BP01] Patrick Baillot and Marco Pedicini. Elementary complexity and geo-
metry of interaction. Fundamenta Informaticae, 45(1-2) :1–31, 2001.

[CFW81] Alain Connes, J. Feldman, and B. Weiss. An amenable equivalence
relation is generated by a single transformation. Ergodic Theory Dy-
namical Syst., 1(4) :431–450, 1981.

[Chu41] Alonzo Church. The Calculi of Lambda Conversion. Princeton Univer-
sity Press, Princeton, NJ, USA, 1941.

[Cur34] H. B. Curry. Functionality in combinatory logic. In Proceedings of
the National Academy of Sciences of the United States of America, vo-
lume 20, pages 584–590, November 1934.

[Dix54] Jacques Dixmier. Sous-anneaux abéliens maximaux dans les facteurs
de type fini. Annals of mathematics, 59 :279–286, 1954.

[DJ03] Vincent Danos and Jean-Baptiste Joinet. Linear logic & elementary
time. Information and Computation, 183(1) :123–137, 2003.

[Ehr02] Thomas Ehrhard. On köthe sequence spaces and linear logic. Mathe-
matical Structures in Computer Science, 12(5) :579–623, 2002.

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-
calculus. Theoretical Computer Science, 309 :2003, 2003.

18

[ER06] Thomas Ehrhard and Laurent Regnier. Differential interaction nets.
Theoretical Computer Science, 364(2) :166–195, 2006.

[FK52] Bent Fuglede and Richard V. Kadison. Determinant theory in finite
factors. Annals of Mathematics, 56(2), 1952.

[GAL92] Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. The geome-
try of optimal lambda reduction. In Ravi Sethi, editor, POPL, pages
15–26. ACM Press, 1992.

[Gen64] Gerhard Gentzen. Investigations into logical deduction. American
Philosophical Quarterly, 1(4) :288–306, 1964.

[Ghi07] Dan R. Ghica. Geometry of synthesis : a structured approach to vlsi
design. In Martin Hofmann and Matthias Felleisen, editors, POPL,
pages 363–375. ACM, 2007.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1) :1–102, 1987.

[Gir88a] J. Girard. Normal functors, power series and λ-calculus. Annals of
Pure and Applied Logic, 37(2) :129–177, February 1988.

[Gir88b] Jean-Yves Girard. Geometry of interaction II : Deadlock-free algo-
rithms. In Proceedings of COLOG, number 417 in Lecture Notes in
Computer Science, pages 76–93. Springer, 1988.

[Gir89a] Jean-Yves Girard. Geometry of interaction I : Interpretation of system
F. In In Proc. Logic Colloquium 88, 1989.

[Gir89b] Jean-Yves Girard. Towards a geometry of interaction. In Proceedings
of the AMS Conference on Categories, Logic and Computer Science,
1989.

[Gir95a] Jean-Yves Girard. Geometry of interaction III : Accommodating the
additives. In Advances in Linear Logic, number 222 in Lecture Notes
Series, pages 329–389. Cambridge University Press, 1995.

[Gir95b] Jean-Yves Girard. Light linear logic. In Selected Papers from the In-
ternational Workshop on Logical and Computational Complexity, LCC
’94, pages 145–176, London, UK, UK, 1995. Springer-Verlag.

[Gir06] Jean-Yves Girard. Geometry of interaction IV : the feedback equa-
tion. In Stoltenberg-Hansen and Väänänen, editors, Logic Colloquium
2003, pages 76 – 117. The Association for Symbolic Logic, 2006.

[Gir11] Jean-Yves Girard. Geometry of interaction V : Logic in the hyperfinite
factor. Theoretical Computer Science, 412 :1860–1883, 2011.

[Gir12] Jean-Yves Girard. Normativity in logic. In Peter Dybjer, Sten Lind-
ström, Erik Palmgren, and Göran Sundholm, editors, Epistemology
versus Ontology, volume 27 of Logic, Epistemology, and the Unity of
Science, pages 243–263. Springer, 2012.

[GS10] Dan R. Ghica and Alex Smith. Geometry of synthesis II : From
games to delay-insensitive circuits. Electr. Notes Theor. Comput. Sci.,
265 :301–324, 2010.

[GS11] Dan R. Ghica and Alex Smith. Geometry of synthesis III : resource
management through type inference. In Thomas Ball and Mooly Sagiv,
editors, POPL, pages 345–356. ACM, 2011.

19

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear
logic : a modular approach to polynomial-time computability. Theor.
Comput. Sci., 97(1) :1–66, April 1992.

[GSS11] Dan R. Ghica, Alex Smith, and Satnam Singh. Geometry of synthesis
IV : compiling affine recursion into static hardware. In Manuel M. T.
Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, ICFP, pages
221–233. ACM, 2011.

[Har72] J. Hartmanis. On non-determinancy in simple computing devices. Acta
Informatica, 1(4) :336–344, 1972.

[HKM08] Markus Holzer, Martin Kutrib, and Andreas Malcher. Multi-head fi-
nite automata : Characterizations, concepts and open problems. In
Turlough Neary, Damien Woods, Anthony Karel Seda, and Niall Mur-
phy, editors, CSP, volume 1 of EPTCS, pages 93–107, 2008.

[How80] William A. Howard. The formulas-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry : Essays on Combi-
natory Logic, Lambda Calculus, and Formalism, pages 479–490. Aca-
demic Press, 1980.

[Imm88] Neil Immerman. Nondeterministic space is closed under complemen-
tation. In Structure in Complexity Theory Conference, pages 112–115.
IEEE, IEEE Computer Society, 1988.

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theor. Comput.
Sci., 318(1-2) :163–180, June 2004.

[Lag09] Ugo Dal Lago. The geometry of linear higher-order recursion. ACM
Trans. Comput. Logic, 10(2) :8 :1–8 :38, March 2009.

[Lam90] John Lamping. An algorithm for optimal lambda calculus reduction.
In Frances E. Allen, editor, POPL, pages 16–30. ACM Press, 1990.

[Puk60] L. Pukanszky. On maximal albelian subrings of factors of type II1.
Canad. J. Math., 12 :289–296, 1960.

[Sei12a] Thomas Seiller. Interaction graphs : Additives. Arxiv preprint
arXiv :1205.6557, 2012.

[Sei12b] Thomas Seiller. Interaction graphs : Multiplicatives. Annals of Pure
and Applied Logic, 163 :1808–1837, December 2012.

[Sei12c] Thomas Seiller. Logique dans le facteur hyperfini : géometrie de l’inter-
action et complexité. PhD thesis, Université de la Méditerranée, 2012.

[Sei13] Thomas Seiller. Interaction graphs : Exponentials. Arxiv preprint
arXiv :1312.1094, 2013.

[Tur37] A. M. Turing. On computable numbers, with an application to the ent-
scheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1) :230–265, January 1937.

20

	Context
	Results presented in the thesis
	Overview
	Interaction Graphs
	Computational Complexity

	Later Results

