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Logic in Complexity

Descriptive Complexity (DC) studies types of logics whose individual
sentences characterise exactly particular complexity classes. E.g. (Fagin
74) NPTIME is the set of problems definable by existential second order
boolean formulas. DC led to the proof that NL = CONL (Immermann 88).

Implicit Computational Complexity (ICC) studies algorithmic complexity
only in terms of restrictions of languages and computational principles, e.g
considering restrictions on recursion schemes (Bellantoni and Cook 92).

Constrained Linear Logics is a Curry-Howard approach to ICC, where one
defines “subsystems” of Girard’s linear logic which capture complexity
classes (i.e. one can write less proofs, thus less programs, thus one can
compute less functions).
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Proofs as Programs – Curry-Howard – correspondence

Proof Theory Computer Science
Proof Program
Proof Data

Formulas Types
Cut rule Application

Cut Elimination Execution (Computation)
. . . . . .
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Proofs as Programs – Curry-Howard – correspondence

Integers: nat :=∀X (X →X)→ (X →X)

Functions from integers to integers: nat→ nat

If [n] is a (cut-free) proof of nat, and [f ] a proof of nat→ nat, we can define
the proof [f ][n]:

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

The cut elimination procedure applied to [f ][n] corresponds to the
computation of f (n). The cut-free proof it produces is equal to [f (n)].
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Linear Logic and Implicit Computational Complexity

In Bounded Linear Logic (Girard, Scedrov, Scott):
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Linear Logic and Implicit Computational Complexity

Normal functors (Girard). A model of programs as functors, in which
functors representing programs are analytical, i.e. can be factored through
a linear functor on a kind of tensor algebra !A :=⊕

kÉ0 A⊗A⊗·· ·⊗A

A

!A

B
f

f ◦

Linear logic is obtained by acknowledging this decomposition into the
syntax, i.e. the usual implication A⇒B becomes !A(B;
LL for Complexity. The rules governing the modality ! can be modified to
define sub-systems characterising complexity classes. E.g. Elementary
Linear Logic (ELL), Light Linear Logic (LLL).

Ï BLL (Girard, Scedrov, Scott 92) characterises FP
Ï ELL/LLL (Girard 98) characterise ELEM/FP
Ï SLL (Lafont 2004) characterises FP
Ï L3/L4 (Baillot, Mazza 2010) characterise ELEM/FP
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Geometry of Interaction

Logic Computer Science Algebras

Proof Program Operator*

π`Nat⇒Nat f : nat→ nat F ∈L (H⊕H)
Proof Data Operator
ρ `Nat n : nat N ∈L (H)

Cut Rule Application Functional Equation

cut(π,ρ) f (n)
{

F(x⊕y) = x′⊕y′
N(x′) = x

Cut elimination Computation Construction of a solution
cut(π,ρ) µ`Nat f (n) m : nat Ex(F,A)(y)= y′ ∈L (H)

*Bounded/Continuous linear map. Think of matrices.
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Algebras as a model of computation

Theorem (Girard ’06)
If a ∈L (H⊕K), b ∈L (H) are operators of norm at most 1, the solution to the
feedback equation involving a and b exists, is unique, and is an operator of norm
at most 1 in the von Neumann algebra generated by a and b.

Translation
(the unit ball of) a von neumann algebra = set of (untyped) programs.
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Geometry of Interaction: Girard’s Normativity Paper

In 2012, Girard proposes the following, based on the hyperfinite factor model of
GoI.

Consider the interpretation of ELL binary integers, i.e. elements of the
type ∀X, !(X(X)→ (!(X(X)→ !(X(X));

Restrict your attention to operators in a specific subalgebra S;

Provide a characterisation of CONL as a subset of those operators.

This was later:

reworked (Aubert, Seiller 2016);

adapted to characterise L (Aubert, Seiller 2016);

adapted to the more syntactic unification-based GoI (Aubert, Bagnol,
Pistone, Seiller 2014);

extended in this setting to P (Aubert, Bagnol, Seiller 2016).
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Algebras as a model of computation

Theorem (Girard ’06)
If a ∈L (H⊕K), b ∈L (H) are operators of norm at most 1, the solution to the
feedback equation involving a and b exists, is unique, and is an operator of norm
at most 1 in the von Neumann algebra generated by a and b.

Translation
(the unit ball of) a von neumann algebra = set of (untyped) programs.

Conjecture
Different von Neumann algebras = different degrees of expressivity.

This wild idea rests upon two results: the algebras L (H) and R⊂L (H) (the
type II∞ hyperfinite factor) model respectively pure lambda-calculus
(Turing-complete) and "elementary programs".
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Sub-algebras and complexity classes

Reality is a bit more subtle: the set of programs represented by a von neumann
algebra N depends also on a (maximal commutative) sub-algebra A⊂N.

Theorem (Seiller)
Depending on the (maximal abelian) subalgebra A⊂R chosen, the expressivity
of the set of programs modelled by the von Neumann algebra R (the type II∞
hyperfinite factor) varies.

The theorem is more precise than that, but the main point of interest is that the
conjecture, as stated above is false. It can be corrected as follows.

(Corrected) Conjecture
Different pairs A⊂N = different degrees of expressivity.
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Limits of the algebraic approach

It (seems to) lead to dead-ends. The different degrees of expressivity are
linked with subtle properties of the pair A⊂N; and there are more open
questions than answers in this particular domain of mathematics;

It is NOT intuitive AT ALL. How one can express complexity constraints
as choices of subalgebras?

T. Seiller (DIKU, CNRS–LIPN) A Geometric Theory of Computational Complexity October 25th, 2017 13 / 44



Plan of the Talk

Linear Logic and Complexity

Geometry of Interaction and Complexity

Ï Interaction Graphs and Complexity
A Danish Winter

Complexity Theory: the Barriers

What is a Program?

Interaction Graphs and Complexity, Revisited

T. Seiller (DIKU, CNRS–LIPN) A Geometric Theory of Computational Complexity October 25th, 2017 14 / 44



Defining concrete algebras

Principle
Replace pairs A⊂N by pairs (X,m) of a measured space X and a monoid (group)
m of measurable maps X→X.

The correspondence with the previous presentation is as follows (when m is a
group of measure-preserving maps):

the algebra A corresponds to the space X.
I.e. A :=L∞(X)⊂L (L2(X)).

the algebra N corresponds to the group m.
I.e. each measure-preserving map φ defines a unitary uφ ∈L (L2(X)) by
precomposition, and N is the algebra generated by the set {uφ | φ ∈m}.

elements of the algebra N correspond to graphings (generalized graphs).
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Graphings and Complexity
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What’s a graphing?

Pick a directed graph.

Replace vertices by measurable sets, e.g. intervals on the real line.

Decide how (i.e. which element of m) the edges map sources to targets.

[0,1] [1,2] [3,4] [4,5]

x 7→ 5−x

x 7→ (x−1)2 +2

The parameters of the construction:

A measure space (X,B,µ);

A monoid m of measurable maps X →X – called a microcosm;

A monoid Ω;

A type of graphing (e.g. deterministic, probabilistic);

A measurable map g :Ω→RÊ0 ∪ {∞}.
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Hierarchies of models

Theorem (Seiller, APAL 2017)

For every monoid of measurable maps m (and every monoid Ω , and every
measurable map g :Ω→RÊ0 ∪ {∞} ), the set of m-graphings defines a

non-degenerate model of Multiplicative-Additive Linear Logic .

AT LEAST!

Quantitative Aspects
(e.g. probabilities, effects)Complexity Constraints

Geometric Measurement
(Ihara/Ruelle Zeta Functions)

Constraints on Graphings
(e.g. deterministic: (partial) measured dynamical systems,

probabilistic: (discrete time) Markov processes)
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Hierarchies of models

Theorem (Seiller, APAL 2017)

For every monoid of measurable maps m (and every monoid Ω , and every
measurable map g :Ω→RÊ0 ∪ {∞} ), the set of m-graphings defines a

non-degenerate model of Multiplicative-Additive Linear Logic .

All Geometry of Interaction constructions are recovered as specific cases
Operators in C* / von Neumann algebras (1989,1990,2011)

Unification/Resolution clauses / Prefix Rewriting (1995,2016)

Complexity Constraints
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Microcosms: Geometric Aspect of Complexity

We can define microcosms
m1 ⊂m2 ⊂ ·· · ⊂m∞ ⊂ n⊂ p

in order to obtain the following characterisations (as the type nat→ nbool).

Microcosm Mdet
m Mndet

m M
prob
m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)

n P P P PP (. . . ) 2MHFA + Pushdown Stack

Refines and generalises both:

a series of characterisations of complexity classes (e.g. L, P) with operators
(with Aubert) and logic programs (with Aubert, Bagnol and Pistone);

an independent result where I relate the expressivity of GoI models with a
classification of inclusions of maximal abelian sub-algebras:

`∞(X)⊆ `∞(X)om
(⊆B(`2(X))

)
[Feldman-Moore 1977]
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Microcosms: Geometric Aspect of Complexity

We can define microcosms
m1 ⊂m2 ⊂ ·· · ⊂m∞ ⊂ n⊂ p

in order to obtain the following characterisations (as the type nat→ nbool).

Microcosm Mdet
m Mndet

m M
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m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)

n P P P PP (. . . ) 2MHFA + Pushdown Stack

Only known correspondence between infinite hierarchies of mathematical
objects and complexity classes.

Indicates a strong connection between geometry and complexity: cf.
microcosms generalise group actions, use of (generalised) Zeta functions,
(homotopy) equivalence between microcosms implies equality of the classes.
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A Geometric Theory of Complexity

Microcosm Mdet
m Mndet

m M
prob
m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)

n P P P PP (. . . ) 2MHFA + Pushdown Stack

Conjecture
(Equivalence classes of) microcosms correspond to complexity constraints.

Conjecture
m≡ n⇔ Pred(m)= Pred(n)
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A Geometric Theory of Complexity

Microcosm Mdet
m Mndet

m M
prob
m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)

n P P P PP (. . . ) 2MHFA + Pushdown Stack

Conjecture
m≡ n⇔ Pred(m)= Pred(n)

Enable (co)homological invariants to prove separation , e.g. `(2)-Betti numbers:

Pred(m)= Pred(n)⇒m≡ n⇒P (m)'P (n)
!⇒`(2)(P (m))= `(2)(P (n))

(P (m)= {(x,y) | ∃h ∈m,h(x)= y} is a measurable preorder)
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Computational Complexity

Once upon a time, people asked (and answered) the following question:

What is a computable function?

That’s all good in theory, but once first computers were built and in use, people
realised there was another important question, namely:

What is an *efficiently* computable function?

I.e. what if we wanted the answer to be produced within our lifetimes (well,
quicker than that really if the result is to be used somehow).

This somehow marked the birth of computational complexity: three papers
addressed this question within a year.
(Cobham 1965; Hartmanis and Stearns 1965; Edmonds 1965)

And now let’s fastforward.
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Complexity Theory, Today (well, in 2006)
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Complexity Theory, Today

A number of separation results were obtained, most of them in the 70s. But
a lot of questions remain open. For instance: we know L ( PSPACE, but we
don’t know which of these inclusions are strict: L ⊂ P ⊂ NP ⊂ PSPACE.

In fact, the three more important results are negative results (called
barriers) showing that known proof methods for separation of complexity
classes are inefficient w.r.t. currently open problems. They are:
relativisation (1975), natural proofs (1995), and algebrization (2008).

Thus: no proof methods for (new) separation results exist today.
(Proviso) One research program (but one only) is considered as viable for
obtaining new results: Mulmuley’s Geometric Complexity Theory (GCT).
However, according to Mulmuley, if GCT produces results, it will not be
during our lifetimes (and maybe not our childrens’ lifetime either*), since it
requires the development of much involved new techniques in algebraic
geometry.
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Barriers in Computational Complexity.

Morally, there are two barriers (here for P vs. NP):
Relativization/Algebrization: Proof methods that are oblivious to the
use/disuse of oracles are ineffective.

Ï There exists oracles A ,B such that:

PTIMEA ∼ 6= NPTIMEA

PTIMEB = NPTIMEB∼

Natural Proofs: Proof methods expressible as (Constructible, Large)
predicates on boolean functions are ineffective.

Ï A natural proof of PTIME 6= NPTIME implies that no pseudo-random
generators (in P) have exponential hardness.

Conclusion: Lack of proof methods for separation. But why?
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Barriers as Guidelines
State of the Art in Complexity (Separation Problem): Barriers.

Relativization/Algebrization: Proof methods that are oblivious to the
use/disuse of oracles are ineffective.

Ï Separation proof methods should depend on the computational principles
allowed in the model.

Natural Proofs: Proof methods expressible as (Constructible, Large)
predicates on boolean functions are ineffective.

Ï Separation proof methods should not “quotient” the set of programs too much.
(by definition, complexity classes are non-decidable predicates on boolean
functions)

Conclusion: Lack of proof methods for separation.

Thus arguably due to the following:
(Note Moschovakis already argues along these lines, but does not discuss barriers)

“What is a computable function?”

“What is a program/algorithm?”
Solved (at least for nat→ nat);

Not Solved (Attempts exist though)
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A more general issue
P.J. Denning, in The Field of Programmers Myth, Comm. ACM 47 (7), 2004:

We are captured by a historic tradition that sees programs as
mathematical functions [...].

The notion of computable functions is a very bad measure of the
expressivity of a model of computation. E.g. Neil Jones’ Life without cons.

More generally, complexity is a bad measure of the expressivity. Somehow,
it is erroneous to think that characterising a specific class of functions, e.g.
Ptime, means we understood something about complexity.

This functional point of view can explain why we are not able to generalise
the notion of complexity to higher-order functions / concurrent computation.
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Better foundations

Hypothesis: Current lack of proof methods for separation is due to a lack of
adequate mathematical answer to the question "What is a program?".

Suppose there exists adequate mathematical foundations.
I.e. (this is objectively very fuzzy) for every computation C there exists a
mathematical object ‖C ‖ with ‖·‖ injective., up to some trivial equivalences
(e.g. renaming of control states)

Claim
There are no barriers for the set of proof techniques based on such foundations.

The argument is simple. Injectivity implies that if all such proof methods
can be shown ineffective, it amounts to prove that separation is
undecidable.
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What is a computation/algorithm?

Several proposals.

Turing

Kolmogorov

Gandy

Moschovakis

Gurevich.
An ASM is a sequence of "updates" to be applied on a model of first-order logic over a fixed

signature. An update is defined as either (1) a generalised assignment f (s1, . . . ,sn) := t, where f
is any function symbol and the si and t are arbitrary terms, or (2) a conditional if C then P or

if C then P else Q, where C is a propositional combination of equalities between terms and

P,Q are sequences of updates, or (3) a parallel composition of sequences of update.
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Critic of Gurevich approach

Gurevich.
An ASM is a sequence of "updates" to be applied on a model of first-order logic over a fixed

signature. An update is defined as either (1) a generalised assignment f (s1, . . . ,sn) := t, where f
is any function symbol and the si and t are arbitrary terms, or (2) a conditional if C then P or

if C then P else Q, where C is a propositional combination of equalities between terms and

P,Q are sequences of updates, or (3) a parallel composition of sequences of update.

From a point of view of capturing the notion of computation: arguably
satisfying for sequential, probabilistic computation, but it is unclear if it
generalises well to, e.g., cellular automata, continuous time.

From the point of view of complexity: ad-hoc objects, not based on
well-founded mathematical theory. (In fact, ASM may be described as
generalised pseudo-code.) It does not enable new proof methods.
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What is a computation/program/algorithm?

From a philosophical point of view, very few work tackle this question (at least,
I could not find many). It is quite surprising, given the development of new
models of computation (e.g. quantum, biological).
As a starting point for the reflexion, let us consider the following questions:

Is the universe just a big computation?

If I let a rock fall from the top of a tower, is this a computation? If not, why?

What about if I let a rock fall from the same tower, but depending on the
initial height it activates a number n of mechanical apparatus that release
a number m of balls? (e.g. the rock activates levers every meter, with the
lever at height k releasing 2k+1 balls)

What about a similar experiment where flowing water activates some mill
equipped with a similar apparatus? (Is this a computation on streams?)
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Where I stand

It seems important to distinguish between several different notions.

Distinguish between experiments and a computation.
Ï Differ in their intention: test the theory vs. use the theory to (locally) predict

the outcome.

Distinguish between a computation and a program.
Ï Differ in their abstraction: mechanical processes / Electric signals vs. some

flow of information.
Ï A program is somehow distinguished from its physical realisation – the

computation. I.e. one can run a program several times, producing several
computations. However, it is bound to a model of computation (i.e. turing
machines, automata, etc.).

Distinguish between a program and an algorithm.
Ï An algorithm is an abstraction of programs, free of models of computation.

E.g. Sieve of Eratosthenes.
Ï Very difficult task to formalise this notion.

cf. Blass, Derschowitz, Gurevich When are two algorithms the same?.
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Plan of the Talk

Linear Logic and Complexity

Geometry of Interaction and Complexity

Interaction Graphs and Complexity

A Danish Winter

Complexity Theory: the Barriers

What is a Program?

Ï Interaction Graphs and Complexity, Revisited
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What is a program?

Informal Definition
A program is a dynamical process possibly involving
exchange/duplication/erasure/modification of information.

[Complexity] Implicit Computational Complexity.
Size-change termination (Lee, Jones, Ben-Amram), mwp-polynomials (Jones,
Kristiansen), Loop peeling (Moyen, Rubiano, Seiller).

[Semantics] Dynamic Semantics
Geometry of Interaction (Girard), Game Semantics
(Abramsky/Jagadeesan/Malacaria, Hyland/Ong), Interaction Graphs (Seiller).

[Compilation] Compilation techniques.
Work by U. Schöpp (cf. Habilitation thesis), Loop peeling (Moyen, Rubiano, Seiller)

[VLSI design] Synthesis methods for VLSI design.
Geometry of Synthesis programme (Ghica).
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What is a program?

Informal Definition
A program is a dynamical process possibly involving
exchange/duplication/erasure/modification of information.

In fact Girard’s Geometry of interaction was intended as a proposal for
mathematical foundations.

This paper is the main piece in a general program of mathematisation
of algorithmics, called geometry of interaction. We would like to define
independently of any concrete machine, any extant language, the
mathematical notion of an algorithm (maybe with some proviso, e.g.
deterministic algorithms), so that it would be possible to establish
general results which hold once for all.

Girard, Geometry of Interaction II (1988)
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Abstract Programs

Definition
An abstract model of computation (AMC) is defined as a monoid action α : M æX
of a monoid M on a space X. I.e. α : M →M (X→X).

Definition
One can define the following partial order on AMCs. If α : M æX and β : N æY
are AMCs, αÉβ iff there exists an automorphism φ : X→Y s.t. for all m ∈Mα,
φ(α(m)) is a glueing of a finite number of restrictions of elements
β(n1),β(n2), . . . ,β(nk).
This induces an equivalence relation on AMCs (which is finer than homotopy
equivalence).

Definition
An abstract program is a α(M)-graphing.
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Back to the results

AMC det. model non-det. model prob. model
α1 REG REG REG STOC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ L NL CONL PL
β P P P P?
γ P NP CONP PP?

Conjecture
If α : M æX and β : N æY are separable (by e.g. `2-Betti numbers), they
characterise different complexity classes.

Ï Can be checked on classical separation results and the computation of the invariants
on the AMCs α1, . . . ,αk, . . . ,α∞.
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Intrinsic/Mathematical complexity

Definition
An abstract model of computation (AMC) is defined as a monoid action α : M æX
of a monoid M on a space X. I.e. α : M →M (X→X).

Definition
An abstract program is a α(M)-graphing.

Definition
Define(!) the intrinsic complexity of a program as the smallest monoid action
α : M æX needed to interpret it as an abstract program.

Conjecture
Intrinsic complexity of programs coincide with computational complexity.
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What about barriers?

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a measurable map o : O→O;
Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no

reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï As explained above, the approach should violate the constructivity axiom of

the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.
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Summary

We probably need to start a long overdue collaborative reflexion with
philosophers (to guarantee some degree of “informal rigour” – cf. Kreisel)
on the question: "What is a program?".

The end of the talk proposes a tentative technical answer. While I believe it
is a (good starting point for finding a) satisfying solution, I expect it to be
challenged.

The last part how this proposition could lead to a geometric theory of
computation/complexity which could be exploited for developing separation
methods.

In particular, the approach defines a notion of complexity of programs
intrinsically (i.e. as an equivalence class of group/monoid actions/acts), i.e.
a definition which is not based on an arbitrary input/output behaviour.

While I insisted on complexity issues, the whole framework comes from
logic, and raises numerous questions as to which logical systems arise from
these abstract models of computation.

Although very abstract, this relates to ICC techniques that yielded an
automatic optimisation tool (prototype) in the LLVM compiler.
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