
Realisability on Dynamical Systems and Complexity

Thomas Seiller
CNRS, LIPN (Paris 13 Univ.)

Workshop on Realisability
June 12th-13th 2018, Marseille

T. Seiller, CNRS Realisability on Dynamical Systems and Complexity June 13th, 2018 1 / 41



A few definitions
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Abstract Programs

Definition
An abstract model of computation (AMC) is defined as a monoid action α : M æX
of a monoid M =M〈G,R〉 on a space X. I.e. a morphism α : M →End(X).

Definition (Reductions)
If α : M æX and β : N æY are AMCs, αÉβ iff there exists an automorphism
φ : X→Y s.t. for all m ∈Mα, φ(α(m)) is a glueing of a finite number of
restrictions of elements β(n1),β(n2), . . . ,β(nk).

Remark
This induces an equivalence relation on AMCs (which is finer than Orbit
Equivalence (OE) in the case of groups of m.p.m.).

Definition
An abstract program is a α-graphing.
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Wait. What’s a graphing?

Pick a directed graph.

Replace vertices by (–, resp. open, resp. measurable) subsets of a fixed
(discrete, resp. topological, resp. measured) space.

Decide how (i.e. pick an element of M) the edges map sources to targets.

[0,1] [1,2] [3,4] [4,5]

α(a) : x 7→ 5−x

α(b) : x 7→ (x−1)2 +2

Then quotient the set of such objects w.r.t. refinement:

I1 + I2 α(b)(I1 + I2)

α(b)

eq. to

I1 I2α(b)(I1) α(b)(I2)

α(b) α(b)
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Graphings vs Lambda-Calculus

Lambda IG Discrete Deterministic Probabilistic
Grammar AMC (AMC) (AMC) (AMC)

Term Graphing Graph Dyn. System Markov P.*
Execution "Paths" Paths Max. Finite Orbits – –

Orthogonality "Cycles" Cycles Infinite Orbits – –
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Execution

Execution is defined as follows. Given s : X +Y →X +Y and t : X →X, we define
s ::t : Y →Y as the fixpoint of:

s

tX

X

Y

X

X

Y
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Execution as Paths

The execution F ::G of two graphs F,G is the graph of alternating paths of
source and target in VF∆VG.

1 2 3 4

F

G
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Execution as Paths

The execution F ::G of two graphs F,G is the graph of alternating paths of
source and target in VF∆VG.

3 4

λ
2
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Cycles

In some cases, cycles appear during this operation.

1 2 3 4

F

H

T. Seiller, CNRS Realisability on Dynamical Systems and Complexity June 13th, 2018 8 / 41



Cycles

In some cases, cycles appear during this operation.

1 2 3 4

T. Seiller, CNRS Realisability on Dynamical Systems and Complexity June 13th, 2018 8 / 41



Cycles

In some cases, cycles appear during this operation.

1 2
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Execution in Graphings

Us Ut

Vs Vt

φ

ψ
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Cycles in Graphings

[0,2] [3,5]

x 7→ 5−x

x 7→ x−3

[0,1] [1,2] [3,4] [4,5]

x 7→ 5−x

x 7→ 5−x

x 7→ x−3

(a) A cycle can become a longer cycle

[0,2] [3,5]

x 7→ x+3

x 7→ x−3

[0,1] [1,2] [3,4] [4,5]

x 7→ x−3

x 7→ x+3

(b) A cycle can become two (or more) cycles

Figure: Evolution of cycles through refinement
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Orthogonality and Zeta

Orthogonality in IG: defined by measuring cycles.
Ï In the case of graphs:

�F,G�m = ∑
π∈C (F,G)

m(π)

Ï In the case of dynamical systems:

�s, t�m =∑
i

m(Fix((st)i))

This is related to Zeta functions of graphs (Ihara) and dynamical systems
(Ruelle, Artin-Mazur):

ζG(z)= ∏
π∈C (G)

(1−zω(π))−1

ζf ,Φ(z)= exp

( ∑
mÊ1

zm

m

∑
x∈Fix(f m)

tr

(
m−1∏
i=0

φ(f i(x))

))
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Realisability

We want: �s,t+ t′�m = �s ::t,t′�m, but in fact �s,t+ t′�m = �s ::t,t′�m +�s, t�m.
This can be corrected by keeping track of sets of cycles, i.e. t becomes (c, t)
with c some term representing a set of cycles (can be the set of cycles itself
or its measurement). We keep writing t in the following.

From �s, t+ t′�m = �s ::t, t′�m, one can define orthogonality through a pole
⊥⊂ Im(�·, ·�m).

Define types as sets A=A⊥⊥, (eq. ∃B s.t. A=B⊥);

Define A⊗B= {s+s′ | s ∈A,s′ ∈B}⊥⊥;

Define A(B= {t | ∀s ∈A, t ::s ∈B}.

Check that A(B= (A⊗B⊥])⊥.
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Hierarchies of models

Theorem (Seiller, APAL 2017)

For every monoid of measurable maps m (and every monoid Ω , and every
measurable map g :Ω→RÊ0 ∪ {∞} ), the set of α-graphings defines a

non-degenerate model of Multiplicative-Additive Linear Logic .

AT LEAST!

Quantitative Aspects
(e.g. probabilities, effects)Complexity Constraints

Geometric Measurement
(Ihara/Ruelle Zeta Functions)

Constraints on Graphings
(e.g. deterministic: (partial) measured dynamical systems,

probabilistic: (discrete time) Markov processes)
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Hierarchies of models

Theorem (Seiller, APAL 2017)

For every monoid of measurable maps m (and every monoid Ω , and every
measurable map g :Ω→RÊ0 ∪ {∞} ), the set of m-graphings defines a

non-degenerate model of Multiplicative-Additive Linear Logic .

All Geometry of Interaction constructions are recovered as specific cases
Operators in C* / von Neumann algebras (1989,1990,2011)

Unification/Resolution clauses / Prefix Rewriting (1995,2016)

Complexity Constraints
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Complexity
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Previous Results
AMC det. model non-det. model prob. model
α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

Refines and generalises both:
a series of characterisations of complexity classes (e.g. LOGSPACE, PTIME)
by sets of operators (with Aubert), logic programs (with Aubert, Bagnol and
Pistone);
the result where relating the expressivity of GoI models with a
classification of inclusions of maximal abelian sub-algebras:

`∞(X)⊆ `∞(X)om
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α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

Only known correspondence between infinite hierarchies of mathematical
objects and complexity classes.

Indicates a strong connection between geometry and complexity: cf. AMC

generalise group actions, use of (generalised) Zeta functions, (homotopy)
equivalence between microcosms implies equality of the classes.
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Previous Results

AMC det. model non-det. model prob. model
α1 REGULAR REGULAR REGULAR STOCHASTIC
...

...
...

...
...

αk Dk Nk CO-Nk Pk
...

...
...

...
...

α∞ LOGSPACE NLOGSPACE CONLOGSPACE PLOGSPACE

β PTIME PTIME PTIME PTIME?
γ PTIME NPTIME CONPTIME PP?

Conjecture
If α : M æX and β : N æY are separable (by e.g. `2-Betti numbers), they
characterise different complexity classes.

Ï Can be checked on classical separation results and the computation of the invariants
on the AMCs α1, . . . ,αk, . . . ,α∞.
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Dynamic complexity

Definition
An abstract model of computation (AMC) is defined as a monoid action α : M æX
of a monoid M on a space X. I.e. α : M →M (X→X).

Definition
An abstract program is a α(M)-graphing.

Definition
Define(!) the dynamic complexity of a program as the smallest (equivalence class
of) monoid action α : M æX needed to interpret it as an abstract program.

Conjecture
Dynamic complexity of programs coincide* with computational complexity.
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Lower Bounds and Barriers
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Complexity Theory, Today

Separation results were obtained, most of them in the 70s, but a lot of
questions remain open. E.g. we know LOGSPACE ( PSPACE, but not which
of these are strict: LOGSPACE ⊂ NLOGSPACE ⊂ NC ⊂ P ⊂ NP ⊂ PSPACE.

In fact, the three more important results are negative results (called
barriers) showing that known proof methods for separation of complexity
classes are inefficient w.r.t. currently open problems. They are:
relativisation (1975), natural proofs (1995), and algebrization (2008).

Thus: no proof methods for (new) separation results exist today.
(Proviso) A single research program is considered as viable for obtaining
new results: Mulmuley’s Geometric Complexity Theory (GCT). According to
Mulmuley, if GCT produces results, it will not be during our lifetimes (and
maybe not our children’s lifetime either). Recent ...

Well, this depends on the children ages and how long they live, but it is quite unlikely.
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Complexity Theory, Today (well, in 2006)
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Complexity Theory, Today

Separation results were obtained, most of them in the 70s, but a lot of
questions remain open. E.g. we know LOGSPACE ( PSPACE, but not which
of these are strict: LOGSPACE ⊂ NLOGSPACE ⊂ NC ⊂ P ⊂ NP ⊂ PSPACE.

In fact, the three more important results are negative results (called
barriers) showing that known proof methods for separation of complexity
classes are inefficient w.r.t. currently open problems. They are:
relativisation (1975), natural proofs (1995), and algebrization (2008).

Thus: no proof methods for (new) separation results exist today.
(Proviso) A single research program is considered as viable for obtaining
new results: Mulmuley’s Geometric Complexity Theory (GCT). According to
Mulmuley, if GCT produces results, it will not be during our lifetimes (and
maybe not our children’s lifetime either*). Recent ...

*Well, this depends on the children ages and how long they live, but it is quite unlikely.
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Requiem for a Dream

State of the Art in Complexity (Separation Problem): Barriers.
Relativization/Algebrization (SIAM J. Comp. 1975 / STOC 2008): Proof
methods that are oblivious to the use/disuse of oracles are ineffective.

Separation proof methods should depend on the computational principles
allowed in the model.

Natural Proofs (J. Comp. Sys. Sci. 1997): Proof methods expressible as
(Large, Constructible) predicates on boolean functions are ineffective.

Separation proof methods should not “quotient” the set of programs too much.

Conclusion: Lack of proof methods for separation.
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Geometric Complexity Theory

GCT is a research program whose aim is to prove PTIME 6= NPTIME using
techniques from algebraic geometry (Mulmuley and Sohoni).

Basically, the goal is to prove that the permanent cannot be embedded in
the determinant†

Mulmuley does not expect results within the next 100 years. Recently
several drawbacks, in particular closing the easiest path to GCT.

Somehow builds on Algebraic Complexity (AC) which studies models of
computation over arbitrary structures (e.g. the real numbers). Advantages
of AC: lower bounds are easier, some successes in proving some bounds on
specific computations (e.g. matrix multiplication).

Initiated after a proof of lower bound for a restricted algebraic PRAM model,
which we note PRAM−. This model defines a class NC− lying within NC
(still quite large) and shows it is strictly contained within PTIME.
This is sometimes considered as the strongest lower bounds result obtained
so far.

†More details: tomorrow’s CALIN seminar and subsequent working groups (June 12th and 19th).
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Barriers as Guidelines

State of the Art in Complexity (Separation Problem): Barriers.
Relativization/Algebrization: Proof methods that are oblivious to the
use/disuse of oracles are ineffective.

Ï Separation proof methods should depend on the computational principles
allowed in the model.

Natural Proofs: Proof methods expressible as (Constructible, Large)
predicates on boolean functions are ineffective.

Ï Separation proof methods should not “quotient” the set of programs too much.
(by definition, complexity classes are non-decidable predicates on boolean
functions)
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Can we jump the barriers?

Why barriers do not apply to this approach:
(Relativisation/Algebrization)

Ï How to describe oracles in this setting?
Ï It has to be defined explicitly, i.e. extend the AMC by adding a new

computational principle as a measurable map o : O→O;
Ï Impact the invariants: if α : M æX and β : N æY are separable, there are no

reasons to believe that α+o : M æX and β+o : N æY are separable.

(Natural Proofs)
Ï The Natural Proofs barrier applies to non-uniform classes.
Ï As explained above, the approach should violate the constructivity axiom of

the Natural Proof barrier.
Ï More importantly, we can argue that if barriers exists in this setting then the

separation problem is undecidable.
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Entropy and Lower Bounds
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Deterministic graphings

In this work, we only consider deterministic topological graphings.

Definition
A graphing on a space X is deterministic if for all x ∈X, x belongs to at most one
source. (In measurable case, replace "for all" by "for almost all".)

Proposition
The set of all (–, resp. topological, resp. measurable) graphings over a space X is
equal to the set of all partial (discrete, resp. topological, resp. measurable)
dynamical systems over X.

Goal
Convince you that invariants of the dynamical systems are relevant tools for the
study of computational complexity.
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Entropy and Cells

Definition

Let X be a topological space and f : X→X be a continuous partial map. For any
finite open cover U of X, we define:

Hk
X(f ,U )= 1

k
H0

f−k+1(X)(U ∨ f−1(U )∨·· ·∨ f−(k−1)(U )).

The entropy of f is then defined as h(f )= supU∈FCov(X) h(f ,U ), where h(f ,U ) is
again defined as the limit limn→∞Hn

X(f ,U ).

Proposition
Let G be a deterministic graphing, with entropy h(G). The cardinality of the k-th
cell decomposition of X w.r.t. G, as a function c(k) of k, is asymptotically bounded
by g(k)= 2k2h([G]), i.e. c(k)=O(g(k)).
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Lower Bounds results I: Algebraic Decision Trees

Start

True False

P(~x)= 0

Lemma
Let G be a regular deterministic graphing interpreting an algebraic decision tree
of max degree d. The k-th cell decomposition of X w.r.t. G is determined by at
most 2k algebraic varieties of degrees bounded by d.
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The Milnor-Thom theorem

Theorem (Milnor, Thom)
Let V be an algebraic variety ⊂Rm, defined by a polynomial of degree at most d.
The sum of the Betti numbers of V is not greater than d(2d−1)m−1.

Corollary
Let (S) be a system of s polynomial equations and inequalities in k variables, of
degrees at most dÊ 2. The number of connected components of the set of solutions
of (S) in Rn is not greater than d(2d−1)k+s−1.

Remark
There are better bounds, e.g. Roy (skO(d)k).

T. Seiller, CNRS Realisability on Dynamical Systems and Complexity June 13th, 2018 31 / 41



Lower Bounds results I: Algebraic Decision Trees

Lemma
Let G be a regular deterministic graphing interpreting an algebraic decision tree
of max degree d. The k-th cell decomposition of X w.r.t. G is determined by at
most 2k algebraic varieties of degrees bounded by d.

This gives lower bounds for deciding (semi-)algebraic sets. E.g.
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A second separation result
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Lower Bounds results II: Algebraic circuits

Proposition
Let fn ∈R[X1, . . . ,Xn],n ∈Z, be a family of nonconstant irreducible polynomials
such that for each n, the zero set Z (fn) is a variety of dimension n−1. Let
d(n)= deg(fn). Then any parallel machine deciding the set
S= {x ∈R∞ | fsize(x)(x)= 0} has running time greater than logd(n).

Proposition
The same problem with the family of polynomials X1 −X2n

2 is computable in
polynomial (even linear) time in the real BSS model.

Theorem

NCR (PtimeR
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PRAMs w/o bit operations

Definition
A SRAM command is a pair (`,I) of a label (or line) ` ∈N? and a command I
among the following (i, j ∈N, `,`′ ∈N? labels):

Commands := skip; Xi := Xi+1; Xi := Xi−1;
Xi := Xj; Xi := ]Xj; ]Xi := Xj;
if Xi = 0 goto ` else `′;

Definition
A PRAM machine M is simply given as a finite sequence of SRAM machines
M1, . . . ,Mp, where p is the number of processors of M. Each processor Mi has
access to its own, private, set of registers (Xi

k)kÊ0 and a shared memory
represented as a set of registers (X0

k)kÊ0.
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PRAMs w/o bit operations

Definition
A PRAM machine M is simply given as a finite sequence of SRAM machines
M1, . . . ,Mp, where p is the number of processors of M. Each processor Mi has
access to its own, private, set of registers (Xi

k)kÊ0 and a shared memory
represented as a set of registers (X0

k)kÊ0.

Lemma
Let G be a regular deterministic graphing interpreting a PRAM with p processors.
The k-th cell decomposition of X w.r.t. G is determined by at most 2kpk algebraic
varieties of degree at most 2k.

T. Seiller, CNRS Realisability on Dynamical Systems and Complexity June 13th, 2018 36 / 41



Lower Bounds results III

The following result provides a geometric representation of a PTIME-complete
problem on R3. (Need whiteboard here.)

Theorem (Murty, Carstensen)
1 there exists an affine parametrization of bitsize O(n) and complexity 2Ω(n) of

combinatorial linear programming, where n is the total number of variables
and constraints of the problem.

2 there exists an affine parametrization of bitsize O(n2) and complexity 2Ω(n)

of the maxflow problem for directed and undirected networks, where n is the
number of nodes in the network.
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Lower Bounds results III-2
Definition
Let K be a compact of R3.
A finite set of surfaces S on K separates a ρ-fan Fan on K if the partition on
Z3 ∩K induced by S is finer than the one induced by Fan.

Theorem (Mulmuley)
Let S be a finite set of algebraic surfaces of total degree δ.
There exists a polynomial P such that, for all ρ >P(δ), S does not separate ρ-fans.

Corollary
Let G be a deterministic graphing interpreting a PRAM without bit operations
with 2O(Nc) processors (N is the length of the inputs and c any positive integer).
G does not decide maxflow in O(Nc) steps.

Theorem

NCPRAM−
(Ptime
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A Remark

Algebraic Computational Trees.
Ï Results of Dobkin and Lipton, Yao, Steele and Yao, Ben-Or –> 83.

Ï Not cited by Cucker
Ï Not cited by Mulmuley

Algebraic Circuits and Algebraic Ptime.
Ï Result of Cucker –> 92

Ï Not cited by Mulmuley

PRAMs w/o bit operations.
Ï Result of Mulmuley –> 99
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