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Abstract

We present several new standard and differential approximation results for the P4-
partition problem using the Hassin and Rubinstein algorithm (Information Process-
ing Letters, 63: 63-67, 1997). Those results concern both minimization and maxi-
mization versions of the problem. However, the main point of this paper lies in the
establishment of the robustness of this algorithm, in the sense that it provides good
quality solutions for a variety of versions of the problem, under both standard and
differential approximation ratio.

Key words: graph partitioning, P4-packing, approximation algorithms,
performance ratio, standard approximation, differential approximation.

1 Introduction

1.1 Definition and hardness of the weighted Pk-partition problem

In the weighted Pk-partition problem (PkP in short), we are given a complete
graph Kkn together with a weight function w : E → N on its edges. A Pk

is an induced path of length k − 1 (or, equivalently, an induced path on k
vertices) and the weight of such a path P , denoted by w(P ), is the sum of

⋆ A preleminary version of this paper appeared in the proceedings the 15th Inter-
national Symposium on Fundamentals of Computation Theory, FCT 2005, LNCS
3623, (2005) 377-385
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its edge weight. Note that the term “path” is somewhat abusive here, since
we exclusively work on undirected graphs; hence, by path, we actually mean
chain. Given an instance I = (Kkn, w), the aim is to compute a partition
T ∗ = {P ∗

1 , . . . , P ∗
n} of V (Kkn) into n vertex-disjoint Pk (what we call a Pk-

partition) that is of optimum weight, where the value of a solution T ∗ is given
by w(T ∗) =

∑q
i=1 w(P ∗

i ). Hence, if the goal is to maximize (MaxPkP), then
we seek a Pk-partition of maximum weight, and if the goal is to minimize
(MinPkP), then we seek a Pk-partition of minimum weight. When consider-
ing the minimization version, we will more often assume that the weight func-
tion satisfies the triangle inequality, i.e., w(x, y) ≤ w(x, z) + w(z, y), ∀x, y, z;
MinMetricPkP will refer to this restriction. Finally, we also deal with a spe-
cial case of metric instances where the weight function is worth either 1 or 2;
the corresponding problems will be denoted by MaxPkP1,2 and MinPkP1,2.
Note that for k = 2, a P2-partition is a perfect matching and hence, MinP2P

and MaxP2P both are polynomial-time solvable. On the other hand, all these
problems turn to be NP-hard for k ≥ 3, [9,16].

In this paper, we address the approximability of PkP when k is worth 4, by an-
alyzing the performance of a specific algorithm under different assumptions on
the input. Commonly, a given problem is said to be ρ-approximable if it admits
an algorithm that polynomially computes on any instance a solution that is at
least (if maximizing, at most if minimizing) ρ times the optimum value. The
aim of approximation theory it to provide solutions of guaranteed quality for
problems that are hard to solve (intractable), which is the case of MinPkP

and MaxPkP. Nevertheless, MaxPkP is standard-approximable for any k,
[11]. In particular, MaxP3P and MaxP4P are respectively 35/67 − ε, [12]
and 3/4, [11] approximable. On the other hand, it is NP-hard to approximate
MinPkP within 2p(n) for any polynomial p, for any k ≥ 3; this is due to the
fact that the Pk-partition problem, which consists in deciding whether or not
a graph admits a partition of its vertex set into Pk, is NP-complete, [9,15,16].
Furthermore, even when restricted to metric instances and more specifically
for k = 4, no approximation rate has (to our knowledge) been established for
MinMetricPkP so far. Note that this latter problem (and PkP in general)
is closely related to the vehicle routing problem when restricting the route of
each vehicle to at most k intermediate stops, [1,8]. As we have already said,
we focus here on the weighted P4-partition problem. Furthermore, we study
the performance of a single algorithm on various versions of this problem. Do-
ing so, we put to the fore the effectiveness of this algorithm by proving that
it provides approximation ratios for both standard and differential measures,
for both maximization and minimization versions of the problem. But, before
going so far, we briefly recall the basis of approximation theory.

2



1.2 Approximation theory

Consider an instance I of an NP-hard optimization problem Π and a polynomial-
time algorithm A that computes feasible solutions for Π. Denote respectively
by apxΠ(I) the value of a solution computed by A on I, by optΠ(I) the value
of an optimal solution and by worΠ(I) the value of a worst solution (that
corresponds to the optimum value when reversing the optimization goal).
The quality of A is expressed by means of approximation ratios that some-
how compare the approximate value to the optimum one. So far, two mea-
sures stand out from the literature: the standard ratio [2] (the most widely
used) and the differential ratio [3,4,7,10]. The standard ratio is defined by
ρΠ(I, A) = apxΠ(I)/optΠ(I) if Π is a maximization problem, by ρΠ(I, A) =
optΠ(I)/apxΠ(I) otherwise, whereas the differential ratio is defined by δΠ(I, A)=
(worΠ(I)−apxΠ(I))/(worΠ(I)−optΠ(I)). Instead of dividing the approximate
value by the optimum one, this latter measure divides the distance from a
worst solution to the approximate value by the instance diameter. Within the
worst case analysis framework and given a universal constant ε ≥ 1 (resp.,
ε ≤ 1), an algorithm A is said to be an ε-standard approximation for a maxi-
mization (resp. a minimization) problem Π if ρI,AΠ

(I) ≥ ε ∀I (resp., ρAΠ
(I) ≤ ε

∀I). With respect to differential approximation, A is said to be ε-differential ap-
proximate for Π if δAΠ

(I) ≥ ε, ∀I, for a universal constant ε ≤ 1. Equivalently,
because any solution value is a convex combination of the two values worΠ(I)
and optΠ(I), an approximate solution value apxΠ(I) will be an ε-differential
approximation if for any instance I, apxΠ(I) ≥ ε×optΠ(I)+(1−ε)×worΠ(I)
(for the maximization case; reverse the sense of the inequality when minimiz-
ing).

1.3 Organization of the paper

This paper is organized as follows: in the second section, we study the re-
lationship between TSP and PkP under differential ratio; namely, we show
how a differential approximation for TSP enables a differential approxima-
tion for PkP. In the third section, that contains the main result of this pa-
per, we propose a complete analysis, from both a standard and a differen-
tial point of view, of an algorithm proposed by Hassin and Rubinstein [11].
We prove that, with respect to the standard ratio, this algorithm provides
new approximation ratios for MetricP4P, namely: the approximate solu-
tion respectively achieves a 3/2-, a 7/6- and a 9/10-standard approximation
for MinMetricP4P, MinP4P1,2 and MaxP4P1,2. Under differential ratio,
the approximate solution is a (1/2)-approximation for general P4P, a (2/3)-
approximation for P4Pa,b. The gap between differential and standard ratios
that might be reached for a maximization problem may be explained by the
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fact that, within the differential framework, the approximate value has to be
located within the interval [wor(I), opt(I)], instead of [0, opt(I)] when con-
sidering the standard measure. That is the aim of differential approximation:
thanks to the reference it does to wor(I), this measure is both more precise (rel-
evant with respect to the notion of guaranteed performance) and more robust
(since minimizing and maximizing turn to be equivalent and more generally,
differential ratio is invariant under affine transformation of the objective func-
tion). In addition to the new approximation bounds that they provide, the
obtained results establish the robustness of the algorithm that is addressed
here, since this latter provides good quality solutions, whatever version of the
problem we deal with, whatever approximation framework within which we
estimate the approximate solutions.

2 From Traveling salesman problem to PkP

A common technique in order to obtain an approximate solution for MaxPkP

from a Hamiltonian cycle is called the deleting and turning around method, see
[11,12,8]. Starting from a tour, this method builds k solutions of MaxPkP and
picks the best among them, where the ith solution is obtained by deleting every
kth edge from the input cycle, starting from its ith edge. The quality of the
output T ′ obviously depends on the quality of the initial tour; in this way it is
proven in [11,12], that any ε-standard approximation for MaxTSP provides
a k−1

k
ε-standard approximation for MaxPkP. From a differential point of

view, things are less optimistic: even for k = 4, there exists an instance family
(In)n≥1 that verifies apx(In) = 1

2
optMaxP4P

(In)+ 1
2
worMaxP4P(In). This instance

family is defined as In = (K8n, w) for n ≥ 1, where the vertex set V (K8n) may
be partitioned into two sets L = {ℓ1, . . . , ℓ4n} and R = {r1, . . . , r4n} in such
a way that the associated weight function w is 0 on L × L, 2 on R × R and
1 on L× R. Thus, for any n ≥ 1, the following property holds:

Property 1 apx(In) = 6n, optMaxP4P
(In) = 8n, worMaxP4P(In) = 4n.

Proof. If the initial tour is described as Γ = {e1, . . . , en, e1}, then the delet-
ing and turning around method produces 4 solutions T1, . . . , T4 where Ti =
∪n−1

j=0{{ej+i, ej+i+1, ej+i+2}} for i = 1, . . . , 4 (indices are considered mod n).
Figure 1 provides an illustration of this process (the dashed lines correspond
to the edges from Γ \ Ti).

Observe that any tour Γ on In is an optimum, of total weight 8n. Indeed, any
tour contains as many edges with their two endpoints in L as edges with their
two endpoints in R and thus, w(Γ) = |Γ ∩ L×R|+ 2|Γ ∩R×R| = |Γ| = 8n.
Hence, starting from the optimal cycle Γ∗ = [r1, . . . , r4n, l1, . . . , l4n, r1], each of
the four solutions T1, . . . , T4 output by the algorithm (see Figure 1) has value
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T1 T2 T3 T4

Fig. 1. An example of the 4 solutions T1, . . . , T4.

T∗ T ∗

L R L R

Fig. 2. A worst solution and an optimal solution when n = 1.

w(Ti) = 6n, while an optimal solution T ∗ and a worst solution T∗ are of total
weight respectively 8n and 4n (see Figure 2). Indeed, because any P4-partition
T is a 2n edge cut down tour, we get, on the one hand, optMaxTSP(In) ≥ w(T )
and, on the other hand, w(T ) ≥ 8n−4n = 4n, which concludes this argument.

Nevertheless, the deleting and turning around method leads to the following
weaker differential approximation relation:

Lemma 2 From an ε-differential approximation of MaxTSP, one can poly-
nomially compute a ε

k
-differential approximation of MaxPkP. In particular,

we deduce from [10,13] that MaxPkP is 2
3k

-differential approximable.

Proof. Let us show that the following inequality holds for any instance I =
(Kkn, w) of MaxPkP:

optMaxTSP(I) ≥
1

k − 1
optMaxPkP(I) + worMaxPkP(I) (1)

Let T ∗ be an optimal solution of MaxPkP, then arbitrarily add some edges
to T ∗ in order to obtain a tour Γ. From this latter, we can deduce k − 1
solutions Ti for i = 1, . . . , k − 1, by applying the deleting and turning around
method in such a way that any of the solutions Ti contains (Γ \T ∗). Thus, we
get (k − 1)worMaxPkP(I) ≤

∑k−1
i=1 w(Ti) = (k − 1)w(Γ)− optMaxPkP(I). Hence,

consider that w(Γ) ≤ optMaxTSP(I) and the result follows. By applying again
the deleting and turning around method, but this time from a worst tour, we
may obtain k approximate solutions of MaxPkP, which allows us to deduce:

worMaxTSP(I) ≥
k

k − 1
worMaxPkP(I) (2)
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Finally, let Γ′ be an ε-differential approximation of MaxTSP, we deduce from
Γ′ k approximate solutions of MaxPkP. If T ′ is set to the best one, we get
w(T ′) ≥ k

k−1
w(Γ′) and thus:

apx(I) ≥
k

k − 1
w(Γ′) ≥

k

k − 1
(εoptMaxTSP(I) + (1− ε)worMaxTSP(I)) (3)

Using inequalities (1), (2) and (3), we get apx(I) ≥ ε
k
optMaxPkP(I) + (1 −

ε
k
)worMaxPkP(I) and the proof is complete.

To conclude with the relationship between PkP and TSP with respect to
their approximability, observe that the minimization case also is trickier. No-
tably, if we consider MinMetricP4P, then the instance family I ′

n = (K8n, w′)
built as the same as In with a distinct weight function defined as w′(ℓi, ℓj) =
w′(ri, rj) = 1 and w′(ℓi, rj) = n2 + 1 for any i, j, then we have: optTSP(I ′

n) =
2n2 + 8n and optP4P

(I ′
n) = 6n.

3 Approximating P4P by means of optimal matchings

Here starts the analysis, from both a standard and a differential point of view,
of an algorithm proposed by Hassin and Rubinstein in [11], where the au-
thors show that the approximate solution is a 3/4-standard approximation for
MaxP4P. First, dealing with the standard ratio, we prove that this algorithm
provides a (3/2)-approximation for MinMetricP4P and respectively a 7/6
and a (9/10)-approximation for MinP4P1,2 and MaxP4P1,2. As a corollary
of a more general result, we also obtain an alternative proof of the result of
[11]. We then prove that, with respect to the differential measure, the ap-
proximate solution achieves a (1/2)-approximation in general graphs, for both
maximization and minimization versions of the problem. Finally, this latter
ratio is raised up to 2/3 when restricting to bi-valued graphs.

3.1 Description of the algorithm

The algorithm proposed in [11] runs in two stages: first, it computes an op-
timum weight perfect matching M on I = (K4n, w); then, it builds on the
edges of M a second optimum weight perfect matching R in order to com-
plete the solution (note that “optimum weight” signifies “maximum weight”
if the goal is to maximize, “minimum weight” if the goal is to minimize).
Precisely, we define the instance I ′ = (K2n, w

′) (having a vertex ve in K2n

for each edge e ∈ M), where the weight function w′ is defined as follows:
for any edge [ve1

, ve1
] on I ′, w′(ve1

, ve2
) is set to the weight of the heaviest
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edge that links e1 and e2 in I, that is, if e1 = [x1, y1] and e2 = [x2, y2],
then w′(ve1

, ve2
) = max {w(x1, x2), w(x1, y2), w(y1, x2), w(y1, y2)} (when deal-

ing with the minimization version of the problem, set the weight to the light-
est). We thus build on (K2n, w′) an optimum weight matching R, which is
then transposed to the initial graph (K4n, w) by selecting on K4n the edge
that realizes the same weight. Since the computation of an optimum weight
perfect matching is polynomial, the whole algorithm runs in polynomial time,
whether the goal is to minimize or to maximize.

3.2 General P4P within the standard framework

For any solution T , we denote respectively by MT and RT the set of the end
edges and the set of the middle edges of its paths. Furthermore, we consider
for any path PT = {x, y, z, t} of the solution the edge [t, x] that completes PT

into a cycle. If RT denotes the set of these edges, we observe that RT ∪ RT

forms a perfect matching. Finally, for any edge e ∈ T , we will denote by PT (e)
the P4 from the solution that contains e and by CT (e) the 4-edge cycle that
contains PT (e).

Lemma 3 For any instance I = (K4n, w) with an optimal solution T ∗, and a
perfect matching M , there exist four pairwise disjoint edge sets A, B, C and
D that verify:

(i) A ∪B = T ∗ and C ∪D = RT ∗.
(ii) A ∪ C and B ∪D both are perfect matchings on I.

(iii) A∪C∪M is a perfect 2-matching on I whose cycles are of length a multiple
of 4.

Proof. Let T ∗ = MT ∗ ∪ RT ∗ be an optimal solution, we apply the following
process:

1 Set A = MT ∗ , B = RT ∗ , C = ∅, D = RT ∗ ;
Set G′ = (V, A ∪ C ∪M) (consider the simple graph);

2 While there exists an edge e ∈ RT ∗ that links two connected components
of G′, do:
2.1 move CT ∗(e) ∩MT ∗ from A to B;

move CT ∗(e) ∩RT ∗ from B to A;
move CT ∗(e) ∩RT ∗ from D to C;

2.2 G′ ← (V, A ∪ C ∪M);
3 Output A, B, C and D;
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M A M B M A

AMM

A

M

A A A M

A ∩ M

B

M A M A M A

AMCMM

A M

M

AC

Fig. 3. The construction of sets A and C.

At the initialization stage, the connected components of the partial graph
induced by (A ∪ C ∪M) are either cycles that alternate edges from (A ∪ C)
and M , or isolated edges from MT ∗ ∩M . During step 2, at each iteration, the
process merges together two connected components of G′ into a single cycle
that still alternates edges from (A∪C) and M (an illustration of this merging
process is provided in Figure 3). Note that all along the process, the sets A,
B, C and D define a partition of T ∗ ∪RT ∗ and thus, remain pairwise disjoint.

• For (i): Immediate from definition of the process (edges from T ∗ are moved
from A to B, from B to A, but never out of A ∪ B; the same holds for RT ∗

and the two sets C and D).

• For (ii): At the initialization stage, A ∪ C and B ∪D respectively coincide
with MT ∗ and RT ∗∪RT ∗ , each a perfect matching. More precisely, for any path
PT ∗ from the optimal solution, if CT ∗ denotes the associated 4-edge cycle, then
A ∪ C and B ∪ D respectively contain the perfect matching CT ∗ ∩MT ∗ and
CT ∗ ∩ (RT ∗ ∪ RT ∗) on V (PT ∗). Now, at each iteration, the algorithm swaps
the perfect matchings that are used in A ∪ C or B ∪D in order to cover the
vertices of a given path PT ∗ and thus, both A ∪ C and B ∪D remain perfect
matchings.

• For (iii): At the end of the process, (A∪C)∩M = ∅ and thus, because A∪C
and M both are perfect matchings, then A ∪ C ∪M is a perfect 2-matching.
Now, consider a cycle Γ of G′ = (V, A ∪ C ∪M); by definition of step 2, any
edge e from RT ∗ that is incident to Γ has its two endpoints in V (Γ), which
means that Γ contains either the two edges of CT ∗(e)∩MT ∗ , or the two edges
of CT ∗(e)∩(RT ∗∪RT ∗). In other words, if any vertex u from any path PT ∗ ∈ T ∗

belongs to V (Γ), then the whole vertex set V (PT ∗) actually is a subset of V (Γ)
and therefore, we deduce that |V (Γ)| = 4k.
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A1 ∪ MT ′

A2 ∪ MT ′

Fig. 4. Two possible P4 partitions deduced from A ∪ C ∪MT ′ .

Theorem 4 The solution T ′ provided by the algorithm achieves a 3
2
-standard

approximation for MinMetricP4P and this ratio is tight.

Proof. Let T ∗ be an optimal solution on I = (K4n, w), we consider four
pairwise disjoint sets A, B, C and D in accordance with the application of
Lemma 3 to the perfect matching MT ′ of the solution T ′. According to property
(iii), we can split A∪C into two sets A1 and A2 in such a way that Ai∪MT ′ (i =
1, 2) is a P4-partition (see Figure 4 for an illustration). Hence, Ai constitutes an
alternative solution for RT ′ and because this latter is optimal on I ′ = (K2n, w

′),
we obtain:

2w(RT ′) ≤ w(A) + w(C) (4)

Moreover, item (ii) of Lemma 3 states that B∪D is a perfect matching; since
MT ′ is an optimum weight matching, it thus verifies:

w(MT ′) ≤ w(B) + w(D) (5)

Hence, it suffices to sum inequalities (4) and (5) (and also to consider item (i)
of Lemma 3) in order to obtain:

w(MT ′) + 2w(RT ′) ≤ w(T ∗) + w(RT ∗) (6)

Now, because I satisfies the triangle inequality, we observe that w(RT ∗) ≤
w(T ∗) and thus deduce from inequality (6):

w(MT ′) + 2w(RT ′) ≤ 2optMinMetricP4P
(I) (7)

Relation (7) together with w(MT ′) ≤ w(MT ∗) ≤ w(T ∗) complete the proof.
Finally, the tightness is provided by the instance family In = (K8n, w) that
has been described in Property 1.
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Concerning the maximization case and using Lemma 3, one can also obtain
an alternative proof of the result given in [11].

Theorem 5 The solution T ′ provided by the algorithm achieves a 3
4
-standard

approximation for MaxP4P.

Proof. The inequality (6) becomes

w(MT ′) + 2w(RT ′) ≥ optMaxP4P
(I) + w(RT ∗) (8)

On the other hand, inequality (7) is no longer true when maximizing. Never-
theless, the approximate value obviously verifies 2×w(MT ′) ≥ optMaxP4P

(I)+

w(RT ∗); hence, we deduce apxMaxP4P
(I) ≥ 3

4

(

optMaxP4P
(I) + w(RT ∗)

)

.

3.3 General P4P within the differential framework

When dealing with the differential ratio, MinP4P, MinMetricP4P, and
MaxP4P are equivalent to approximate, since PkP problems belong to the
class FGNPO, [14]. Note that such an equivalence is more generally true for
any couple of problems that only differ by an affine transformation of their
objective function.

Theorem 6 The solution T ′ provided by the algorithm achieves a 1
2
-differential

approximation for P4P and this ratio is tight.

Proof. We consider the maximization version. First, observe that RT ∗ is an
n-cardinality matching. Let M be any perfect matching of I such that M∪RT ∗

forms a P4-partition, we have:

w(M) + w(RT ∗) ≥ worMaxP4P(I) (9)

Adding inequalities (8) and (9), and since w(MT ′) ≥ w(M), we conclude that:

2apxMaxP4P
(I) = 2 (w(MT ′) + w(RT ′)) ≥ worMaxP4P(I) + optMaxP4P

(I)

⇒
apxMaxP4P

(I)− worMaxP4P(I)

optMaxP4P
(I)− worMaxP4P(I)

≥ 1/2

In order to establish the tightness of this ratio, we refer to Property 1.
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3.4 Bi-valued metric P4P with weights 1 & 2 within the standard framework

As it has been recently done for MinTSP in [5,6] and because such an anal-
ysis enables a keener comprehension of a given algorithm, we now focus on
instances where any edge weight is either 1 or 2. Note that, since the P4-
partition problem is NP-complete, the problems MaxP4P1,2 and MinP4P1,2

still are NP-hard.

Let us first introduce some more notation. For a given instance I = (K4n, w)
of P4P1,2 with w(e) ∈ {1, 2}, we denote by MT ′,i (resp., RT ′,i) the set of
edges from MT ′ that are of weight i. If we aim at maximizing, then p (resp.,
q) indicates the cardinality of MT ′,2 (resp., of RT ′,2); otherwise, it indicates
the quantity |MT ′,1| (resp., |RT ′,1|). In any case, p and q respectively count
the number of “optimum weight weight edges” in the sets MT ′ and RT ′ . With
respect to the optimal solution, we define the sets MT ∗,i, RT ∗,i for i = 1, 2 and
the cardinalities p∗, q∗ as the same. Wlog., we may assume that the following
property always holds for T ∗:

Property 7 For any 3-edge path P ∈ T ∗,

|P ∩MT ∗,2| ≥ |P ∩RT ∗,2| if the goal is to maximize,

|P ∩MT ∗,1| ≥ |P ∩RT ∗,1| if the goal is to minimize.

Proof. Assume that the goal is to maximize. If |P ∩MT ∗,2| < |P ∩RT ∗,2|, then
T ∗ would contain a path P = {[x, y], [y, z], [z, t]} with w(x, y) = w(z, t) = 1
and w(y, z) = 2; thus, by swapping P for P ′ = {[y, z], [z, t], [t, x]} within T ∗,
one could generate an alternative optimal solution.

Lemma 8 For any instance I = (K4n, w), if T ′ is a feasible solution and T ∗

is an optimal solution, then there exists an edge set A that verifies:

(i) A ⊆ MT ∗,2 ∪ RT ∗,2 (resp., A ⊆ MT ∗,1 ∪RT ∗,1) and |A| = q∗ if the goal is to
maximize (resp., to minimize);

(ii) G′ = (V, MT ′ ∪ A) is a simple graph made of pairwise disjoint chains.

Proof. We only prove the maximization case. We now consider G′ the multi-
graph induced by MT ′ ∪ RT ∗,2 (the edges from MT ′ ∩ RT ∗,2 appear twice).
This graph consists of elementary cycles and chains: its cycles alternate edges
from MT ′ and RT ∗,2 (note that the 2-edge cycles correspond to the edges from
RT ∗,2 ∩MT ′); its chains (that may be of length 1) also alternate edges from
MT ′ and RT ∗,2, with the particularity that their end edges all belong to MT ′ .

Let Γ be a cycle on G′ and e be an edge from Γ∩RT ∗,2. If PT ∗(e) = {x, y, z, t}
denotes the path from the optimal solution that contains e, then e = [y, z].
The initial vertex x of the path PT ∗(e) necessarily is the endpoint of some
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Γ

MT MT MT

MT

MT MT MT

MT

A ∩ RT∗,2

MT∗,2

A

Fig. 5. The construction of set A.

chain from G′: otherwise, the edge [x, y] from PT ∗(e)∩MT ∗ would be incident
to 2 distinct edges from RT ∗ , which would contradict the fact that T ∗ is a
P4 partition. The same obviously holds for t. W.l.o.g., we may assume from
Property 7 that [x, y] ∈MT ∗,2. In light of these remarks and in order to build
an edge set A that fulfills the requirements (i) and (ii), we proceed as follows:

1 Set A = RT ∗,2;
Set G′ = (V, A ∪MT ′) (consider the multi-graph);

2 While there exists a cycle Γ in G′, do:
2.1 pick e from Γ ∩RT ∗,2;

pick f from PT ∗(e) ∩MT ∗,2;
A← A \ {e} ∪ {f};

2.2 G′ ← (V, A ∪MT ′);
3 output A;

By construction, the set A output by the algorithm is of cardinality q∗ and
contains exclusively edges of weight 2. Furthermore, by the stopping criterion
of the step 2, and because each iteration of this step merges a cycle and a
chain into a chain, G′ = (V, A ∪MT ) is a simple graph of whose connected
components are elementary chains (an illustration of this step is provided by
Figure 5). Finally, the existence of edge f at step 2.1 directly comes from the
above discussion.

Theorem 9 The solution T ′ provided by the algorithm achieves a 9
10

-standard
approximation for MaxP4P1,2 and a 7

6
-standard approximation for MinP4P1,2.

These ratios are tight.

Proof. Let consider A the edge subset of the optimal solution that may be
deduced from the application of Lemma 8 to the approximate solution. We

12



arbitrarily complete A by means of an edge set B in such a way that A∪B∪MT ′

constitutes a perfect 2-matching. As we did while proving Theorem 4, we split
the edge set A∪B into two sets A1 and A2 in order to obtain two P4-partitions
MT ′ ∪ A1 and MT ′ ∪ A2 of V (K4n). As both A1 and A2 complete MT ′ into a
P4-partition and because RT ′ is optimal, we deduce that Ai does not contain
more “good weight edges” than RT ′ , that is: q ≥ |{e ∈ Ai : w(e) = 2}| if the
goal is to maximize, q ≥ |{e ∈ Ai : w(e) = 1}| otherwise. Since A ⊆ A1 ∪ A2

and |A| = q∗, we immediately deduce:

q ≥ q∗/2 (10)

On the other hand, by the optimality of MT ′ :

p ≥ max{p∗, q∗} (11)

Moreover, the quantities p∗ and q∗ structurally verify:

n ≥ max{p∗/2, q∗} (12)

Finally, we can express the value of any solution T as:

w(T ) =











3n + (p + q) when maximizing,

6n− (p + q) when minimizing.
(13)

The claimed results can now be obtained from (10), (11), (12) and (13):

10apxMaxP4P1,2
(I) = 10(3n + p + q)

= 9(3n) + 3n + 9p + p + 10q

≥ 9(3n) + 3q∗ + 9p∗ + q∗ + 5q∗

= 9(3n + p∗ + q∗) = 9optMaxP4P1,2
(I)

6apxMinP4P1,2
(I) = 6(6n− p− q)

= 6(6n) − 6p − 6q

≤ 6(6n) − 6p∗ − 3q∗ + (2n− p∗) + (4n− 4q∗)

≤ 7(6n− p∗ − q∗) = 7optMinP4P1,2
(I)

The tightness for MaxP4P1,2 is established in the instance I = (K8, w)
depicted in Figure 6, where the edges of weight 2 are drawn in continu-
ous line, and the edges of weight 1 on T ∗ and T ′ are drawn in dotted line

13



I = (K8, w) T ∗ T ′

Fig. 6. Instance I = (K8, w) that establishes the tightness for MaxP4P1,2.

J = (K8, w) T ∗ T ′

Fig. 7. Instance I = (K8, w) that establishes the tightness for MinP4P1,2.

(other edges are not drawn). One can easily see optMaxP4P1,2
(I) = 10 and

apxMaxP4P1,2
(I) = 9. Concerning the minimization case, the ratio is tight on

the instance J = (K8, w) that verifies: opt(J) = w(T ∗) = 6 and apx(J) =
w(T ′) = 7. J = (K8, w) is depicted in Figure 7 (the 1-weight edges are drawn
in continuous line and the 2-weight edges on T ∗ and T ′ are drawn in dotted
line).

3.5 Bi-valued metric P4P with weights a and b within the differential frame-
work

As we have already mentioned, the differential measure is invariant under
affine transformation; now, any instance from MaxP4Pa,b or from MinP4Pa,b

can be mapped into an instance of MaxP4P1,2 by the way of such a trans-
formation. Thus, proving MaxP4P1,2 is ε-differential approximable actually
establishes that MinP4Pa,b and MaxP4Pa,b are ε-differential approximable
for any couple of real values a < b. We demonstrate here that Hassin and
Rubinstein algorithm achieves a 2

3
-differential approximation for P4P1,2 and

hence, for P4Pa,b, for any couple of reals a < b.

Let I = (K4n, w) be an instance of MaxP4P1,2. We use the notation intro-
duced while proving Theorem 9, namely: p = |MT ′,2|, p∗ = |MT ∗,2|, q = |RT ′,2|
and q∗ = |RT ∗,2|. Furthermore, for i = 1, 2, P i

T ′ will refer to the set of paths
from T ′ whose central edge is of weight i. Note that the paths from P1

T ′ may
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y′
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T ′
M1

T ′

Fig. 8. 1-weight edges on V (M1
T ′).

be of total weight 3, 4 or 5, whereas the paths from P2
T ′ may be of total weight

5 or 6 (at least one extremal edge must be of weight 2, or MT ′ is not an opti-
mum). We will denote by P2

T ′,5 and P2
T ′,6 the paths from P2

T ′ that are of total
weight 5 and 6, respectively. Finally, for i = 1, 2, M i

T ′ will refer to the set of
edges e ∈MT ′ such that PT ′(e) ∈ P i

T ′ (that is, e is element of a path from T ′

whose central edge has weight i). By (10) and (11):

optMaxP4P1,2
(I) ≤ min {3n + p + 2q, 3n + 2p} (14)

To obtain a differential approximation, one also has to produce an efficient
bound for worMaxP4P1,2

(I). To do so, we exploit the optimality of MT ′ and RT ′

in order to exhibit some edges of weight 1 that will enable us to approximate
the worst solution. We first consider the vertices from V (P1

T ′): they are “easy”
to cover by means of 3-edge paths of total weight 3, since we may immediately
deduce from the optimality of RT ′ the following property (an illustration is
provided by Figure 8, where dotted lines indicate edges of weight 1 and dashed
lines indicate unspecified weight edges):

Property 10 [x, y] 6= [x′, y′] ∈M1
T ′ ⇒ ∀e ∈ {x, y} × {x′, y′} , w(e) = 1

We now consider the vertices from V (P2
T ′,5). Let PT ′ = {x, y, z, t} with [x, y] ∈

MT ′,2 be a path from P2
T ′,5, we deduce from the optimality of MT ′ that

w(t, x) = 1; hence, the 3-edge path P ′
T ′ = {y, z, t, x} covers the vertices

{x, y, z, t} with a total weight 4. Let us assume that P2
T ′,6 = ∅, then we are

able to build a P4 partition of V (K4n) using 3n − |P2
T ′,5| edges of weight 1

and |P2
T ′,5| edges of weight 2 (one edge of weight 2 is used for each path from

P2
T ′,5). Hence, a worst solution costs at most 3n + q, while the approximate

solution is of total weight 3n + p + q. Thus, using relation (14), we would
be able to conclude that T ′ is a (2/3)-approximation. Of course, there is no
reason for P2

T ′,6 = ∅; nevertheless, this discussion has brought to the fore the
following fact: the difficult point of the proof lies in the partitioning of V (P2

T ′,6)
into “light” 3-edge paths. In order to deal with these vertices, we first state
two more properties that are immediate from the optimality of MT ′ and RT ′ ,
respectively.

Property 11 [x, y] ∈MT ′,1 and [x′, y′] ∈MT ′,2 ⇒ min {w(x, x′), w(y, y′)} =
min {w(x, y′), w(y, x′)} = 1

Property 12 If [x, y] 6= [x′, y′] ∈ M1
T ′ and PT ′ = {α, β, γ, δ} ∈ P2

T ′, then
max {w(e)|e ∈ {α, β} × {x, y}} = 2 ⇒ max {w(e)|e ∈ {γ, δ} × {x′, y′}} = 1.
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w(y, β) = 2

Fig. 9. 1-weight edges that may be deduced from the optimality of RT ′ .

x

y

x′

y′

α

β γ

δ

M1

T ′
M1

T ′
P2

T ′ ,6

w(y, β) = 2

x

y

x′

y′

α

β γ

δ

Fig. 10. A P4 partition of (PT ′ , e1, e2) ∈ P
2
T ′,6 × (M1

T ′)2 of total weight at most 7.

From Properties 11 and 12 (see Figure 9 for an illustration of this latter,
where continuous and dotted lines respectively indicate 2- and 1-weight edges,
whereas dashed lines indicate unspecified weight edges), we now are able to
propose a “light” P4 partition of P2

T ′,6. This partition is formalized in the
following Property an illlustrated in Figure 10.

Property 13 Given a path PT ′ ∈ P2
T ′,6 and two edges [x, y] 6= [x′, y′] ∈ M1

T ′,
then there exists a P4 partition P = {P1, P2} of (V (PT ′) ∪ {x, y, x′, y′} ) that
is of total weight at most 8. Furthermore, if [x, y] and [x′, y′] both belong to
MT ′,1, then we can decrease this weight down to (at most) 7.

Proof. Consider PT ′ = {α, β, γ, δ} ∈ P2
T ′,6 and [x, y] 6= [x′, y′] ∈ M1

T ′ . We
set P1 = {α, x, x′, δ} and P2 = {β, y, y′, γ}. We know from Property 10 that
w(x, x′) = w(y, y′) = 1. Thus, if every edge from {α, β, γ, δ} × {x, x′, y, y′} is
of weight 1, then P1 ∪ P2 has a total weight 6. Conversely, if there exists a 2-
weight edge that links a vertex from {α, β, γ, δ} to a vertex from {x, x′, y, y′},
we may assume that [β, y] is such an edge; we then deduce from Property
12 that w(δ, x′) = w(γ, y′) = 1 and hence, that P1 ∪ P2 is of total weight at
most 8. Finally, if w(x, y) = 1, then w(α, x) = 1 from Property 11 and thus,
w(P1) + w(P2) = 7.

We now are able to compute an approximate worst solution that provides an
efficient upper bound for worMaxP4P1,2

(I).

Lemma 14 Let I = (K4n, w) be an instance of MinP4P1,2 and let T ′ be the
solution provided by Hassin and Rubinstein algorithm on I. One can compute
on I a solution T∗ that verifies :

p∗ + q∗ ≤ q + (|P2
T ′,6| − ⌊p

1
1/2⌋)+ + (|P2

T ′,6| − n + q)+
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where p∗ and q∗ are defined as p∗ = |MT∗,2| and q∗ = |RT∗,2| (and expression
X+ is equivalent to max {X, 0}).

Proof. The proof is algorithmic. Note that, even though this has no impact
on the rightness of the proof, the computation of T∗ has a polynomial runtime.
This means that the good properties of tha approximate solution T ′ enable
to really exhibit an approximate worst solution (and not only to provide an
evaluation of such a solution, as it is often the case while stating differential
approximation results).

0 Set T = T ′, T∗ = ∅;
1 While ∃ {P, e1, e2} ⊆ T s.t. (P, e1, e2) ∈ P

2
T ′,6 ×M1

T ′,1 ×M1
T ′,1

1.1 compute P = {P1, P2} on V (P ) ∪ V (e1) ∪ V (e2) with w(P) ≤ 7;
1.2 T ← T \ {P, e1, e2} , T∗ ← T∗ ∪ {P1, P2};

2 While ∃ {P, e1, e2} ⊆ T s.t. (P, e1, e2) ∈ P
2
T ′,6 ×M1

T ′ ×M1
T ′

2.1 compute P = {P1, P2} on V (P ) ∪ V (e1) ∪ V (e2) with w(P) ≤ 8;
2.2 T ← T \ {P, e1, e2} , T∗ ← T∗ ∪ {P1, P2};

3 While ∃P ⊆ T s.t. P ∈ P2
T ′,6

3.1 T ← T \ P, T∗ ← T∗ ∪ {P};
4 While ∃P ⊆ T s.t. P ∈ P2

T ′,5

4.1 compute P = {P1} on V (P ) with w(P) ≤ 4;
4.2 T ← T \ P, T∗ ← T∗ ∪ {P1};

5 While ∃ {e1, e2} ⊆ T s.t. (e1, e2) ∈M1
T ′ ×M1

T ′

5.1 compute P = {P1} on V (e1) ∪ V (e2) with w(P) = 3;
5.2 T ← T \ e1, e2, T∗ ← T∗ ∪ {P1};

6 Output T∗;

In order to estimate the value of the approximate worst solution T∗, one has to
count the number p∗ + q∗ of 2-weight edges it contains. Let p1

i refer to |M1
T ′ ∩

MT ′,i| for i = 1, 2 (the cardinality p1
1 enables the expression of the number of

iterations during step 1). Steps 1, 2 and 3 respectively put into T∗ at most
one, two and three 2-weight edges per iteration. Any path from P2

T ′,6 is treated
by one of the three steps 1 to 3. If 2|P2

T ′,6| ≥ p1
1, only |P2

T ′,6| − ⌊p
1
1/2⌋ paths

from P2
T ′,6 are treated by one of the steps 2 and 3. Finally, if |P2

T ′,6| ≥ |P
1
T ′|,

only |P2
T ′,6| − |P

1
T ′| paths from P2

T ′,6 are treated during step 3. Furthermore,
step 4 puts at most |P2

T ′,5| 2-weight edges into T∗ (at most one per iteration),
while steps 0 and 5 do not incorporate any 2-weight edges within T∗. Thus,
considering q = |P2

T ′,5| + |P
2
T ′,6| and |P1

T ′ | = n − q, we obtain the announced
result.

Let us introduce some more notation. Analogous to P2
T ′ = P2

T ′,5 ∪ P
2
T ′,6, we
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T ′,5
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2

T ′,5
P

2

T ′,6

Fig. 11. A partition of T ′.

define a partition of P1
T ′ into three subsets P1

T ′,3, P
1
T ′,4 and P1

T ′,5 according to
the path total weight. Note that, since the subsets P1

T ′,j define a partition of
T ′, we have n = |P1

T ′,3| + |P
1
T ′,4| + |P

1
T ′,5| + |P

2
T ′,5| + |P

2
T ′,6| (see Figure 11 for

an illustration of this partition; the edges of weight 2 are drawn in continuous
lines whereas the edges of weight 1 are drawn in dotted lines).

The following Lemma states three relations between, on the one hand, quan-
tites that participate to the value of the approximate solution and, on the
other hand, parts of the value of a worst solution and of the optimal value.

Lemma 15

p ≥ q∗ + (|P2
T ′,6| − ⌊p

1
1/2⌋)+ (15)

2q ≥ q∗ + (|P2
T ′,6|+ q − n)+ (16)

q ≥ p∗ + q∗ − (|P2
T ′,6| − ⌊p

1
1/2⌋)+ − (|P2

T ′,6|+ q − n)+ (17)

Proof.

• For (15): Obvious if |P2
T ′,6| ≤ ⌊p

1
1/2⌋, since p ≥ q∗ (from inequality (11)).

Otherwise, one can write p as the sum p = n + |P2
T ′,6| + |P

1
T ′,5| − |P

1
T ′,3|.

Now, |P1
T ′,5|− |P

1
T ′,3| is precisely the half of the difference between the number

of 2-weight and of 1-weight edges in M1
T ′ : since p1

2 = |P1
T ′,4| + 2|P1

T ′,5| and
p1

1 = |P1
T ′,4| + 2|P1

T ′,3|, then p1
2 − p1

1 = 2(|P1
T ′,5| − |P

1
T ′,3|). From this latter

equality, we deduce that p1
1 and p1

2 have the same parity; hence, we have
(1/2)(p1

2 − p1
1) = ⌊p1

2/2⌋ − ⌊p1
1/2⌋ and thus, p = n + |P2

T ′,6|+ ⌊p
1
2/2⌋ − ⌊p1

1/2⌋.
Just observe that n and q∗ verify n ≥ q∗ in order to conclude.

• For (16): Obvious if |P2
T ′,6| ≤ n − q, since 2q ≥ q∗ (from inequality (10)).

Otherwise, consider that q, n and |P2
T ′,6| verify: q ≥ |P2

T ′,6| and n ≥ q∗.

• For (17): Immediate from Lemma 15.

Theorem 16 The solution T ′ provided by the algorithm achieves a 2
3
-differential

approximation for P4Pa,b and this ratio is tight.

Proof. By summing inequalities (15) to (17), together with 2p ≥ 2p∗, we
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obtain the expected result:

3apxMaxP4P
(I) = 3(3n + p + q)

≥ 2(3n + p∗ + q∗) + (3n + p∗ + q∗)

= 2optMaxP4P1,2
(I) + worMaxP4P1,2

(I)

The tightness is provided by the instance I = (K8, w) that is shown on Figure
6; since this instance contains some vertex v such that any edge from v is of
weight 2, the result follows.
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