
The Pk partition problem and related problems in bipartite

graphs

Jérôme Monnot ∗
and Sophie Toulouse †

Abstract

In this paper, we continue the investigation proposed in [15] about the approx-
imability of Pk partition problems, but focusing here on their complexity. More pre-
cisely, we prove that the problem consisting of deciding if a graph of nk vertices has
n vertex disjoint simple paths {P1, · · · , Pn} such that each path Pi has k vertices is
NP-complete, even in bipartite graphs of maximum degree 3. Note that this result also
holds when each path Pi is chordless in G[V (Pi)]. Then, we prove that MaxP3Packing

and MaxInducedP3Packing in bipartite graphs of maximum degree 3 are not in
PTAS. Finally, we propose a 3/2-approximation for Min3-PathPartition in gen-
eral graphs within O(nm + n2 log n) time and a 1/3 (resp., 1/2)-approximation for
MaxWP3Packing in general (resp., bipartite) graphs of maximum degree 3 within
O(α(n, 3n/2)n) (resp., O(n2 log n)) time, where α is the inverse Ackerman’s function
and n = |V |, m = |E|.

Keywords: Pk-partition; Induced Pk-partition; maximum (weighted) Pk-packing; max-
imum (weighted) induced Pk-packing; minimum k-path partition; bipartite graphs; NP-
complete; APX-hard; approximation algorithms.

1 Introduction

The Pk partitioning problem (PkPartition in short) consists, given a simple graph G =
(V,E) on k × n vertices, of deciding if there exists a partition of V into (V1, · · · , Vn) such
that for 1 ≤ i ≤ n, |Vi| = k and the subgraph G[Vi] induced by Vi contains a Hamiltonian
path. In other words, we want to know if there exists n vertex disjoint simple paths of length
k in G. The analogous problem where the subgraph G[Vi] induced by Vi is isomorphic to
Pk (the chordless path on k vertices) will be denoted by induced PkPartition. These
two problems are NP-complete for any k ≥ 3, and polynomial otherwise, [8, 13]. In fact,
they both are a particular case of a more general problem called partition into isomorphic
subgraphs, [8]. In [13], Kirkpatrick and Hell give a necessary and sufficient condition for the
NP-completeness of the partition into isomorphic subgraphs problem in general graphs.

PkPartition has been widely studied in the literature, mainly because its NP-completeness
also implies the NP-hardness of two famous optimization problems, namely: the minimum
k-path partition problem (denoted by Mink-PathPartition) and the maximum Pk pack-
ing problem (MaxPkPacking in short). Mink-PathPartition consists of partitioning

∗CNRS LAMSADE - UMR 7024, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny,

75775 Paris Cedex 16, France. monnot@lamsade.dauphine.fr
†LIPN - UMR CNRS 7030, Institut Galilée, Université Paris 13, 99 av. Jean-Baptiste Clément, 93430

Villetaneuse, France. sophie.toulouse@lipn.univ-paris13.fr

1

the vertex set of a graph G = (V,E) into the smallest number of paths such that each path
has at most k vertices (for instance, Min2-PathPartition is equivalent to the edge cover
problem); the optimal value is usually denoted by ρk−1(G), and by ρ(G) when no constraint
occurs on the length of the paths (in particular, we have ρ(G) = 1 iff G has an Hamiltonian
path). Mink-PathPartition has been extensively studied in the literature, [18, 17, 21],
and has applications in broadcasting problems, see for example [21]. MaxPkPacking

(resp., MaxInducedPkPacking), consists, given a simple graph G = (V,E), of finding a
maximum number of vertex-disjoint (resp., induced) Pk. In their weighted versions (de-
noted MaxWPkPacking and MaxWInducedPkPacking, respectively), the input graph
G = (V,E) is given together with a weight function w : E → N on its edges; the goal is
to find a collection P = {P1, . . . , Pq} of vertex-disjoint (resp., induced Pk) maximizing
w(P) =

∑q
i=1

∑

e∈Pi
w(e). Some approximation results for MaxWPkPacking when the

graph is complete on k × n vertices are given in [9, 10, 15]. In this case, each solution
contains exactly n vertex disjoints paths of length k − 1 (note that, in this particular case,
the minimization version may also be considered). This problem is related to the vehicle
routing problem, [21, 3].

Here, we study the complexity of PkPartition and induced PkPartition in the
case of bipartite graphs. We first show that PkPartition and induced PkPartition

are NP-complete for any k ≥ 3 in bipartite graphs of maximum degree 3. Moreover, for
k = 3, this remains true even if the graph is planar. On the opposite, PkPartition,
induced PkPartition, Mink-PathPartition and MaxWPkPacking trivially become
polynomial-time computable in graphs of maximum degree 2 and in forests. Then, we prove
that, in bipartite graphs of maximum degree 3, MaxPkPacking and MaxInducedPkPacking

are not in PTAS. More precisely, we prove that there is a constant εk > 0 such that it
is NP-hard to decide whether a maximum (induced) Pk-packing of a bipartite graph of
maximum degree 3 on kn vertices is of size n or of size upper bounded by (1 − εk)n. Fi-
nally, we propose a 3/2-approximation for Min3-PathPartition in general graphs and a
1/3 (resp., 1/2)-approximation for MaxWP3Packing in general (resp., bipartite) graphs
of maximum degree 3.

This paper is organized as follows: in the next section, we briefly present previous related
works about the hardness of solving bounded-size-path packing problems. Then, the third
part is dedicated to complexity results concerning PkPartition, induced PkPartition,
MaxInducedPkPacking and MaxPkPacking in bipartite graphs. Finally, some approx-
imation results concerning MaxWP3Packing and Min3-PathPartition are proposed in
a fourth section.

The notations are the usual ones according to graph theory. Moreover, we exclusively
work in undirected simple graphs. In this paper, we often identify a path P of length k− 1
with Pk, even if P contains a chord. However, when we deal with induced PkPartition,
the paths considered will be chordless. We denote by opt(I) and apx(I) the value of an
optimal and of an approximate solution, respectively. We say that an algorithm A is an ε-
approximation with ε ≥ 1 for a minimization problem (resp., with ε ≤ 1 for a maximization
problem) if apx(I) ≤ ε × opt(I) (resp., apx(I) ≥ ε × opt(I)) for any instance I (for more
details, see for instance [2]).

2

2 Previous related work

The minimum k-path partition problem is obviously NP-complete in general graphs [8],
and remains intractable in comparability graphs, [18], in cographs, [17], and in bipartite
chordal graphs, [18] (when k is part of the input). Note that most of the proofs of NP-
completeness actually establish the NP-completeness of PkPartition. Nevertheless, the
problem turns out to be polynomial-time solvable in trees, [21], in cographs when k is fixed,
[17] or in bipartite permutation graphs, [18]. Note that one can also find in the literature
several results about partitioning the graph into disjoints paths of length at least 2, [19, 11].

Concerning the approximability of related problems, Hassin and Rubinstein, [9] pro-
posed a generic algorithm to approximate MaxWP4Packing in complete graphs on 4n
vertices that guarantees an approximation ratio of 3/4 for general distance function. More
recently in [15], it has been proven that this algorithm is also a 9/10-approximation for
the 1, 2-instances. For the minimization version, it provides respectively a 3/2- and a 7/6-
approximation for the metric and the 1, 2- instances in complete graphs on 4n vertices (in
this case, we seek a maximal P4-Packing of minimum weight). In [10], the authors pro-
posed a (35/67−ε)-approximation for MaxP3Partition in complete graphs on 3n vertices
using a randomized algorithm. To our knowledge, there is no specific approximation re-
sults for MaxWP3Packing in general graphs. However, using approximation results for
the maximum weighted 3-packing problem (mainly based on local search techniques), [1],
we can obtain a (1

2 − ε)-approximation for MaxWP3Packing. Finally, there is, to our
knowledge, no approximation result for Mink-PathPartition. Nevertheless, when the
problem consists of maximizing the number of edges used by the paths, then we can find
some approximation results, in [20] for the general case, in [5] for dense graphs.

3 Complexity results

Theorem 3.1 PkPartition and induced PkPartition are NP-complete in bipartite
graphs of maximum degree 3, for any k ≥ 3. As a consequence, MaxPkPacking and
Mink-PathPartition are NP-hard in bipartite graphs with maximum degree 3, for any
k ≥ 3.

Proof: The paths of length k−1 used in the reduction are chordless; thus, the result holds
for both problems. The proof is based on a reduction from the k-dimensional matching
problem, denoted by kDM, which is known to be NP-complete, [8]. An instance of kDM

consists of a subset C = {c1, . . . , cm} ⊆ X1 × . . . × Xk of k-tuples, where X1, . . . ,Xk are k
pairwise disjoint sets of size n. A matching is a subset M ⊆ C such that no element in M
agrees in any coordinate, and the purpose of kDM is to answer the question: does there
exist a perfect matching M on C, that is, a matching of size n?

Given an instance I = (C,X1 × . . . × Xk) of kDM, we build an instance G = (V,E)
of PkPartition depending on the parity of k, where G is a bipartite graph of maximum
degree 3, as follows:

case 1: k is odd.

• To each k-tuple ci ∈ C, we associate a gadget H(ci) that consists of a collection
{

P i,1, . . . , P i,k
}

of k vertex-disjoint Pk with P i,q =
{

ai,q
1 , . . . , ai,q

k

}

for q = 1, . . . , k. We

add to H(ci) the edges [ai,q
1 , ai,q+1

1] for q = 1 to k − 1, in order to form a (k + 1)-th Pk
{

ai,1
1 , . . . , ai,k

1

}

(see Figure 1 for an illustration when k = 3).

3

ai,1
3 ai,1

2 ai,2
3 ai,2

2 ai,3
3 ai,3

2

ai,1
1 ai,2

1 ai,3
1

Figure 1: The gadget H(ci) when ci is a 3-uplet.

lj1 = vj
1

vj

Nj+1

lj2 = vj
7

Figure 2: The gadget H(ej) for k = 3 and dj = 2.

• For each element ej ∈ X1 ∪ . . . ∪Xk, let dj denote the number of k-tuples ci ∈ C that

contain ej ; the gadget H(ej) is defined as a cycle
{

vj
1, . . . , v

j

Nj+1
, vj

1

}

on N j + 1 vertices,

where N j = k(2dj − 1). Moreover, for p = 1 to dj, we denote by ljp the vertex of index
2k(p − 1) + 1 (see Figure 2 for an illustration of H(ej) when k = 3 and dj = 2).

• Finally, for any couple (ej , ci) such that ej is the value of ci on the q-th coordinate,

the two gadgets H(ci) and H(ej) are connected using an edge [ai,q
2 , ljpi]. The vertices ljpi

that will be linked to a given gadget H(ci) must be chosen in such a way that each vertex
ljp from any gadget H(ej) will be connected to exactly one gadget H(ci) (this is possible

since each H(ej) contains exactly dj vertices ljp).

This construction obviously leads to a graph G of maximum degree 3, on 3k2m+(1−k)kn
vertices: consider, on the one hand, that each gadget H(ci) is a graph on k2 vertices and,
on the other hand, that

∑kn
j=1 dj = km (wlog., we assume that each element ej appears at

least once in C). Finally, one can see that G is bipartite.

We claim that there exists a perfect matching M ⊆ C iff there exists a partition P∗ of
G into Pk. First, the following property can be easily proved:

Property 3.2 In any partition of G into Pk, and for any i = 1, . . . ,m, one uses either Pi

or Qi, where Pi and Qi are the collection of paths defined as:

∀i = 1, . . . ,m, ∀q = 1, . . . , k,







P i,q =
{

ai,q
k , . . . , ai,q

2 , li,q

}

Qi,q =
{

ai,q
k , . . . , ai,q

2 , ai,q
1

}

(where li,q denotes the vertex from some H(ej) linked to ai,q
2 .

∀i = 1, . . . ,m,

{

Pi = ∪k
q=1P

i,q ∪
{

ai,1
1 , ai,2

1 , . . . , ai,k
1

}

Qi = ∪k
q=1Q

i,q

Let M be a perfect matching on C; we build a packing P applying the following rule:
if a given element ci belongs to M , then we use Pi to cover H(ci); we use Qi otherwise.
Figure 3 illustrates this construction for 3DM. Since M is a perfect matching, exactly one
vertex lp per gadget H(ej) is already covered by some P i,q. Thus, on a given cycle H(ej),
the N j = k(2dj − 1) vertices that remain uncovered can easily be covered using a sequence
of (2dj − 1) vertex disjoints Pk.

Conversely, let P∗ = {P1, . . . , Pr} be a partition of G into Pk; since each gadget H(ej)
has N j = k(2dj − 1) + 1 vertices, at least one edge e of some Pℓ in P∗ links H(ej) to

4

a
i,1
1

a
i,2
1

a
i,3
1

a
i,1
1

a
i,2
1

a
i,3
1

a
i,1
3

a
i,1
2

a
i,2
3

a
i,2
2

a
i,3
3

a
i,3
2

a
i,1
3

a
i,1
2

a
i,2
3

a
i,2
2

a
i,3
3

a
i,3
2

li,1 li,2 li,3 li,1 li,2 li,3

ci ∈ M ci /∈ M

Figure 3: A vertex partition of a H(ci) gadget into 2-length paths.

lj1 = vj
1

vj

Nj+1 vj

Nj

lj2 = vj
9

Figure 4: The gadget H(ej) for k = 4 and dj = 2.

a given H(ci), using a lp vertex; we deduce from Property 3.2 that Pℓ is some P i,q path
and thus, that lp is the only vertex of Pℓ that intersects H(ej). Consider now any two
vertices lp and lp′ , p < p′, from H(ej); since lp = v2k(p−1)+1 and lp′ = v2k(p′−1)+1, there are
2k(p′ − p) − 1 vertices between lp and lp′ , which might not be covered by any collection of
Pk. Hence, exactly one vertex from each H(ej) is covered by some P i,q. Concerning H(ci),
we already know that its vertices may be covered by either Pi, or Qi. Hence, by setting
M =

{

ci | Pi ⊆ P∗
}

, we define a perfect matching, and the proof is complete.

case 2: k is even.

The proof is quite identical, except the construction of the H(ej) gadgets: H(ej) is

a cycle
{

vj
1, . . . , v

j

Nj , v
j
1

}

on N j vertices, plus an additional edge [vj

Nj , v
j

Nj+1
] (see Figure

3 for an illustration when k = 4 and dj = 2). The special vertices ljp are defined by
ljp = vj

2k(p−1)+1 for p = 1, · · · , dj (note that lj
dj never matches vj

Nj). We can easily see that

H(ej) is bipartite (N j is even). Moreover, if one vertex ljp is missing (that is, covered by a

path having its vertices but ljp in some H(ci) gadget), then V (H(ej))\
{

ljp
}

can be covered

by a collection of vertex disjoints Pk. Finally, if two vertices ljp and ljp′ are already covered,

then V (H(ej))\
{

ljp, l
j
p′

}

may not be covered by a collection of vertex disjoints Pk.

If we decrease the maximum degree of the graph down to 2, we can easily prove that
PkPartition, induced PkPartition, MaxPkPacking and Mink-PathPartition are
polynomial-time computable. The same fact holds for MaxWPkPacking, although it is a
little bit complicated. Moreover, this result holds in forests.

Proposition 3.3 MaxWPkPacking is polynomial in graphs with maximum degree 2 and
in forests, for any k ≥ 3.

Proof: See appendix.

5

Theorem 3.4 P3Partition and induced P3Partition are NP-complete in planar bi-
partite graphs with maximum degree 3. As a consequence, MaxP3Packing and Min3-
PathPartition are NP-hard in planar bipartite graphs with maximum degree 3.

Proof: We apply the proof of the previous theorem, except that we start from a restriction
of the 3-dimensional matching problem, which is denoted by Planar 3DM-3. With respect
to this restriction, on the one hand, each element ej ∈ X1 ∪ X2 ∪ X3 appears in at most
three distinct 3-tuples ci ∈ C and, on the other hand, the characterization bipartite graph
G(C) of the instance is planar. The left-hand-side and the right-hand-side vertex sets of
G(C) respectively represent the 3-tuples from C and the elements from X1 ∪X2 ∪X3; thus,
a left vertex li will be linked to a right one rj iff the corresponding 3-tuple ci contains
the corresponding element ej . It is well known that this restriction of 3DM is still NP-
complete, [6]. In order to apply the previous construction properly, we have to link the
H(ci) gadgets to the H(ej) gadgets in such a way that the final graph G is planar. As a

consequence, for any couple (H(ci),H(ej)) such that ej ∈ ci, the choice of the vertex ljp
from H(ej) that will be linked to H(ci) is no longer free, but depends on the characteristic
graph G(C) of the input instance.

Using an APX-hardness result for the optimization version of kDM (denoted MaxkDM)
and the reduction of Theorem 3.1, we are able to obtain an APX-hardness result for
MaxPkPacking in bipartite graphs of maximum degree 3. The result used is the follow-
ing: For any k ≥ 3, there is a constant ε′k > 0, such that ∀I = (C,X1 × . . . × Xk) instance
of MaxkDM with n = |X1| = · · · = |Xk|, it is NP-hard to decide between opt(I) = n and
opt(I) ≤ (1 − ε′k)n, where opt(I) is the value of a maximum matching on C. This result
also holds if we restrict us to instances I = (C,X1 × . . . × Xk) such that for each element
ej ∈ X1 ∪ . . . ∪ Xk, dj ≤ f(k), where f(k) is a constant (we recall that dj is the number of
k-tuples ci ∈ C containing ej). For k = 3, the result is proved in [16] with f(3) = 3, and for
the other values of k, [12].

Theorem 3.5 For any k ≥ 3, there is a constant εk > 0, such that ∀G = (V,E) instance
of MaxPkPacking (resp., MaxInducedPkPacking) where G is a bipartite graph of

maximum degree 3, it is NP-hard to decide between opt(G) = |V |
k

and opt(G) ≤ (1− εk)
|V |
k

where opt(G) is the value of a maximum (resp., maximum induced) Pk-Packing on G.

Proof: Let I = (C,X1 × . . . × Xk) be an instance of MaxkDM with n = |X1| = · · · =
|Xk| and m = |C| and such that ∀ej ∈ X1 ∪ . . . ∪ Xk, dj ≤ f(k). Consider the graph
G = (V,E) produced in Theorem 3.1. We recall that G is bipartite of maximum degree 3,
|V | = 3k2m + (1 − k)n, and all paths of length k − 1 are chordless. Let P∗ be an optimal
solution of MaxPkPacking with value opt(G). Let us prove that we can assume that:

(i) In any gadget H(ci), P∗ contains either the packing Pi, or the packing Qi.

(ii) In any gadget H(ej), P∗ contains exactly 2dj − 1 paths.

For (i), any optimal solution must use (at least) one of the two vertices ai,q
1 and li,q, for

any couple (i, q) (where we recall that li,q = ljpi is a vertex from some H(ej) linked to ai,q
2).

Suppose the reverse for some (i, q): then, none of the vertices li,q, a
i,q
1 , ai,q

2 , . . . , ai,q
k may be

part of a path from P∗ and thus, P i,q or Qi,q could be added to P∗. Hence, if the edge
[ai,q

1 , ai,q
2] (resp., [ai,q

2 , li,q] and not [ai,q
1 , ai,q

2]) is used by some path P of P∗, P can be replaced

6

in P∗ by the path Qi,q (resp., P i,q). If none of the edges [ai,q
1 , ai,q

2] and [ai,q
2 , li,q] are used by

P∗, replace by P i,q the path from P∗ that uses li,q if such a path exists, replace by Qi,q the

path from P∗ that uses ai,q
1 otherwise. Moreover, if

{

ai,1
1 , ai,2

1 , . . . , ai,k
1

}

/∈ P∗, then k paths

of P∗ are in H(ci) (P∗ is an optimal solution). Hence, we can replace each path P i,q by Qi,q

and in this case, P∗ contains the packing Qi. Now, assume that
{

ai,1
1 , ai,2

1 , . . . , ai,k
1

}

∈ P∗.

If P∗ does not use the k paths P i,q (ie., the packing Pi), then by deleting the paths
{

ai,1
1 , ai,2

1 , . . . , ai,k
1

}

, P i,q and by adding the k paths Qi,q, we obtain another optimal solution.

For (ii), assume the reverse. Since P∗ is an optimal solution, at least 2 vertices ljpi and
ljpi′

of H(ej) are used in P∗ by paths P i,q and P i′,q′ with pi < pi′ . Choose two consecutive

such vertices, in the sense that P∗ does not use any of the paths P i′′,q′′ for ljpi′′
such that

pi < pi′′ < pi′ . Now, since there are 2k(pi′ − pi) − 1 vertices of H(ej) between ljpi and

ljpi′
, we can replaced P i,q, P i′,q′ and the paths of P∗ between vertices ljpi and ljpi′

by P i,q

and 2(pi′ − pi) paths using vertices between ljpi and ljpi′
, plus ljpi′

(in this case, observe that

the packing Pi′ will be replaced by the packing Qi′ according to property (i)). Thus, by
repeating this procedure, the result follows.

We know that I has a perfect matching iff opt(G) = 3km + (1 − k)n = |V |
k

. Now,
let M0 = {ci ∈ C : P∗ contains the packing Pi on V (H(ci))} and m0 = |M0|. Since
∑k

j=1 ndj = km (see Theorem 3.1), and using properties (i) and (ii), we deduce opt(I) =
2km− kn + km + m0. Thus, if a maximum matching on I for MaxkDM with value opt(I)
verifies opt(I) ≤ (1− ε′k)n, we deduce m0 ≤ (1− ε′k)n. Hence, by setting εk = n

3km−kn+n
ε′k,

we obtain opt(G) ≤ (1 − εk)(3km − kn + n) = (1 − εk)
|V |
k

. Finally, since dj ≤ f(k) where
f(k) is a constant, we deduce that km ≤ 3f(k)n and then, εk ≥ 1

9f(k)+1−k
ε′k. The proof is

now complete.

Some interesting questions concern the complexity of PkPartition (or induced PkPartition)
for k ≥ 4 and the APX-hardness of MaxPkPacking and MaxInducedPkPacking (or
MaxInducedPkPacking) for k ≥ 3 in planar bipartite graphs with maximum degree 3.

4 Approximation results

We present some approximation results for MaxWP3Packing and Min3-PathPartition,
that are mainly based on matching and spanning tree heuristics.

4.1 MaxWP3Packing in graphs of maximum degree 3

For this problem, the best approximate algorithm known so far provides a ratio of (1
2 −

ε), within high (but polynomial) time complexity. This algorithm is deduced from the
one proposed in [1] to approximate the weighted k-set packing problem for sets of size
3. Furthermore, a simple greedy 1/k-approximation of MaxWPkPacking consists of
iteratively picking a path of length k − 1 that is of maximum weight. For k = 3 and in
graphs of maximum degree 3, the time complexity of this algorithm is between O(n log n)
and O(n2) (depending on the encoding structure). Actually, in such graphs, one may reach
a 1/3-approximate solution, even in time O(α(n,m)n), where α is the inverse Ackerman’s
function and m ≤ 3n/2.

7

n
n

n

Figure 5: The tightness.

Theorem 4.1 MaxWP3Packing is 1/3 approximable within O(α(n, 3n/2)n) time com-
plexity in graphs of maximum degree 3; this ratio is tight for the algorithm we analyse.

Proof: We assume that the graph is connected (otherwise, we apply the same proof on each
connected component containing at least 3 vertices). The argument lies on the following
observation: for any spanning tree of maximum degree 3 containing at least 3 vertices, one
can build a cover of its edge set into 3 packings of P3 within linear time (a formal proof
is given in appendix). Hence, given a weighted connected graph G = (V,E) of maximum
degree 3, we compute a maximum-weight spanning tree T = (V,ET) on G. Because G
is of maximum degree 3, this can be done in O(α(n, 3n/2)n) time, [4]. We then compute
(P1,P2,P3) a P3-packing cover of T and finally, pick the best P3-packing among P1, P2

and P3. The value of this packing is at least 1/3 times the weight of T , which is at least the
weight of an optimal P3-Packing on G, as any P3-Packing can be extended into a spanning
tree. The tightness of this algorithm is illustrated in Figure 5: the edges of ET are drawn
in rigid lines, whereas the edges of E\ET are drawn in dotted lines; finally, all the edges
with no mention of their weight are of weight 1. Observe that an optimal P3-packing on T
is of weight n + 3, whereas opt(I) = 3n + 3.

4.2 MaxWP3Packing in bipartite graphs of maximum degree 3

If we restrict us to bipartite graphs, we slightly improve the ratio of 1
2 − ε ([1]) up to 1

2 .
We then show that, in the unweighted case, this result holds without any constraint on the
graph maximum degree.

From I = (G,w) where G is a bipartite graph G = (L∪R,E) of maximum degree 3, we
build two weighted graphs (GL, dL) and (GR, dR), where GL = (L,EL) and GR = (R,ER).
Two vertices x 6= y from L are linked in GL iff there exists in G a path of length 2 Px,y

from x to y, rigorously: [x, y] ∈ EL iff ∃z ∈ R s.t. [x, z], [z, y] ∈ E. The distance dL(x, y)
is defined as dL(x, y) = max{w(x, z) + w(z, y)|[x, z], [z, y] ∈ E}. (GR, dR) is defined by
considering R instead of L. If G is of maximum degree 3, then the following fact holds:

Lemma 4.2 From any matching M on GL (resp., on GR), one can deduce a P3 packing
PM of weight w(PM) = dL(M) (resp., w(PM) = dR(M)), when G is of degree at most 3.)

Proof: We only prove the result for GL. Let M be a matching on GL. For any edge
e = [x, y] ∈ M , there exists in G a chain Pe = {x, ze, y} with w(Pe) = dL(e). Let us show
that PM = {Pe|e ∈ M} is a packing. Assume the reverse: then, there exists two edges
e1 = [x1, y1] and e2 = [x2, y2] in M such that Pe1

∩ Pe2
6= ∅. Since {e1, e2} is a matching,

the four vertices x1, x2, y1 and y2 are pairwise distinct and then necessarily ze1
= ze2

.
Hence, ze1

is linked to 4 vertices in G, which contradicts the fact that the maximum degree
in G does not exceed 3.

8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n n n n n n n n

1

Figure 6: The tightness.

Weighted P3-Packing

1 Build the weighted graphs (GL, dL) and (GR, dR);

2 Compute a maximum weight matching M∗
L (resp., M∗

R) on (GL, dL) (resp., on (GR, dR));

3 Deduce from M∗
L (resp., M∗

R) a P3 packing PL (resp., PR) according to Lemma 4.2;

4 Output the best packing P among PL and PR.

The time complexity of this algorithm is mainly the time complexity of computing a
maximum weight matching in graphs of maximum degree 9, that is O(|V |2 log |V |), [14].

Theorem 4.3 Weighted P3-Packing provides a 1/2-approximation for MaxWP3Packing

in bipartite graphs with maximum degree 3 and this ratio is tight.

Proof: Let P∗ be an optimum P3-packing on I = (G,w), we denote by P∗
L (resp., P∗

R) the
paths of P∗ of which the two endpoints belong to L (resp., R); thus, opt(I) = w(P∗

L)+w(P∗
L).

For any path P = Px,y ∈ P∗
L, [x, y] is an edge from EL, of weight dL(x, y) ≥ w(Px,y). Hence,

ML = {[x, y]|Px,y ∈ P∗
L} is a matching on GL that verifies:

d(ML) ≥ w(P∗
L) (1)

Moreover, since M∗
L is a maximum weight matching on GL, we have dL(ML) ≤ dL(M∗

L).
Thus, using inequality (1) and Lemma 4.2 (and by applying the same arguments on GR),
we deduce:

w(PL) ≥ w(P∗
L), w(PR) ≥ w(P∗

R) (2)

Finally, the solution outputted by the algorithm verifies w(P) ≥ 1/2(w(PL)+w(PR)); thus,
we directly deduce from inequalities (2) the expected result. The instance I = (G,w) that
provides the tightness is depicted in Figure 6. It consists of a graph on 12n vertices on
which one can easily observe that w(PL) = w(PR) = 2n(n + 2) and w(P∗) = 2n(2n + 2).

Concerning the unweighted case, we may obtain the same performance ratio without the
restriction on the maximum degree of the graph. Concerning the unweighted case, we may
obtain the same performance ratio without the restriction on the maximum degree of the
graph. The main differences with the previous algorithm lies on the construction

of the two graphs GL, GR: starting from G, we duplicate each vertex ri ∈ R by adding a
new vertex r′i with the same neighborhood than ri (this operation, often called multiplication
of vertices in the literature, is notably used in the characterization of perfect graphs); finally,

9

we add the edge [ri, r
′
i]. If RL denotes the vertex set {ri, r

′
i|ri ∈ R}, then the following

property holds:

Property 4.4 From any matching M on GL, one can deduce a matching M ′ on GL that
saturates RL, and such that |M ′| ≥ |M |.

Let M be a matching on GL. If none of the two vertices ri and r′i for some i are saturated
by M , then set M ′ = M ∪ {[ri, r

′
i]}. If exactly one of them is saturated by a given edge e

from M , then set M ′ = (M \ {e}) ∪ {[ri, r
′
i]}. In any case, M ′ is still a matching of size at

least |M |. Thus, the expected result is obtained by applying this process to each vertex of
RL.

Theorem 4.5 There is a 1/2-approximation for MaxP3Packing in bipartite graphs and
this ratio is tight. The complexity time of this algorithm is O(m

√
n).

Proof: See appendix.

4.3 Min3-PathPartition in general graphs

To our knowledge, the approximability of Mink-PathPartition (or MinPathParti-

tion) has not been studied so far. Here, we propose a 3/2-approximation for Min3-
PathPartition. Note that, concerning MinPathPartition (that is, the approximation
of ρ(G)), we can trivially see that it is not (2−ε)-approximable, from the fact that deciding
whether ρ(G) = 1 or ρ(G) ≥ 2 is NP-complete. Actually, we can more generally establish
that ρ(G) is not in APX: otherwise, we could obtain a PTAS for the traveling salesman
problem with weight 1 and 2 when opt(I) = n, which is not possible, unless P=NP.

Computing ρ2(G)

1 Compute a maximum matching M∗
1 on G;

2 Build a bipartite graph G2 = (L,R;E2) where L = {le|e ∈ M∗
1 }, R = {rv |v ∈

V \ V (M∗
1)}, and [le, rv] ∈ E2 iff the corresponding isolated vertex v /∈ V (M∗

1) is
adjacent in G to the edge e ∈ M∗

1 ;

3 Compute a maximum matching M∗
2 on G2;

4 Output P ′ the 3-paths partition deduced from M∗
1 , M∗

2 , and V \ V (M∗
1 ∪ M∗

2). Pre-
cisely, if M ′

1 ⊆ M∗
1 is the set of edges adjacent to M∗

2 , then the paths of length 2 are
given by M ′

1 ∪ M∗
2 , the paths of length 1 are given by M∗

1 \ M ′
1, and the paths of

length 0 (that is, the isolated vertices) are given by V \ V (M∗
1 ∪ M∗

2);

The time complexity of this algorithm is O(nm + n2 log n), [14].

Theorem 4.6 Min3-PathPartition is 3/2-approximable in general graphs; this ratio is
tight for the algorithm we analyse.

Proof: Let G = (V,E) be an instance of Min3-PathPartition. Let P∗ = (P∗
2 ,P∗

1 ,P∗
0)

and P ′ = (P ′
2,P ′

1,P ′
0) respectively be an optimal solution and the approximate 3-path

10

partition on G, where P∗
i and P ′

i denote for i = 0, 1, 2 the set of paths of length i. By
construction of the approximate solution, we have:

apx(I) = |V | − 2|M∗
1 | − |M∗

2 | (3)

Let V0 = (V \V (M∗
1)) \P∗

0 , we consider a subgraph G′
2 = (L,R′;E′

2) of G2, where R′

and E′
2 are defined as: R′ = {rv ∈ R|v ∈ V0} and E′

2 contains the edge [le, rv] ∈ E′
2 iff

there is an edge of P∗ that links v to an endpoint of e. By construction of V0, we deduce
that dG′

2
(rv) ≥ 1 for any v ∈ V0 (consider that V0 is an independent set of G, because of

M∗
1 optimality). Moreover, we have dG′

2
(le) ≤ 2 for any e ∈ M∗

1 . Assume the reverse: then
we can delete e and add two edges of P∗ in M∗

1 (consider that P∗ is a packing), which
contradicts once again the optimality of M∗

1 . Thus, we deduce that G′
2 contains a matching

that is of size at least one-half |R′|; hence the same holds for G2 and we get:

|M∗
2 | ≥ 1/2|R′| ≥ 1/2 (|V | − 2|M∗

1 | − |P∗
0 |) (4)

From relations (3) and (4), we deduce:

apx(I) = |V | − 2|M∗
1 | − |M∗

2 |
≤ |V | − 2|M∗

1 | − 1/2 (|V | − 2|M∗
1 | − |P∗

0 |)
≤ 1/2 (|V | + |P∗

0 |) − |M∗
1 |

Now, consider the optimal solution. From |V | = 3|P∗
2 |+ 2|P∗

1 |+ |P∗
0 |, we trivially have:

opt(I) = |P∗
2 | + |P∗

1 | + |P∗
0 |

= 1/3 (3|P∗
2 | + 3|P∗

1 | + 3|P∗
0 |)

≥ 1/3 (|V | + |P∗
0 |)

Thus, we obtain the expected result. The proof of the tightness is omitted.

References

[1] E. Arkin, R. Hassin. On local search for weighted packing problems. Mathematics of
Operations Research, 23: 640-648, 1998.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M.
Protasi. Complexity and Approximation (Combinatorial Optimization Problems and
Their Approximability Properties). Springer, Berlin, 1999.

[3] C. Bazgan, R. Hassin, and J. Monnot. Approximation algorithms for some routing
problems. Discrete Applied Mathematics, 146: 3-26, 2005.

[4] B. Chazelle. A minimum spanning tree algorithm with Inverse-Ackermann type com-
plexity. J. ACM, 47: 1028-1047, 2000.

[5] B. Csaba, M. Karpinski, P. Krysta. Approximability of dense and sparse instances of
minimum 2-connectivity, TSP and path problems. SODA, 74-83, 2002.

[6] M. Dyer, A. Frieze. Planar 3DM is NP-complete. J. Algorithms, 7:174-184, 1986.

11

[7] A. Frank. Some Polynomial Time Algorithms for Certain Graphs and Hypergraphs.
Proceedings of the 5th British Combinatorial Conference, Congressus Numerantium
XV, Utilitas Mathematicae, Winnipeg, 211-226, 1976).

[8] M. R. Garey, D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. CA, Freeman, 1979.

[9] R. Hassin, S. Rubinstein. An Approximation Algorithm for Maximum Packing of
3-Edge Paths. Inf. Process. Lett., 63: 63-67, 1997.

[10] R. Hassin, S. Rubinstein. An Approximation Algorithm for Maximum Triangle Pack-
ing. ESA , LNCS 3221: 403-413, 2004.

[11] A. Kaneko. A necessary and sufficient condition for the existence of a path factor every
component of which is a path of length at least two. Journal of Combinatorial Theory,
Series B, 88: 195-218, 2003.

[12] M. Karpinski. Personnal communication. 2006.

[13] D. G. Kirkpatrick, P. Hell. On the Completeness of a Generalized Matching Problem.
Proc. STOC’78, 240-245, 1978.

[14] L. Lovasz, M. D. Plummer. Matching Theory. North-Holland,, Amsterdam, 1986.

[15] J. Monnot, S. Toulouse. Approximation results for the weighted P4 partition problem.
The symposia on Fundamentals of Computation Theory, F.C.T.’2005, LNCS 3623,
377-385, 2005.

[16] E. Petrank. The Hardness of Approximation: Gap Location. Computational Complex-
ity, 4, 133-157, 1994.

[17] G. Steiner. On the k-Path partition problem in cographs. Cong. Numer., 147:89-96,
2000.

[18] G. Steiner. k-Path partitions in trees. Theor. Comput. Sci., 290:2147-2155, 2003.

[19] H. Wang. Path factors of bipartite graphs. Journal of Graph Theory, 18: 161-167,
1994.

[20] S. Vishwanathan. An Approximation Algorithm for the Asymmetric Travelling Sales-
man Problem with Distances One and Two. Information Processing Letter, 44(6):
297-302, 1992.

[21] J-H Yan, G. J. Chang, S. M. Hedetniemi, S.T. Hedetniemi. On the k-path partition
of graphs. Discrete Applied Mathematics, 78:227-233.

12

x x x

y y y z

z z t

Tz

Steps 3.1 and 3.2

Tz

Tt ∪ {[y, t]}

Steps 3.3 and 3.4

Ty Tz

Steps from 4 to 4.3

Figure 7: The main configurations of the algorithm.

Appendix

Proof of Proposition 3.3. We reduce the problem of computing an optimum solution
of MaxWPkPacking in graphs with maximum degree 2 (or in a forest) to the problem
of computing a maximum weight independent set (MaxWIS in short) in an interval (or
chordal) graph, which is known to be polynomial, [7].

Let I = (G,w) be an instance of MaxWPkPacking where G = (V,E) is a graph with
maximum degree 2. Hence, G is a collection of disjoint paths or cycles and thus, each con-
nected component may be separately solved. Moreover, wlog., we may assume that each
connected component Gℓ of G is a path. Otherwise, a given cycle Gℓ = {v1, . . . , vNℓ

, v1}
might be solved by picking the best solution among the solutions computed on the k in-
stances Gℓ\ {[v1, v2]} , . . . , Gℓ\ {[vk, vk+1]}.

Thus, let Gℓ =
{

vℓ
1, . . . , v

ℓ
Nℓ

}

be such a path; we build the instance (Hℓ, wℓ) of MaxWIS

where the vertex set of Hℓ corresponds to the paths of length k − 1 in Gℓ: a vertex v
corresponding to a path Pv has a weight wℓ(v) = w(Pv). Moreover, two vertices u 6= v are
linked in Hℓ iff the corresponding paths Pu and Pv share at least one common vertex in
the initial graph. We deduce that the set of independent sets in Hℓ corresponds to the set
of Pk in Gℓ. Observe that Hℓ is an interval graph (even a unit interval graph), since each
path can be viewed as an interval of the line {1, · · · ,N ℓ}. Hence, Hℓ is chordal.

If G is a forest, then any of the graphs Hℓ that correspond to a tree of G is a chordal
graph.

Proof of Theorem 4.1. The approximate algorithm is based on the following observation:
for any spanning tree T = (VT , ET) of maximum degree 3 and containing at least 3 vertices,
we can build a coverage of its edge set into 3 packings of P3 within linear time. Consider
three empty collections P1,P2,P3 and a tree rooted at r. According to the degree of r
and to the degree of its children, we add some path P using r to the packing P1, remove
the edges of P from T , and then recursively repeat this process on the remaining subtrees
rooted at its children, alternatively invoking P2 and P1. Figure 7 provides an illustration of
this process, where Tv denotes the subtree of T rooted at v; the edges in rigid lines represent
the path that is added to the current packing; finally, the subtrees that are invoked by the
recursive calls are indicated.

We start the whole process by picking a vertex r of degree at most 2 as a root of the
initial tree. The stopping criterion are the following: the tree has no edge (then stop), or
the tree is a lonely edge [x, y]; then add {rx, x, y} to P3, where rx denotes the father of x
in T . A formal description of this algorithm is provided below.

13

Tree-P3PackingCover

Input: T = (VT , ET) spanning tree of maximum degree 3 containing at least 3 vertices
and rooted at r such that dT (r) ≤ 2.

1 Set P1 = P2 = P3 = ∅;

2 Call SubProcess(Tr,P1,P2,P3,1);

3 Repair P1,P2,P3 in such a way that each Pi is a packing;

Output (P1, P2, P3).

SubProcess(Tx, P1,P2,P3, i)

1 If ETx = ∅ then exit;

2 If ETx = {{x, y}}

2.1 Let rx be the father of x in Tr, set P3 = P3 ∪ {{rx, x, y}};

3 Else If x is of degree 1 in Tx with child y

3.1 Let z be a child of y, set Pi = Pi ∪ {{x, y, z}};

3.2 Call SubProcess(Tz, P1,P2,P3,3-i);

3.3 If y is of degree 3 in Tx, let t denote its second child,

Call SubProcess({{y, t}} ∪ Tt, P1,P2,P3, 3-i);

4 Else If x is of degree 2 in Tx with children y and z

4.1 Set Pi = Pi ∪ {{y, x, z}};

4.2 Call SubProcess(Ty, P1,P2,P3,3-i);

4.3 Call SubProcess(Tz, P1,P2,P3,3-i);

Doing so, P1 and P2 both are packings: one can easily see that the paths that are added
to Pi (where i = 1 or i = 2) at a given time t and the ones that are added again to Pi at
time t + 2 do not share common vertices. On the other hand, P3 might not be a packing.
Let {rx, x, y} and {rx′ , x′, y′} be two paths from P3 such that {rx, x, y} ∩ {rx′ , x′, y′} 6= ∅;
then, either rx = rx′ , or rx = x′. If the first case occurs, {x, rx, x′} has been added to Pi

(for i = 1 or i = 2), then set: Pi = Pi\{{x, rx, x′}}∪{{rx, x, y}} and P3 = P3\{{rx, x, y}}.
Otherwise, rx′ is the father of rx in Tr and we have {rx′ , rx, x} ∈ Pi (for i = 1 or i = 2); then
set: Pi = Pi\{{rx′ , rx, x}} ∪ {{rx′ , x′, y′}} and P3 = P3\{{rx′ , x′, y′}}. Figure 8 provides 2
examples of the construction of P1, P2 and P3.

Hence, the following algorithm provides a 1/3-approximation within O(α(n, 3n/2)n)
time complexity.

14

T2

P
1

P
2

P
3

iteration 1 iteration 2

P
3

P
2

P
1

iteration 3

P
1

P
2

P
3

P
3

P
2

P
1

iteration 1 iteration 2 iteration 3

remaining subtrees remaining subtrees remaining subtrees

∅ ∅ ∅ ∅

∅

∅ ∅

repair

repair

T1

Figure 8: Two examples of the construction of the 3 packings Pi for i = 1, 2, 3.

MaxWP3Packing

Input: G = (V,E) weighted connected graph with maximum degree 3.

1 Compute a maximum-weight spanning tree T on G;

2 Compute (P1,P2,P3) a P3-packing cover of T ;

Output P = arg max{w(P1), w(P2), w(P3)};

First, the computation of a maximum weight spanning tree can be done in O(α(n, 3n/2)n)
time in graphs with maximum degree 3, [4]; second, the number of recursive calls to
SubProcess may not exceed 2/3n and finally, |P3| is at most O(log n).

Proof of Theorem 4.5. The approximate algorithm works as previously, except that we

15

compute a maximum (size) matching M∗
L (resp., M∗

R) on GL (resp., GR) in step 2 and that
the P3 packing PL (resp., PR) is obtained from M∗

L (resp., M∗
R) by deleting the edges [ri, r

′
i]

(resp., [li, l
′
i]) in step 3.

Let M be a matching on GL; from the property 4.4, we may assume that M saturates
RL. Hence, if p is the number of edges [ri, r

′
i] of M , we have |M | = |RL| − p = 2|R| − p.

We deduce from M a packing PM of 2-length-paths in G, using |M | − p = 2(|M | − |R|)
edges. Conversely, any packing PL = {P1, · · · , Pq} on G such that for 1 ≤ i ≤ q, Pi is
a 2-length-path with its two endpoints in L can be converted into a matching M on GL

of size |M | = 2q + (|R| − q) = q + |R|. Thus, from a maximum matching M∗ on GL

verifying Property 4.4, we build a P3 packing PM∗ on G using 2(|M∗| − |R|) edges. Since
2(|M∗| − |R|) ≥ 2|P∗

L|, the proof is complete. The complexity time of this algorithm is
mainly the complexity time of computing a maximum matching, that is O(m

√
n), [14].

16

