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Abstract

In the minimum sum edge coloring problem, we aim to assign natural numbers
to edges of a graph, so that adjacent edges receive different numbers, and the
sum of the numbers assigned to the edges is minimum. The chromatic edge
strength of a graph is the minimum number of colors required in a minimum
sum edge coloring of this graph. We study the case of multicycles, defined as
cycles with parallel edges, and give a closed-form expression for the chromatic
edge strength of a multicycle, thereby extending a theorem due to Berge. It is
shown that the minimum sum can be achieved with a number of colors equal to
the chromatic index. We also propose simple algorithms for finding a minimum
sum edge coloring of a multicycle. Finally, these results are generalized to a
large family of minimum cost coloring problems.
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1. Introduction

During a banquet, n people are sitting around a circular table. The table is
large, and each participant can only talk to her/his left and right neighbors. For
each pair of neighbors around the table, there is a given number of available
discussion topics. If we suppose that each participant can only discuss one
topic at a time, and that each topic takes an unsplittable unit amount of time,
then what is the minimum duration of the banquet, after which all available
topics have been discussed? What is the minimum average elapsed time before
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a topic is discussed?

In this paper, we show that there always exists a scheduling of the conversa-
tions such that these two minima are reached simultaneously. We also propose
an algorithm for finding such a scheduling. This amounts to coloring edges of
a multicycle on n vertices.

We first recall some standard definitions. Let G = (V, E) be a finite undi-
rected (multi)graph without loops. A vertex coloring of G is a mapping from V
to a finite set of colors such that adjacent vertices are assigned different colors.
The chromatic number χ(G) of G is the minimum number of colors that can be
used in a coloring of G. An edge coloring of G is a mapping from E to a finite set
of colors such that adjacent edges are assigned different colors. The minimum
number of colors in an edge coloring of G is called the chromatic index χ′(G).
From now on, we assume that colors are positive integers. The vertex chromatic
sum of G is defined as Σ(G) = min

{
∑

v∈V f(v)
}

, where the minimum is taken
over all colorings f of G. Similarly, the edge chromatic sum of G, denoted by
Σ′(G), is defined as Σ′(G) = min

{
∑

e∈E f(e)
}

, where the minimum is taken
over all edge colorings. In both cases, a coloring yielding the chromatic sum is
called a minimum sum coloring.

We also define the minimum number of colors needed in a minimum sum
coloring of G. This number is called the strength s(G) of the graph G in
the case of vertex colorings, and the edge strength s′(G) in the case of edge
colorings. Clearly, s(G) ≥ χ(G) and s′(G) ≥ χ′(G).

The chromatic sum is a useful notion in the context of parallel job scheduling.
A conflict graph between jobs is a graph in which two jobs are adjacent if they
share a resource, and therefore cannot be run in parallel. If each job takes
one time unit, then a scheduling that minimizes the makespan is a coloring of
the conflict graph with a minimum number of colors. On the other hand, a
minimum sum coloring of the conflict graph corresponds to a scheduling that
minimizes the average time before a job is completed. In our example above,
jobs are conversations, resources are the banqueters, and the conflict graph is
the line graph of a multicycle.

Previous results.. Chromatic sums have been introduced by Kubicka in
1989 [14]. The computational complexity of determining the vertex chromatic
sum of a simple graph has been studied extensively since then. It is NP-hard
even when restricted to some classes of graphs for which finding the chromatic
number is easy, such as bipartite or interval graphs [2, 22]. A number of ap-
proximability results for various classes of graphs were obtained in the last ten
years [1, 8, 11, 6]. Similarly, computing the edge chromatic sum is NP-hard for
bipartite graphs [9], even if the graph is also planar and has maximum degree
3 [15]. Hardness results were also given for the vertex and edge strength of a
simple graph by Salavatipour [21], and Marx [16].

Some results concern the relations between the chromatic number χ(G) and
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the strength s(G) of a graph. It has been known for long that the vertex
strength can be arbitrarily larger than the chromatic number [5]. However, if G
is a proper interval graph, then s(G) = χ(G) [19], and s(G) ≤ min{n, 2χ(G)−1}
if G is an interval graph [18]. Hajiabolhassan, Mehrabadi, and Tusserkani [10]
proved an analog of Brooks’ theorem for the vertex strength of simple graphs:
s(G) ≤ ∆(G) for every simple graph G that is neither an odd cycle nor a
complete graph, where ∆(G) is the maximum degree in G.

Concerning the relation between the chromatic index and the edge strength,
Mitchem, Morriss, and Schmeichel [17] proved an inequality similar to Vizing’s
theorem : s′(G) ≤ ∆(G)+1 for every simple graph G. Harary and Plantholt [23]
have conjectured that s′(G) = χ′(G) for every simple graph G, but this was later
disproved by Mitchem et al. [17], and Hajiabolhassan et al. [10].

Our results.. We consider multigraphs, in which parallel edges are allowed. In
Section 2 we prove that if G is a multicycle, that is, a cycle with parallel edges,
then s′(G) = χ′(G). This statement extends a classical result from Berge.

In Section 3, we give an algorithm of complexity O(∆n) for finding a mini-
mum sum coloring of a multicycle G of order n and maximum degree ∆. This
algorithm iteratively eliminates edges that will form the color class correspond-
ing to the last color s′(G). For the special case where n is even, we also give a
more efficient O(m)-time algorithm based on the property of optimal colorings
that the first color classes induce a uniform multicycle.

We conclude by generalizing our results to other objective functions.

2. Multicycles

The following well-known result has been proved by König in 1916.

Theorem 1 (König’s theorem [13]). Let G = (V, E) be a bipartite multigraph
and let ∆ denotes its maximum degree. Then χ′(G) = ∆.

Hajiabolhassan et al. [10] mention that s′(G) = χ′(G) for every bipartite
graph G. In fact, by using the same technique as in the classical proof of
König’s theorem, it is easy to deduce that s′(G) = χ′(G) for every bipartite
multigraph G.

Theorem 2. Let G = (V, E) be a bipartite multigraph and let ∆ denote its
maximum degree. Then s′(G) = χ′(G) = ∆.

Multicycles are cycles in which we can have parallel edges between two
consecutive vertices. We consider the chromatic edge strength of multicycles.

The chromatic edge strength s′(G) of a graph G is bounded from below by
both ∆ and dm

τ
e, where ∆ is the maximum degree in G and τ is the cardinality

of a maximum matching in G. In this section, we show that the lower bound
max{∆, dm

τ
e} is indeed tight for multicycles. We assume that the multiplicity

of each edge in the multicycle is at least one, so that the size τ of a maximum
matching is equal to bn/2c.
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We first give a closed-form expression for the chromatic index of multicycles.

Theorem 3 ([3]). Let G = (V, E) be a multicycle on n vertices with m edges
and maximum degree ∆. Let τ denote the maximum cardinality of a matching
in G. Then

χ′(G) =

{

∆, if n is even,
max

{

∆, dm
τ
e
}

, if n is odd.

We now introduce some useful notations. Given C the set of colors used in
an edge coloring of a multigraph G, we denote by Cx the subset of colors of C
assigned to edges incident to vertex x of G. Given two colors α and β, we call
a path an (α, β)-path if the colors of its edges alternate between α and β. We
also denote by dG(x) the degree of vertex x in G. We now state our main result.

Theorem 4. Let G = (V, E) be a multicycle on n vertices with m edges and
maximum degree ∆, and let τ denote the maximum cardinality of a matching in
G. Then

s′(G) = χ′(G) =

{

∆, if n is even,
max

{

∆, dm
τ
e
}

, if n is odd.

Proof. If n is even, then the result follows from Theorem 2. Thus, we as-
sume that n = 2k + 1 for a positive integer k and let s′ = s′(G). Let
r = max

{

∆, dm
k
e
}

. As τ = k, then it is clear that χ′(G) = r. Moreover,
as s′ ≥ χ′(G) then, it suffices to prove that s′ ≤ r. Assume that s′ > r and G
is a smallest counterexample. We claim that there exists a minimum sum edge
coloring f of G in which there is only one edge colored with color s′. Otherwise,
delete one of the edges with color s′, say e. From the minimality of G, there
exists a minimum sum edge coloring of G \ e with χ′ colors. Then we obtain
the desired edge coloring of G by assigning the color s′ = χ′ + 1 = r + 1 to e.

Let Ei denote the set of edges of G with color i and let [a, b]0 be the only edge
in G colored with color s′. Moreover, let G′ = G \ [a, b]0. By the minimality of
G, we have that s′(G′) = χ′(G′) = max

{

∆′, dm−1
k
e
}

≤ r. Let C = {1, . . . , r}.
The following properties for the edge coloring of G′ can be easily deduced:

(1) There exists a color σ ∈ C such that |Eσ | < k.

(2) |Ca ∪ Cb| = r.

(3) There exist at least two colors α and β in C such that α ∈ Ca \ Cb and
β ∈ Cb \ Ca, with α 6= β.

For (1), notice that if there is no color σ ∈ C such that |Eσ | < k, then
m − 1 =

∑r

i=1 |Ei| = kr, hence r = m−1
k

< m
k

, contradicting the definition of
r. Property (2) holds, otherwise edge [a, b]0 can be colored with a color in C
which contradicts the fact that G′ is a counterexample. Finally, notice that the
degree of vertices a and b in G′ is at most equal to ∆ − 1. Since r ≥ ∆, there
is a color β 6∈ Ca and a color α 6∈ Cb with α, β ∈ C. Clearly α 6= β, otherwise
[a, b]0 can be colored with such a color, contradicting the fact that G is a
counterexample. Moreover, by (2), we have that α ∈ Ca \ Cb and β ∈ Cb \ Ca,
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Figure 1: An illustration of the case σ ∈ Cb \ Ca in the proof of Theorem 4, on a multicycle
G with s′ = χ′ = 3. The edge [a, b]0 is the only edge colored with color s′ + 1 = 4. In this
example, color σ = 3 and color α ∈ Ca \ Cb is equal to 1.
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Figure 2: An illustration of the case σ ∈ Ca ∩Cb in the proof of Theorem 4, with s′ = χ′ = 3.
Again, [a, b]0 is the only edge colored with color s′ + 1 = 4, and σ = 3.

which proves (3).

By Property(2), it is sufficient to analyze the cases σ ∈ Cb \Ca (or σ ∈ Ca \Cb)
and σ ∈ Ca ∩Cb. The two cases are illustrated on Figures 1 and 2, respectively.

If σ ∈ Cb \ Ca then, by Property (3), there exists a color α ∈ Ca \ Cb with
α 6= σ. Let G(α, σ) denote the subgraph of G′ induced by the edges of color
α and σ. Let Gb(α, σ) denote the connected component of G(α, σ) containing
b. Clearly, Gb(α, σ) is a simple (σ, α)-path having b as last vertex and not
containing vertex a, otherwise we have a contradiction to Property (1). Hence
we can recolor the edges of the path Gb(α, σ) by swapping colors α and σ in
such a way that σ 6∈ Cb. Since σ 6∈ Ca, we assign color σ to [a, b]0, and obtain
an edge coloring f ′′ of G using r colors. Figure 1 provides an example of this
case.

We now want to show that
∑

e∈E

f ′′(e) <
∑

e∈E

f(e), (*)

contradicting s′(G) > r. If the length of the path Gb(α, σ) is even, then
∑

e∈E f ′′(e) −
∑

e∈E f(e) = σ − r − 1 ≤ r − r − 1 < 0. If the length of
the path Gb(α, σ) is odd, say 2s + 1, with s ≥ 0, then the difference is
(σ + (s + 1)α + sσ)− (r + 1 + (s + 1)σ + sα) = α− r− 1 ≤ r− r− 1 < 0. Thus,
inequality (*) always holds.

The other case is when σ ∈ Ca ∩ Cb. By Property (3), there exist a color
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Figure 3: An example for which the natural greedy algorithm fails. The graph is a 2-uniform
5-cycle, and has chromatic edge strength max{∆, dm/ke} = max{4, d10/2e} = 5. However,
iteratively removing maximum matchings can yield a 6-coloring.

β ∈ Cb \Ca. Let us assume that vertices are ordered clockwise and let b be the
clockwise vertex of edge [a, b]0. Recolor edge [a, b]0 with color β and the edge of
color β incident to b with color s′ = r + 1. This recoloring does change neither
the value of the sum nor the number of colors. Let [x, y]0 be the edge that is
recolored with color s′, with x being its counterclockwise vertex.

By Property (3) again, a color βy such that βy ∈ Cy \ Cx exists. We can
therefore repeat the above procedure until the edge [x, y]0 is such that σ ∈
Cx \ Cy or σ ∈ Cy \ Cx. This is always possible, because the cycle is odd, and
|Eσ | < k; hence by moving around the cycle this way, we will eventually find an
edge [x, y]0 that is adjacent to only one edge of color σ. Assume, without loss
of generality, that σ ∈ Cy \ Cx. Then letting a = x and b = y leads us back to
the first case. Figure 2 gives an example of this case.

3. Algorithms

We now present algorithms for minimum sum coloring of multicycles. The
complexity of our algorithms will be a function of both m and n. Hence if the
input consists of the number of parallel edges between every pair of consecutive
vertices, our algorithms will only be pseudopolynomial. This is natural since we
expect a coloring to be represented by an encoding of size Θ(m).

The line graph of a multicycle is a proper circular arc graph. Hence the
problem of coloring edges of multicycles is a special case of proper circular arc
graph coloring. It is easy to realize that not all proper circular arc graphs are
line graphs of multicycles, though. Proper circular arc graphs were shown by
Orlin, Bonuccelli, and Bovet [20] to admit equitable colorings, that is, colorings
in which the sizes of any two color classes differ by at most one, that only use
χ colors. Therefore, a corollary of our results is that multicycles admit both
equitable and minimum sum edge colorings with the same, minimum, number
of colors, and that both types of colorings can be computed efficiently.

We first present a general algorithm, then focus on the case where n is even.

3.1. The general case

A natural idea for solving minimum cost coloring problems is to use a
greedy algorithm that iteratively removes maximum independent sets (or
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maximum matchings in the case of edge coloring) [1, 6]. It can be shown that
this approach fails here (see Figure 3). Instead we use an algorithm in which
the smallest color class, corresponding to color s′, is removed iteratively.

We first consider the case where dm/ke ≥ ∆ and k divides m. Then
the number of colors must be equal to m/k. But since each color class can
contain at most k edges, every color class in a minimum sum coloring must
have size exactly k. Such a coloring can be easily found in linear time by a
sweeping algorithm that assigns each color i mod χ′ in turn. This is a special
case of the algorithm of Orlin et al. (Lemma 2, [20]) for circular arc graph
coloring. In the remainder of this section, we refer to this case as the “easy case”.

Algorithm MulticycleColor.

1. i← s′(G), Gi ← G

2. if d|E(Gi)|/ke ≥ ∆(Gi) and k divides |E(Gi)| then apply the ”easy case”
algorithm and terminate

3. else

(a) Find a matching M of minimum size such that s′(Gi\M) = s′(Gi)−1
(b) color the edges of M with color i
(c) Gi−1 ← Gi \M , i← i− 1
(d) if Gi 6= ∅ then go to step 2

The correctness of the algorithm relies on the following lemma.

Lemma 1. Given a matching M in a multicycle G such that

1. s′(G \M) = s′(G) − 1,

2. M has minimum size among all matchings satisfying condition 1,

there exists a minimum sum edge coloring of G such that M is the set of edges
colored with color s′(G).

Proof. We distinguish three cases, a), b), and c), depending on the relative
values of dm/ke and ∆.

Case a) We first assume that dm/ke > ∆ and k does not divide m, thus
m = bm/kc · k + q, with q > 0. In that case, M has size exactly q. To find
a minimum sum coloring, we color the edges of M with color dm/ke. The
remaining edges are colored using the “easy case” algorithm, which applies
since bm/kc ≥ ∆ and the number of remaining edges is a multiple of k. This
coloring must have minimum sum, because only one color class has not size k.

Case b) When ∆ > dm/ke, we have s′(G) = ∆ from Theorem 4. We claim
that in that case, M is a minimum matching that hits all vertices of degree ∆.
To prove this, suppose otherwise. Then (G \M) has maximum degree ∆, and
thus from Theorem 4, s′(G \M) = s′(G), contradicting condition 1. Now we
have to ensure that there exists a minimum sum coloring such that M is the
color class s′(G) = ∆.
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(a) odd case: edges of M ′ (b) odd case: edges of M

(c) even case: edges of M ′ (d) even case: edges of M

Figure 4: Illustration of the proof of Lemma 1.

We consider a minimum sum coloring and the color class ∆ in this coloring.
This class, say M ′, must also be a matching hitting all vertices of degree ∆. We
now describe a recoloring algorithm that, starting with this coloring, produces
a coloring whose sum is not greater and whose color class ∆ is exactly M . We
define a block as a maximal sequence of adjacent vertices of degree ∆. The
algorithm examines each block, and shifts the edges of M ′ if they do not match
with those of M . Two cases can occur, depending on the parity of the block
length.

The first case is when a block contains an odd number of vertices of degree
∆, say v1, v2, . . . , v2t+1 for some integer t. In that case, the only way in which
M and M ′ can disagree is, without loss of generality, when M ′ contains edges
of the form v0v1, v2v3, . . . , v2tv2t+1, while M contains v1v2, v3v4, . . . , v2t+1v2t+2

(see figure 4(a)-4(b)), where v0 and v2t+2 are the predecessor of v1 and the
successor of v2t+1, respectively. Since the degree of v0 is, by definition of a
block, strictly less than ∆, there must exist a color α ∈ Cv1

\Cv0
. Furthermore,

since all vertices within the block have degree ∆, the color class for color α
contains t + 1 edges of the form v2i+1v2i+2 for 0 ≤ i ≤ t. Hence we can recolor
the edges of M ′ of the form v2iv2i+1 for 0 ≤ i ≤ t with color α, and the t+1 edges
of color α within the block with color ∆. Note that at this point, the coloring
might be not proper anymore, as two edges colored ∆ might be incident to
v2t+2.

The other case is when a block contains an even number of vertices of degree
∆, say v1, v2, . . . , v2t for some integer t. In that case, since M is minimum,
it contains edges of the form v1v2, v3v4, . . . , v2t−1v2t. The only way in which
M ′ can disagree with M is by containing edges v0v1, v2v3, . . . , v2tv2t+1 (see
figure 4(c)-4(d)). Like in the previous case, there must be a color α 6∈ Cv0

, so
we can recolor the edges of M ′ of the form v2iv2i+1 for 0 ≤ i < t with color
α, and the edges of color α within the block with color ∆. Note that the edge
v2tv2t+1 of color ∆ has not been recolored, thus v2t−1v2t and v2tv2t+1 both have
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color ∆, and at this point the coloring is not proper anymore.
We proceed in this way for each block. Notice that the sum of the coloring

is unaltered, and that the set of edges of color ∆ is now a superset of M .
Also, while G is not necessarily properly colored anymore, the graph G \M is
properly colored with at most ∆ colors. But since removing M decreases the
strength, we know we can recolor G \M with ∆ − 1 colors without increasing
the sum. Doing that and gluing back the edges of M colored with color ∆, we
obtain a minimum sum coloring where only the edges of M have color ∆, as
claimed.

Case c) Finally, in the case where dm/ke = ∆, with m = bm/kc · k + q,
the matching M consists of at least q edges that together hit all vertices of
degree ∆. If M has exactly size q, then case a) above applies, since we know
that by removing M , we also decrease the maximum degree. Otherwise case b)
applies.

We have to make sure that the main step of the algorithm can be imple-
mented efficiently.

Lemma 2. Finding a matching M in a multicycle G such that s′(G \M) =
s′(G)− 1 and M has minimum size can be done in O(n) time.

Proof. The three cases of the previous proof must be checked. In the case where
dm/ke > ∆ and m = bm/kc · k + q, we can pick any matching of size q, which
can clearly be done in linear time. In the second case, when dm/ke < ∆, we
need to find a minimum matching hitting all vertices of degree ∆. This can be
achieved in linear time as well by proceeding in a clockwise greedy fashion.

Finally, in the last case, we need to find a minimum set of at least q edges
that together hit all vertices of degree ∆. This can also be achieved in O(n)
time as follows. We first find the minimum matching hitting all maximum degree
vertices. If the resulting matching has size at least q, then we are done and back
to the previous case. Otherwise, we need to include additional edges. For that
purpose, we can proceed in the clockwise direction and iteratively extend each
block in order to include the exact number of additional edges. This can take
linear time as well if we took care to count the size of each block and of the
gaps between them in the previous pass.

Theorem 5. Algorithm MulticycleColor finds a minimum sum coloring of
a multicycles on n vertices and with maximum degree ∆ in time O(∆n).

Proof. The number of iterations of the algorithm is at most s′(G) =
max{dm/ke, ∆}. Hence the running time is O(max{dm/ken, ∆n}) =
O(max{m, ∆n}) = O(∆n).

We deliberately ignored the situation in which after some iterations, the
multicyle Gi does not contain a full cycle anymore, that is, one of the edge mul-
tiplicity mi drops to 0. We are then left with a collection of disjoint multipaths,
for which the minimum sum coloring problem becomes easier. This special case
is described in the following section.

9



3.2. A linear time algorithm for even length multicycles

We turn to the special case n = 2k, that is, the number of vertices is even.
We show that in that case, minimum sum colorings have a convenient property
that can be exploited in a fast algorithm. This algorithm first colors a uniform
multicycle contained in G such that the remaining edges of G form a (possibly
unconnected) multipath. This multipath is then colored separately.

We begin this section by the following result on multipaths. We consider
multipaths with vertices labeled {1, 2, . . . , n}, such that edges are only between
vertices of the form i, i + 1.

Lemma 3. There always exists a minimum sum edge coloring of a multipath
H, such that its color classes Ei are maximum matchings in the graphs Hi =
H \∪i−1

j=1Ej ; furthermore these matchings contain all the edges appearing in odd
position from left to right in each connected component of Hi.

Proof. Suppose H has been colored optimally. We want to transform such an
edge coloring into another one that verifies the hypothesis of the theorem. Let
i be the minimum positive integer for which Ei does not verify the hypothesis.
Note that the color of every edge in Hi is at least i.

We can assume that Hi is connected, the folllowing reasoning being
applicable to each connected component. We first remark that Ei is a maximal
matching, otherwise one edge can be recolored with color i, contradicting the
optimality of the given edge coloring. Thus Ei can be partitioned in blocks,
defined as maximal sequences of consecutive vertices {y1, y2, . . . , y2t} such
that one of the edges between y2j−1 and y2j has color i, for 1 ≤ j ≤ t. Two
consecutive blocks are separated by a single vertex whose incident edges have
colors strictly greater than i. We now show that if a block starts at an even
vertex, it can be recolored without decreasing the color sum. We let y0 be the
vertex preceding y1.

Recoloring: Let α1 6= i be any color appearing on the edges between y0

and y1. We recolor an edge of color α1 with color i and color the edge between
vertices y1 and y2 of color i with color α1. Now, for each j, with 1 < j ≤ t,
we recolor the edge y2j−1y2j of color i with a color αj appearing on the edges
y2j−2y2j−1, and color the edge y2j−2y2j−1 of color αj with color i. The color αj

is chosen such that αj = αj−1 if color αj−1 appears on edges y2j−2y2j−1, and
it is any color appearing on edges y2j−2y2j−1 otherwise. At the end, we have
two cases. Either y2t is the last vertex of the path, and we are done, or there
exist edges between y2t and, say, y2t+1. One of these edges may be of color αt,
and can be recolored with color i. Otherwise, any such edge can be recolored
with color i. Since, by definition, y2t+1 was not incident to any edge with color
i, this yields a proper coloring whose sum is not greater than the original one.

Now, it is clear that we can assume that every block starts at an odd vertex.
This implies that there is only one block. Furthermore, this block must start
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with the first vertex of the path. Hence Ei is a maximum matching containing
all the edges appearing in odd position.

From Lemma 3, we can deduce the following result, that settles the case of
multipaths.

Theorem 6. The greedy algorithm that iteratively picks a maximum matching
formed by all edges appearing in odd position in each connected component of a
multipath H, computes a minimum edge sum coloring of H in time O(m).

We now consider the case of even multicycles. We assume that the vertices
in the multicycle G on n = 2k vertices are labelled clockwise with integers
0, 1, . . . , n− 1, and arithmetic operations are taken modulo n. For each 0 ≤ i <
n, let mi denote the number of parallel edges between two consecutive vertices
i and i+1 in G. Let p be a positive integer. A multicycle G with m = pn edges
is called p-uniform if mi = p for every i such that 0 ≤ i < n.

Lemma 4. Let G be a multicycle of even length and let p = mini mi. Let f be
any minimum sum edge coloring of G. Then, f can be transformed into another
minimum sum edge coloring f ′ such that the first 2p color classes Ei induced by
f ′, with 1 ≤ i ≤ 2p, are such that |Ei| = k and their union induces a p-uniform
multicycle.

Proof. Let G be a multicycle on n vertices, with n = 2k for some integer k > 1.
Let f be any minimum sum edge coloring of G. Clearly, as f is minimum, we
have that |E1| ≥ |E2| ≥ . . . ≥ |Eχ′ |. Let us consider the following claim.

Claim 1. The coloring f can be transformed into a minimum sum edge color-
ing f ′ having the property that the edges colored with colors 1 and 2 induce a
subgraph of G isomorphic to a cycle.

Notice that, by using Claim 1, the lemma follows directly by induction on p.
So, in order to prove Claim 1, first notice that, by using a similar recoloring
argument as in the proof of Lemma 3, we can deduce that |E1| = k.

Now, without loss of generality, assume that f is such that there is an edge
colored with color 1 between vertices 2j and 2j + 1 for each j with 0 ≤ j < k.
Moreover, let c ≥ 2 be the minimum color appearing on the edges between
vertices 2j + 1 and 2j + 2, for all 0 ≤ j < k.

Suppose that there exists a maximal sequence i1, . . . , i2t of consecutive ver-
tices in G, such that colors 1 and c belong to the set of colors assigned by f to
the edges between vertices i2q−1 and i2q, with 1 ≤ q ≤ t. Then by using the
same recoloring argument as in the proof of Lemma 3, we can move color c in
order to transform such a sequence into a (c, 1)-path. Moreover, again by using
the same recoloring argument as in the proof of Lemma 3, we can deduce that
|Ec| = k.

So, if c = 2 we are done, otherwise, we can swap the colors 2 and c so that
|E2| = k and E1 ∪ E2 induce a cycle.

11



Theorem 7. There exists an O(m)-time algorithm for computing a minimum
sum edge coloring of a multicycle G of even length with m edges.

Proof. Let n = 2k be the number of vertices in G and let p = mini{mi}, for
0 ≤ i < n. For each 0 ≤ j < k, assign to p edges between vertices 2j and 2j + 1
the odd colors 1, 3, . . . , 2p− 1 and assign to p edges between vertices 2j + 1 and
2j + 2 the even colors 2, 4, . . . , 2p.

The previous pn colored edges induce a subgraph of G isomorphic to a p-
uniform multicycle. When removing this p-uniform multicycle from G, we obtain
a multipath or a set of disjoint multipaths, the edges of which can be colored
with colors in {2p + 1, . . . , s′(G)}, from Theorem 6.

Such a coloring can be computed in O(m) time, and by Lemmas 4 and 3, it
is a minimum sum edge coloring of G.

4. Conclusion

The question of whether minimum sum colorings always use a minimum
number of colors, like it is the case for multicycles, can be asked for other
classes of graphs or multigraphs. We can also consider other types of colorings.
In this conclusion, we outline a generalization of our results to a large family
of coloring problems.

In the generalized optimal cost chromatic partition problem [12], each color
has an integer cost, but this cost is not necessarily equal to the color itself.
The cost of a vertex coloring is

∑

v∈V c(f(v)), where c(i) is the cost of color i.
For any set of costs, our proofs can be generalized to show that on one hand,
the minimum number of colors needed in a minimum cost edge coloring of G is
equal to χ′(G) when G is bipartite or a multicycle, and on the other hand that
a minimum cost coloring can be computed in O(∆n) time for multicycles.

In fact, our results can be generalized to an even broader class of edge
coloring problems. Given an edge coloring f : E 7→ N, we define a cost C(f) of
the form:

C(f) =
∑

i

c(i, |f−1(i)|),

where c : N×N 7→ R is a real function of a color i and an integer k, and f−1(i)
is the set of edges e such that f(e) = i. Hence the cost to minimize is a sum of
the cost of each color class, itself defined as some function of the color and the
size of the color class.

In the minimum sum coloring problem, the function c is defined by

c(i, k) = i · k.

We further suppose that the functions c(i, k) satisfy the following property:
Given two nonincreasing integer sequences a1 ≥ a2 . . . ≥ an and b1 ≥ b2 . . . ≥ bn

such that
j

∑

i=1

ai ≥

j
∑

i=1

bi, ∀j = 1, . . . , n,
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we have
n

∑

i=1

c(i, ai) ≤
n

∑

i=1

c(i, bi). (1)

This property clearly holds in the minimum sum coloring problem. It for-
malizes the fact that when minimizing the cost C(f), we are looking for a
distribution of the color class sizes that is as nonuniform as possible. In par-
ticular, when an element (edge or vertex) in a color class i is recolored with a
color j < i, whose class is larger, then the objective function decreases. This is
the argument that we implicitly used in our proof of Theorem 4. It is also the
argument that ensures the correctness of the algorithms.

Property (1) can also be shown to hold (see [7]) when the following two
conditions are satisfied:

1. c(i, k) = c(j, k) ∀i, j, that is, when the cost of a class only depends on its
size, in which case we will say that the functions are separable,

2. the functions c(i, k) = c(k) are concave.

This is the case for instance in the minimum entropy edge coloring problem [4],
for which c(k) = − k

m
log k

m
. A number of other coloring problems falling in

that class were recently studied by Fukunaga, Halldórsson, and Nagamochi [7].

For all minimum cost edge coloring problems whose objective function sat-
isfies (1), all our results apply. In fact, the colorings that we compute are robust
colorings, in the sense that they minimize every objective function satisfying
the above property.
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