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Abstract

Let n, k, r be positive integers, with n ≥ kr. The r-uniform Kneser hypergraph KGr(n, k)
has as vertex set the set of all k-subsets of the set {1, . . . , n} and its (hyper) edges are formed by
the r-tuples of pairwise disjoint k-subsets of the set {1, . . . , n}. In this paper, we give conditions
for the existence of homomorphisms between uniform Kneser hypergraphs.

Keywords: Kneser Hypergraph, Hypergraph Homomorphism, Hypergraph Coloring.

1 Introduction and preliminaries

A hypergraph H is an ordered pair (V(H), E(H)), where V(H) (the vertex set) is a finite set and
E(H) (the edge set) is a family of distinct non-empty subsets of V(H). If every (hyper) edge in E(H)
has size r, then H is called r-uniform. Notice that a (simple) graph is a 2-uniform hypergraph. Let
A,B be two finite sets and let φ : A→ B be a mapping from A to B. The extension of φ, that we
denote by φ̂, is a mapping from 2A to 2B defined by φ̂(S) = ∪a∈S{φ(a)}, for any subset S ⊆ A.

Let G = (V(G), E(G)) and H = (V(H), E(H)) be two hypergraphs. A mapping φ : V(G)→ V(H)
is called a homomorphism from G to H if, for any edge e ∈ E(G), we have that φ̂(e) ∈ E(H). If there
is a homomorphism φ from G to H, we will write G → H, and also introduce φ writing φ : G → H.
An automorphism of a (hyper)graph G is an injective homomorphism from G to himself. The set
of all automorphisms of a (hyper)graph G forms a group structure which is denoted by Aut(G).

∗This work was partially supported by LIA INFINIS / SINFIN (CNRS-CONICET-UBA, France–Argentine),
CNPq (Brazil), International Cooperation Project “Sorbonne Paris Cité” (France), ANPCyT PICT-2015-2218, and
UBACyT Grants 20020160100095BA and 20020170100495BA (Argentine).
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For any positive integer t, let [t] denote the set {1, 2, . . . , t}. A t-coloring of a hypergraph H
is a coloring f : V(H) → [t] of the vertex set with t colors such that there is no monochromatic
edge. The minimum t such that there exists a t-coloring for hypergraph H is called its chromatic
number, and it is denoted by χ(H).

For any positive integers n, k, let
([n]
k

)
be the set of k-subsets of [n]. The Kneser hypergraph

KGr(n, k) is the r-uniform hypergraph whose vertex set is
([n]
k

)
and whose (hyper) edges are formed

by the r-tuples of pairwise disjoint k-subsets of [n].
Concerning the study of homomorphisms between 2-uniform Kneser hypergraphs, the most

known and useful results are the following:

Lemma 1 (Stahl [5]). Let n, k be positive integers with n ≥ 2k. Then, there is a homomorphism
KG2(n+ 2, k + 1)→ KG2(n, k).

Notice that if H → KG2(n1, k1) and H → KG2(n2, k2), then H → KG2(n1 + n2, k1 + k2).
Therefore, by using the Stahl’s homomorphism we can deduce that KG2(n, k)→ KG2(tn−2s, tk−
s) for any positive integer t and any s ∈ [k − 1].

Lemma 2 (Godsil and Roy [3]). Let n/k = w/s > 2. Then, there is a homomorphism KG2(n, k)→
KG2(w, s) if and only if k divides s.

Lemma 3 (Godsil and Roy [3]). Suppose there is a homomorphism KG2(n, k) → KG2(w, s). If
s
(
n
k

)
> n

(
n−1
k−1
)

+(w−n)hn,k, then there is a homomorphism KG2(n−1, k)→ KG2(w−2, s), where

hn,k = 1 +
(
n−1
k−1
)
−
(
n−k−1
k−1

)
.

The chromatic number of r-uniform Kneser hypergraphs has been completely determined. In a
famous paper, Lovász [4] proved that χ(KG2(n, k)) is equal to n − 2k + 2. Later, this result has
been extended to r-uniform Kneser hypergraphs by Alon, Frankl and Lovász [1] who showed that

χ(KGr(n, k)) =
⌈
n−(k−1).r

r−1

⌉
for n ≥ kr.

As far as we know, there are no results concerning the study of homomorphisms between r-
uniform Kneser hypergraphs for r > 2. In this paper, we give some necessary and sufficient
conditions for the existence of homomorphisms between Kneser hypergraphs. The paper is orga-
nized as follows: in Section 2, we start our study by characterizing the existence of homomorphisms
between two r-uniform Kneser hypergraphs. The study of homomorphisms between two Kneser hy-
pergraphs formed by hyperedges of different size is done in Sections 3 and 4. In Section 3, we study
the homomorphisms from KGr(n, 1) to any other r′-uniform Kneser hypergraph. In Section 4, we
present results for the more general case of homomorphisms from r-uniform Kneser hypergraphs to
r′-uniform Kneser hypergraphs. Finally, in Section 5, we discuss some applications of our results
to rainbow colorings of Kneser hypergraphs.

2 Homomorphism between two r-uniform Kneser hypergraphs

In this section, we characterize the existence of homomorphisms between two r-uniform Kneser
hypergraphs in terms of the existence of homomorphisms between 2-uniform Kneser hypergraphs.

Theorem 1. Let r, n1, k1, n2, k2 be positive integers, with ni ≥ rki, for i = 1, 2, and with r ≥ 3.
There is a homomorphism from KGr(n1, k1) to KGr(n2, k2) if and only if there is a homomorphism
from KG2(n1, k1) to KG2(n2, k2).
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Proof. Assume there is a homomorphism φ : KGr(n1, k1) → KGr(n2, k2). Let A and B be a pair
of adjacent vertices in KG2(n1, k1). As n1 ≥ rk1 and r ≥ 3, there exists a set of r − 2 pairwise

disjoint elements {C1, . . . , Cr−2} of
([n1]\(A∪B)

k1

)
. Thus, the set e = {A,B,C1, . . . , Cr−2} is an edge

of KGr(n1, k1) and therefore, by hypothesis, the set φ̂(e) = {φ(A), φ(B), φ(C1), . . . , φ(Cr−2)} is an
edge of KGr(n2, k2), which implies that φ(A) ∩ φ(B) = ∅. Therefore, φ is a homomorphism from
KG2(n1, k1) to KG2(n2, k2).

Conversely, let φ be a homomorphism from KG2(n1, k1) to KG2(n2, k2). By hypothesis, for

any pair of vertices A,B in
([n1]
k1

)
such that A ∩ B = ∅, we have that φ(A) ∩ φ(B) = ∅. Therefore,

by definition of r-uniform Kneser hypergraphs, we have that each edge of KGr(n1, k1) is mapped
by φ to an edge of KGr(n2, k2), which proves that φ is also a homomorphism from KGr(n1, k1) to
KGr(n2, k2).

Remark 1. Let H be an r1-uniform hypergraph and G be an r2-uniform hypergraph. If there is a
homomorphism from H to G then r1 ≥ r2.

In fact, notice that if φ : H → G is a homomorphism and e = {v1, . . . , vr1} is an edge of H, then
φ̂(e) = {φ(v1), . . . , φ(vr1)} is an edge of G and therefore r2 ≤ r1.

3 The case k1 = 1

In Theorem 2 we completely characterize the existence of homomorphisms between KGr1(n1, 1)
and other r-uniform Kneser graphs. First, in Lemma 4 we show that such homomorphism should
send all vertices of KGr1(n1, 1) to a single edge in the image. Then Example 1 shows this condition
is not sufficient. The rest of the section is then devoted to characterize such homomorphisms.

Lemma 4. Let n1, n2, r1, r2, k2 be positive integers with n1 ≥ r1, n2 ≥ r2k2, and r1 > r2. Let φ be
a homomorphism from KGr1(n1, 1) to KGr2(n2, k2). Then, for any pair of (hyper)edges e1, e2 in
KGr1(n1, 1), we must have that φ(e1) = φ(e2).

Proof. Let e1 = {u1, . . . , ur1} be an edge of KGr1(n1, 1). As φ is a homomorphism, then φ̂(e1) = e,
where e = {v1, . . . , vr2} is an edge of KGr2(n2, k2). By sake of contradiction, assume there is a
vertex x ∈ [n1]\e1 such that y = φ(x) 6∈ e. As r1 > r2, there exists vi ∈ e such that |φ−1(vi)∩e1| > 1.
Let u ∈ φ−1(vi) ∩ e1. Notice that e′ = (e1 \ {u}) ∪ {x} is an edge of KGr1(n1, 1), and e′ 6= e1.
However, φ(e′) = e ∪ {y} which is not an edge of KGr2(n2, k2), contradicting the fact that φ is a
hypergraph homomorphism.

By Lemma 4, if φ is a homomorphism from KGr1(n1, 1) to KGr2(n2, k2), then φ̂([n1]) is an
edge of KGr2(n2, k2). However, this fact is not a sufficient condition for determining whether there
exists or not a homomorphism between KGr1(n1, 1) and KGr2(n2, k2) as Example 1 shows.

Example 1. Consider n1 ≥ 5, r1 = 3, k2 = 1, r2 = 2, and n2 ≥ 2. We show that there is not
homomorphism from KG3(n1, 1) to KG2(n2, 1). By sake of contradiction assume φ : KG3(5, 1)→
KG2(n2, 1). From Lemma 4 we have φ̂([n1]) = e = {v1, v2}, where e is an edge of KG2(n2, 1). As
{φ−1(v1), φ−1(v2)} is a partition of [n1], w.l.o.g. we can assume that |φ−1(v1)| ≥ 3. Thus φ−1(v1)
contains an edge e′ of KG3(n1, 1), which is a contradiction as we have φ(e′) = {v1} which is not
and edge of KG2(n2, 1).

Therefore, there exists no homomorphism between KG3(n1, 1) and KG2(n2, 1). In particular,
notice that χ(KG3(5, 1)) = χ(KG2(3, 1)) = 3 but KG3(5, 1) 6→ KG2(3, 1).
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Given φ : KGr1(n1, 1) → KGr2(n2, k2), using Lemma 4 one can define a partition n1 = a1 +
· · ·+ar2 of n1 into r2 positive parts, where each part corresponds to the size of the pre-image under
φ of a vertex in φ̂([n1]). We call such partition the type of φ. In fact, notice that by Lemma 4,
as φ is a homomorphism, then all vertices in KGr1(n1, 1) are mapped by φ to one hyperedge
e = {v1, v2, · · · , vr2} in E(KGr2(n2, k2)) and thus, φ̂([n1]) = e. Therefore, the type of φ is the
r2-partition (a1, a2, · · · , ar2) of n1, where ai = |φ−1(vi)| for i = 1, 2, · · · , r2.

Definition 1. An r-partition of n is a vector a = (a1, . . . , ar) of size r with n = a1 + · · ·+ ar and
0 < a1 ≤ a2 ≤ · · · ≤ ar.

As Example 1 shows, not every r2-partition of n1 is the type of a homomorphism fromKGr1(n1, 1)
to KGr2(n2, k2). In Lemma 5, we give a characterization of when a partition is the type of a ho-
momorphism. In Lemma 6, we show that modulo automorphisms of the two hypergraphs, the type
characterizes the homomorphism. Lemmas 5 and 6 completely characterize the set of all homomor-
phisms from KGr1(n1, 1) to KGr2(n2, k2) for any positive integers n1, n2, r1, r2, k2 with n1 ≥ r1,
n2 ≥ r2k2, and r1 > r2.

Lemma 5. Let a be an r2-partition of n1. Then, a is the type of a homomorphism from KGr1(n1, 1)
to KGr2(n2, k2) if and only if a1 + r1 > n1.

Proof. First, assume a is the type of φ : KGr1(n1, 1) → KGr2(n2, k2). Then each ai is the size
of the set φ−1(vi) where vi is a vertex in φ̂([n1]). Let S = [n1] \ φ−1(v1). If |S| ≥ r1, taking
S′ ⊆ S of size r1, we have that S′ is an edge of KGr1(n1, 1), but φ̂(S′) ⊆ φ̂([n1]) \ {v1} which
is not an edge of KGr2(n2, k2). Therefore r1 > |S| = n1 − a1. Now, assume a is such that
a1 + r1 > n1. Let e = {v1, . . . , vr2} be a fixed edge of KGr2(n2, k2). For each i ∈ [n1], define
φ(i) = vj where j ∈ [r2] is the index such that a1 + · · ·+ aj−1 < i ≤ a1 + · · ·+ aj−1 + aj . Clearly,

φ is a map from [n1] to
([n2]
k2

)
such that φ̂([n1]) = e. If φ is not a homomorphism from KGr1(n1, 1)

to KGr2(n2, k2), then there is an edge e1 of KGr1(n1, 1) and j ∈ [r2] such that vj /∈ φ̂(e1). Then

|e1| ≤ |φ̂−1(φ̂(e1))| ≤ n1 − aj ≤ n1 − a1 < r1 which is a contradiction.

Lemma 6. Let n1, n2, r1, r2, k1, k2 be positive integers with k1 = 1, n1 ≥ r1, n2 ≥ r2k2, and r1 > r2.
Let φ1 and φ2 be two homomorphisms from KGr1(n1, k1) → KGr2(n2, k2) with types a1 and a2,
respectively. Then a1 = a2 if and only if there are αi in Aut(KGri(ni, ki)) for i ∈ {1, 2} such that
φ1α1 = α2φ2.

Proof. Let e1 and e2 be the edges ofKGr2(n2, k2) such that φi(e) = ei for any edge e ∈ E(KGr1(n1, 1))
and i ∈ {1, 2}. First, consider that a1 = a2. Now, for v ∈ e1, define α2(v) = u where u ∈ e2 and
|φ−12 (v)| = |φ−11 (u)| in such way that α2(v) 6= α2(v

′) for v, v′ ∈ e1; complete the definition of α2 by
using any injective function from V(KGr2(n2, k2)) \ e1 to V(KGr2(n2, k2)) \ e2. Since a1 = a2, α2

is well defined. Next, define α1 by using, for every v ∈ e1, an injective function from φ−12 (v) and
φ−11 (α2(v)). Notice that φ1α1 = α2φ2.

Conversely, assume that there are αi in Aut(KGri(ni, ki)) for i ∈ {1, 2} such that φ1α1 = α2φ2.
It is clear that α2 restricted to e1 is an injective function with image e2. Notice that every vertex
v ∈ e1 contributes with value |φ−12 (v)| to compose the type a2 and the contribution of α2(v) ∈ e2
to compose a1 is |φ−11 (α2(v))|. Since φ1α1 = α2φ2, it holds |φ−12 (v)| = |φ−11 (α2(v))| and therefore
a1 = a2.

The next result shows necessary and sufficient conditions for determining the existence of a
homomorphism between two hypergraphs KGr1(n1, 1) and KGr2(n2, k2), with r1 6= r2.
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Theorem 2. Let n1, n2, r1, r2, k2 be positive integers with n1 ≥ r1, n2 ≥ r2k2, and r1 > r2. Then
the following are equivalent:

(i) There exists φ : KGr1(n1, 1)→ KGr2(n2, k2)

(ii) There exists an r2-partition a of [n1] such that a1 + r1 > n1

(iii) n1 − bn1
r2
c < r1

(iv) r2 = 1 or n1 ≤ b r2(r1−1)r2−1 c.

Proof. That (i) and (ii) are equivalent follows from Lemma 5. Notice that if (ii) holds, then
a1 ≤ (a1 + · · ·+ar2)/r2 = n1/r2 and thus (iii) follows. Also, if (iii) holds, let s = n1− r2bn1

r2
c. Then

0 ≤ s < r2. Define ai = bn1
r2
c for i = 1, . . . , r2− s and ai = bn1

r2
c+ 1 for i = r2− s+ 1, . . . , r2. Then

a is an r2-partition satisfying (ii).
Now, to show that (iii) and (iv) are equivalent, notice first that the case r2 = 1 is trivial.

Therefore we assume r2 > 1. Let N = b r2(r1−1)r2−1 c. Notice that if n1 ≥ r1 satisfies (iii) (resp. (iv))
and r1 ≤ n′1 ≤ n1, then n′1 also satisfies (iii) (resp. (iv)). Thus to show that (iii) and (iv) are
equivalent it is enough to show that (iii) holds for n1 = N and does not hold for n1 = N + 1. From

the definition of N , we have that N > r2(r1−1)
r2−1 − 1. Thus,

N −
⌊
N

r2

⌋
<

⌊
r2(r1 − 1)

r2 − 1

⌋
−
⌊
r1 − 1

r2 − 1
− 1

r2

⌋
= r1 − 1 +

⌊
r1 − 1

r2 − 1

⌋
−
⌊
r1 − 1

r2 − 1
− 1

r2

⌋
≤ r1

as r2 ≥ 2. Also, N ≤ r2(r1−1)
r2−1 and thus

N + 1−
⌊
N + 1

r2

⌋
≥
⌊
r2(r1 − 1)

r2 − 1

⌋
+ 1−

⌊
r1 − 1

r2 − 1
+

1

r2

⌋
= r1 +

⌊
r1 − 1

r2 − 1

⌋
−
⌊
r1 − 1

r2 − 1
+

1

r2

⌋
. (1)

Using that for any positive real x and positive integer n we have bxcn ≤ bnxc, we obtain that
b r1−1r2−1 + 1

r2
c(r2−1) ≤ br1 − 1+ r2−1

r2
c = r1−1. Thus, b r1−1r2−1 + 1

r2
c ≤ r1−1

r2−1 which implies b r1−1r2−1 + 1
r2
c ≤

b r1−1r2−1c. Using (1) we obtain N + 1− bN+1
r2
c ≥ r1.

4 Results for the general case

Using the results from Section 3, we derive bounds for general values of k1. The main idea is
to construct a copy of KGr1(bn1

k1
c, 1) in KGr1(n1, k1) (see Theorem 3). Thus the existence of a

homomorphism from KGr1(n1, k1) to KGr2(n2, k2) implies the existence of a homomorphism from
KGr1(bn1

k1
c, 1) to KGr2(n2, k2), which implies bounds on bn1

k1
c (see Corollary 1). On the other

hand, homomorphisms from KGr1(n1, k1) to KGr1(n1 − 2k1 + 2, 1) are also shown to exist (see
Theorem 3), which imply the existence of homomorphisms from KGr1(n1, k1) to KGr2(n2, k2) when
homomorphisms from KGr1(n1 − 2k1 + 2, 1) to KGr2(n2, k2) do exist (see Corollary 1).

Theorem 3. Let r, n, k be positive integers such that n ≥ rk.

(i) There exists a homomorphism KGr(m, 1)→ KGr(n, k) if and only if m ≤ bnk c.

(ii) There exists a homomorphism KGr(n, k)→ KGr(m, 1) if and only if m ≥ n− 2k + 2.
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Proof. We apply Theorem 1 and obtain that we can assume r = 2. Notice that KG2(m, 1) = Km

the complete graph with vertex set [m]. To prove (i), notice that ϑ(i) = {(i−1)k+1, . . . , ik} defines
a homomorphism ϑ : Km → KG2(n, k) when m ≤ bnk c. On the other hand, if ϑ : Km → KG2(n, k)
is a homomorphism, then {ϑ(i) : i ∈ [m]} is a set of m pairwise disjoint subsets of [n] of size k.
Thus mk ≤ n. To prove (ii), notice that any homomorphism from KG2(n, k) to Km is a m-coloring
of KG2(n, k) and thus the result follows from Lovász [4] result χ(KG2(n, k)) = n− 2k + 2.

Now we use Theorem 3 and Theorem 2 to obtain necessary conditions for the existence of a
homomorphism from KGr1(n1, k1) to KGr2(n2, k2).

Corollary 1. Let r1, r2, n1, n2, k1, k2 be positive integers, with ni ≥ riki, for i = 1, 2, and with
r1 > r2 ≥ 2.

(i) If there is a homomorphism from KGr1(n1, k1) to KGr2(n2, k2), then bn1
k1
c ≤ b r2(r1−1)r2−1 c. In

particular n1 <
r1r2−1
r2−1 k1.

(ii) If n1−2k1+2 ≤ r2(r1−1)
r2−1 , then there exists a homomorphism from KGr1(n1, k1) to KGr2(n2, k2).

Proof. First, notice that (ii) follows from Theorem 3(ii) and Theorem 2. Now, we prove (i). Assume
there is a homomorphism KGr1(n1, k1) → KGr2(n2, k2). Using Theorem 3, we have that there is
a homomorphism from KGr1(bn1

k1
c, 1) to KGr1(n1, k1). Therefore, by homomorphism composition,

there is a homomorphism from KGr1(bn1
k1
c, 1) to KGr2(n2, k2). Thus from Theorem 2 it follows

that bn1
k1
c ≤ b r2(r1−1)r2−1 c. Notice that this implies n1

k1
< r2(r1−1)

r2−1 + 1 = r2r1−1
r2−1 .

Remark 2. Notice that part (ii) of Corollary 1 gives sufficient conditions to the existence of
special homomorphism between hypergraphs KGr1(n1, k1) and KGr2(n2, k2): the ones that map
every hyperedge in KGr1(n1, k1) to a single hyperedge in KGr2(n2, k2). Thus the conditions in
the corollary are tight for k1 = 1. For k1 > 1 Corollary 1 does not give a definite answer for
r2(r1−1)
r2−1 + 2k − 2 ≤ n1 ≤ r2(r1−1)

r2−1 k + k

We end this section with the following example:

Example 2. Let n1 = 8, k1 = 2, r1 = 4, and n2 = 7, k2 = 3, r2 = 2. As n1−2k1+2 = 6 = r2(r1−1)
r2−1

then, by Corollary 1(ii), we know that there exists a homomorphism from KG4(8, 2) to KG2(7, 3).
In fact, by Theorem 3(ii), there exists a homomorphism θ : KG4(8, 2) → KG4(6, 1). It can be
defined as follows: θ−1(i) = {{i, j} : i < j ≤ 8} for 1 ≤ i ≤ 5, and θ−1(6) = {{6, 7}, {6, 8}, {7, 8}}.
Now, let n1 = 6, k1 = 1, r1 = 4, and n2 = 7, k2 = 3, r2 = 2. By Theorem 2 ((iii) =⇒ (i)), there
exists a homomorphism π from KG4(6, 1) to KG2(7, 3). Let e = {{1, 2, 3}, {4, 5, 6}} be a hyperedge
of KG2(7, 3). Now, define π as follows: π−1({1, 2, 3}) = {1, 2, 3} and π−1({4, 5, 6}) = {4, 5, 6}.
Notice that π̂([6]) = e. Finally, the desired homomorphism φ from KG4(8, 2) to KG2(7, 3) can be
defined by φ = π ◦ θ. Moreover, as there exists a homomorphism KG4(8, 2) → KG2(7, 3), then

b82c = 4 ≤ b2(4−1)2−1 c = 6 as stated in Corollary 1(i).

5 Relation to colorings

Some questions about colorings of hypergraphs can be reformulated as questions about hypergraph
homomorphisms. Thus our results allow to characterize when certain types of colorings exist or
not.

6



A rainbow t-coloring of a hypergraph G is a vertex coloring of G with t colors in which every
hyperedge contains a vertex of each of the t colors. Notice that rainbow 2-coloring is the same as
normal 2-coloring, and the existence of a rainbow t-coloring for t = 2 implies that the hypergraph
is 2-colorable. Rainbow t-coloring is also known as polychromatic coloring where the basic question
is: given a certain family of hypergraphs (often interpreted as set systems representing geometric
objets), what is the smallest t that guarantees the existence of a rainbow t-coloring. We refer to
the work of Bollobás et al. [2].

Notice that, for r ≥ 2, the r-uniform Kneser hypergraph KGr(r, 1) is just a hyperedge with
r vertices. Therefore, it is not difficult to see that a hypergraph G has a rainbow coloring with t
colors if and only if there exists a homomorphism from G to KGt(t, 1). This notion leads us to
characterize when an r-uniform Kneser hypergraph KGr(n, k) admits a rainbow t-coloring by using
our results concerning the existence (or not) of a homomorphism from KGr(n, k) to KGt(t, 1).

On the other hand one can also be interested in colorings using exactly two colors per edge.
A coloring with t colors using exactly two colors per edge is equivalent to a homomorphism to
the complete graph Kt. Notice that Kt = KG2(t, 1) and thus our results allow to characterize
when the hypergraph KGr(n, 1) admits such coloring, that is when n < 2(r − 1), that is exactly
when the graph is two colorable. In other words, any coloring of KGr(n, 1) with more than 2
colors necessarily colors one of the edges of KGr(n, 1) with 3 or more colors. Similar results can
be obtained for other uniform Kneser hypergraphs.
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