
A distributed approximation algorithm for the minimum

degree minimum weight spanning trees

Christian Lavault† Mario Valencia-Pabon†∗

† LIPN, CNRS UMR 7030 – {lavault,valencia}@lipn.univ-paris13.fr

Abstract

Fischer proposes in [4] a sequential algorithm to compute a minimum weight
spanning tree of maximum degree at most b∆∗ + ⌈logb n⌉ in time O

(

n4+1/ln b
)

for any constant b > 1, where ∆∗ is the maximum degree value of an optimal
solution and n is the number of nodes in the network. In the present paper, we
propose a distributed version of Fischer’s sequential algorithm with time complexity
O

(

∆n2+1/ln b
)

, requiring O
(

n3+1/ln b
)

messages and O(n) space per node, where
∆ is the maximum degree of the initial minimum weight spanning tree.

Keywords: distributed algorithms, approximation algorithms, minimum degree min-
imum weight spanning trees.

1 Introduction

Many computer communications networks require nodes to broadcast information to
other nodes for network monitoring and control purposes; this is done efficiently by send-
ing messages over a spanning tree of the network. Distributed minimum weight spanning
tree algorithms are useful in communication networks when one wishes to broadcast in-
formation from one node to all other nodes, with one cost assigned to each channel of
the network. If the degree of a node is large in such a minimum weight spanning tree
(or MWST, defined in Section 2), it might cause an undesirable communication load at
that node. In fact, there are instances, like the distribution of mail and news on the
Internet, in which the broadcast needs not be executed on a priority basis. One of the
parameters that different sites may want to reduce is the amount of work done by their
site. Broadcasting information on a minimum degree minimum weight spanning tree (or
MDMWST) is one such solution (more applications of the MDMWST problem can be
found in [5]). Therefore, the construction of minimum weight spanning trees in which
the degree of a node is the lowest possible is needed. While it is easy enough to optimize
the weight of a spanning tree, it is often more difficult to satisfy constraints which also

∗Corresponding Author. LIPN, CNRS UMR 7030, Université Paris-Nord, Avenue J.-B. Clément,

93430 Villetaneuse, France. Email: valencia@lipn.univ-paris13.fr

1

involve the degrees of the nodes. The problem of minimizing the maximum degree of
a spanning tree is known to be NP-hard, as the Hamiltonian path problem is merely
a special case of this problem [7]. In this paper, we consider the problem of finding a
distributed approximation algorithm for finding a MWST whose maximum degree is as
low as possible.

Let ∆∗ be an optimal solution of the maximum degree value of any MWST for a given
weighted graph. When edge weights are not considered, or assumed uniform, a ∆∗ + 1
sequential approximation algorithm for minimizing the maximum degree of spanning
trees has been obtained by Fürer and Raghavachari [5]. A distributed version of the
sequential algorithm of Fürer and Raghavachari which maintains the same performance
approximation guarantee is proposed by Blin and Butelle [2]. For the weighted case,
Fischer [4] gives a sequential approximation algorithm that computes a minimum weight
spanning tree of maximum degree at most b∆∗ + ⌈logb n⌉ in time O

(

n4+1/ln b
)

for any
constant b > 1, which is the best-known sequential approximation algorithm for this
problem up to now. His algorithm is an adaptation of a local search algorithm of Fürer
and Raghavachari [5] to the weighted case. Recently, Neumann and Laumanns in [8]
extend Fischer’s sequential algorithm to spanning forests. Moreover, Chaudhuri, Rao,
Riesenfeld and Talwar present in [3] a quasi-polynomial-time sequential algorithm to find

a minimum cost tree of maximum degree at most ∆∗ +O
(

log n
log log n

)

and they conjecture

that it is possible to obtain a polynomial-time sequential algorithm to find a minimum
cost tree of maximum degree at most ∆∗ + 1.

In the paper, we propose a distributed version of Fischer’s approximation algorithm
that computes a MWST of maximum degree at most b∆∗ + ⌈logb n⌉, for any constant
b > 1, where n is the number of nodes of the network. Our distributed algorithm requires
O

(

n3+1/ln b
)

messages, O
(

∆n2+1/ln b
)

(virtual) time, where ∆ is the maximum degree
of the initial minimum weight spanning tree and only O(n) space per node. From the
complexity analysis of our distributed algorithm (see the proof of Lemma 2), one can
derive that Fischer’s sequential algorithm can actually be performed in O

(

n3+1/ln b
)

time,
which improves on the upper bound on the time complexity given in Fischer’s paper [4]
(see Corollary 1).
To our knowledge, this is the first distributed approximation algorithm for the minimum
degree minimum weight spanning tree problem.

The paper is organized as follows. In Section 2, we introduce the model of com-
putation and we present Fischer’s sequential algorithm to compute a minimum degree
minimum weight spanning tree. In Section 3 we describe our distributed algorithm and
in Section 4 we prove its correctness and complexity. Finally, Section 5 provides some
concluding remarks.

2 Preliminaries

We consider the standard model of asynchronous static distributed system. The point-to-
point communication network is associated a weighted undirected graph G = (V,E,w).

2

The set of nodes V represents the processors of the network, the set of edges E repre-
sents bidirectional non-interfering communication channels operating between neighbor-
ing nodes, and w is a real-valued function defined on E, which represents a cost assigned
to each channel of the network. No common memory is shared by the nodes (processes).
In such networks, any process can generate one single message at a time and can send
it to all its neighbors in one time step. Every process owns one distinct identity from
{1, . . . , n}. However, though each node only knows its own incident edges, no node has a
global knowledge of the network topology (e.g., no node is aware of its neighbors’ iden-
tities). The distributed algorithm is event-driven and does not use time-outs, i.e. nodes
can not access a global clock in order to decide what to do. Moreover, each node runs the
algorithm, determining its response according to every type of message received. Namely,
the algorithm specifies for any one node which computation is to be performed and/or
which message be sent. The algorithm is started independently by all nodes, perhaps at
different times. When the algorithm starts, each node is unaware of the global network
topology but (locally) of its own edges. Upon termination, every node knows its neigh-
bors’ identities within an approximated minimum degree minimum weight spanning tree.
The efficiency of a distributed algorithm is evaluated in terms of message, time and space
complexity as follows (see [9]). The message complexity of a distributed algorithm is the
total number of messages sent over the edges (and received). We also assume that each
message contains O(log n + R) bits, where n = |V | and R is the number of bits required
to represent any real edge weight. In practical applications, messages of such a kind are
considered of "constant" size. The time complexity is the total (normalized) time elapsed
from a change. The space complexity is the space usage per node.

Let G = (V,E,w) be a real-weighted graph modeling the communication network. A
spanning tree T = (VT , ET) of G is a tree such that VT = V and ET ⊆ E. The weight
of a spanning tree T of G equals the sum of the weights of the |V | − 1 edges contained
in T , and T is called a minimum weight spanning tree (MWST) if no tree has a smaller
(minimum) weight that T . Our goal is to find a distributed polynomial algorithm to
compute a MWST such that its maximum degree is as low as possible.
Let NG(u) and NT (u) denote the set of neighbors of node u in G and in T , respectively.
In order to simplify the notation, we also denote xy ∈ G any edge xy ∈ E(G) and v ∈ G
any node v ∈ V (G), respectively.
Let T be a tree on n nodes. The rank of T is defined as the ordered n-tuple (tn, . . . , t1)
where ti denotes the number of nodes of degree i in T . Also define a lexicographical order
on these ranks; a tree T ′ on n nodes is of lower rank that T iff t′j < tj for some j and
t′i = ti for i = j +1, . . . , n. Clearly, when an edge is added to a spanning tree, it creates a
cycle. Conversely, removing any edge from the induced cycle results again in a spanning
tree. A swap is defined to be any such exchange of two edges; a swap is said cost-neutral
if the edges exchanged have equal weights. Consider a swap between the edges xw ∈ T
and uv 6∈ T , with x 6∈ {u, v}. The swap may increase by one the degree of both u and v
in T , but it also reduces the degree of x. So, the rank of T is decreasing if the degree of
x in T is at least the maximal degree of u and v plus 2. A locally optimal minimum
weight spanning tree is a MWST in which no cost-neutral swap can decrease the rank of

3

the tree.

Theorem 1 (Fischer [4]) If T is a locally optimal MWST, and ∆T is the maximum
degree in T , then ∆T ≤ b∆∗ + ⌈logb n⌉ for any constant b > 1, where ∆∗ is the maximum
degree of an optimal solution.

To construct a locally optimal spanning tree, it is sufficient to consider those nodes with
degree at least equal to ∆T − ⌈logb n⌉ among high-degree nodes, as can be deduced
from the proof of Theorem 1 in Fischer’s paper [4] (see the Appendix). Fischer’s se-
quential algorithm to compute a locally optimal spanning tree can be described as follows.

Fischer’s algorithm:

0. Start with any MWST T . Let b > 1 be the desired approximation parameter. Let
l < n be the number of distinct edge weights, w1, . . . , wl, in T .

1. Let ∆T be the current maximum degree in T .

2. For every node v ∈ G, check for appropriate improvements. Conduct a depth first
traversal of T starting from v.

2.1. Let w be the current vertex on the traversal of T , and P be the vw-path in
T .

2.2. Assign variables M1, . . . ,Ml such that Mi denotes the maximum degree of
those nodes adjacent to edges of weight wi in P .

2.3. If there is an edge vw ∈ G, let wi be its weight. If Mi is at least two greater
that the degree of v and w in T , and Mi ≥ ∆T −⌈logb n⌉, the edge vw can be
used to reduce the high-degree rank of T . Conduct the appropriate swap on
T , and repeat to Step (1) for the next round.

2.4. If no appropriate cost-neutral swap was found in any of the traversals, termi-
nate.

Fischer proves in [4] that each iteration of his previous sequential algorithm takes O
(

n2
)

time and that the number of iterations can be bounded by O
(

n2+1/ln b
)

(see the Ap-
pendix). Therefore, Fischer’s sequential algorithm computes a locally optimal minimum
weight spanning tree in time O(n4+1/ln b).

3 Description of the algorithm

In Section 3.1, a high-level description of our distributed algorithm is given, and in
Section 3.2, we detail the description of the algorithm. Every process is running the
following procedure, which consists of a list of the responses to each type of messages
generated. Each node is assumed to queue the incoming messages and to reply them in
First-Come, First-Served order (FIFO). Any reply sent is completed before the next is
started and all incoming messages are also delivered to each node via an initially empty
FIFO queue.

4

3.1 High-Level Description

Let G be a connected graph modeling an interconnection network. We now describe the
general method used to construct a locally optimal minimum weight spanning tree T of
G. First, we assume that some current minimum weight spanning tree T of G is already
constructed. (Recall that MWST distributed algorithms are Θ(|E| + n log n) message
optimal, see e.g. [1, 6, 9], while the best time complexity achieved is O(n) in [1].) Next,
for each edge pr in T , let Tr (resp. Tp) be the subtree of T \ pr containing the node r
(resp. p) (see Fig. 1). The algorithm is divided into rounds, and each round is consisting
of the following four phases.

pr

x

y

T

Tr Tp

Figure 1: Example of a cost-neutral swap between edges pr ∈ T and xy 6∈ T .

• Initialization phase. Let ∆T be the maximum degree of the current MWST T . First,
each node of T must know ∆T . This can be done by starting an election on T , where
all nodes broadcast their degree in T . Before checking an edge to find an appropriate
cost-neutral swap (see Fig. 1), we need to do the following. For each edge pr in T and
for each node x in T , we determine, which of the nodes p or r is closer to x (in terms
of distance in T). For the purpose, the node p initiates a broadcast by forwarding the
token 〈pr〉 to all nodes in Tp. When a node x ∈ Tp receives the token 〈pr〉, x knows that
for any appropriate swap involving the edge pr, it needs to find a neighbor y in G such
that y ∈ Tr and xy 6∈ T . Similarly, node r initiates a broadcast by forwarding the token
〈rp〉 to all nodes in Tr.

• Search-edge phase. Whenever an edge pr in the current MWST T ends the Initial-
ization phase (i.e., all nodes in Tp have received the token 〈pr〉 and all nodes in Tr have
received the token 〈rp〉), it begins searching for an edge xy 6∈ T to perform an appropri-
ate swap. Thus, node p starts a search for a node x ∈ Tp with a neighbor y ∈ Tr (i.e.,
xy 6∈ T), for which w(pr) = w(xy) and such that the maximal value of the degrees of p
and r in T is at least greater than the degree of x and y plus 2. If such a node x is found,

5

it sends a message to p (via edges in Tp) to announce success. If there is no node in Tp

meeting the previous conditions then p is informed that edge pr can not be used to an
appropriate swap on T . Similarly, node r starts such a search in Tr. If no appropriate
cost-neutral swap is found in this phase, the algorithm terminates.

• Edge-election phase. If a node p enters this phase then, there exists a pair of edges
pr ∈ T and xy 6∈ T which can execute an appropriate swap on T . However, it is
possible that others nodes in T , distinct from p, have also reached this phase. So, all
nodes reaching this phase (i.e. the possible candidates) start an election procedure by
forwarding their identities on T . From all the possible candidates, the elected node is
the one with the minimal identity.

• Edge-exchange phase. If node p wins the Edge-election phase, then there exists
again at least one pair of edges pr ∈ T and xy 6∈ T that can be used to complete the
appropriate swap on T (reducing the high-degree rank of T). Thus, p informs r that
they are not connected in T anymore and starts a search in Tp for the node x (assuming
x ∈ Tp). When x is found, it informs y that they are now connected within T . Finally,
x sends a message to all other nodes in the current tree to inform that a new round can
initiate.

3.2 Detailed description

The algorithm is described for a node p in the network. We begin by describing the
variables maintained by p.

Local variables of p: (T denotes the current minimum weight spanning tree.)

• Neighp[r] : {branch, unbranch}. Node p maintains the variable for each r ∈ NG(p).
An edge pr belongs to T if, and only if, Neighp[r] = branch.

• dT
p ,∆T , dp[r] : integer; wp[r] : real. The variables dT

p and ∆T denote the degree of p
in T and the maximal degree of T , respectively. For each r ∈ NG(p), the variables
dp[r] and wp[r] denote the degree of the neighbor r of p in T and the weight of the
edge pr in G, respectively.

• Fatherp[r] : integer. For each node r ∈ T , the variable Fatherp[r] denotes the
neighbor of p in T closer to node r. Default value: Fatherp[r] = p, for each node
r ∈ T .

• Sidep[uv] : integer. For each edge uv ∈ T , the variable Sidep[uv] denotes the node
r ∈ {u, v} closer to p in T . Default value: Sidep[uv] = udef, for each edge uv ∈ T .

• CountSidep[uv],CountFailp[uv] : integer. For each edge uv ∈ T , the variable
CountSidep[uv] maintains the number of neighbors of p which already instanced
the variable Sidep[uv]. Moreover, the variable CountFailp[uv] counts the number of
neighbors of p which find no edge to replace uv. Default values: CountSidep[uv] =
CountFailp[uv] = 0, for each edge uv ∈ T .

6

• EndInitp[r] : {0, 1, 2}. For each r ∈ NT (p), the variable maintains the state of the
Initialization phase of the edge pr ∈ T . Default value: EndInitp[r] = 0, for each
r ∈ NT (p).

• EdgeFindp[uv] : {0, 1}. For each edge uv ∈ T , the boolean variable is used to
check whether an edge xy 6∈ T is found in G which replaces uv. Default value:
EdgeFindp[uv] = 0, for each edge uv ∈ T .

• NeighFailp,#Failsp : integer. The variable NeighFailp maintains the number of
neighbors of p in T s.t. the associated edge in T is useless to any edge-exchange in
a current round. If NeighFailp = |NT (p)|, it means that no edge incident to p can
be used in view of an exchange in a current round. The variable #Failsp maintains
the number of nodes in T for which there is no edge incident to the ones that can
be used in an exchange. If in a round, #Failsp = |T |, it means that the algorithm
is terminated. Default values: NeighFailp = #Failsp = 0.

• Modep : {election, non-election}. If during a Search-edge phase a subset of edges
in T finds an edge appropriate to an exchange, all corresponding edges-incident
nodes begin an election to decide on the edge to be exchanged. If p knows that an
Election phase is running, Modep = election. Default value: Modep = non-election.

• Statep : {winner, loser, udef}. The variable maintains the state of p during an
Edge-election phase (winner or loser). If Statep = udef, it means that p does not
know if an Edge-election phase is taking place in a current round. Default value:
Statep = udef.

• CountLoserp : integer. During an Edge-election phase, the variable maintains the
number of nodes that lost the election w.r.t. node p. Clearly, if CountLoserp =
|T |−1, node p wins the election, i.e. an edge incident to p becomes elected. Default
value: CountLoserp = 0.

• NodeElecp : integer. The variable maintains the identity of the winner node during
an Edge-election phase. Default value: NodeElecp = udef.

• EdgeElecp : List of 5 integers. The variable maintains the pair of elected edges (if
any) in view of an appropriate swap in a current round. If EdgeElecp = (d, p, r, x, y),
then a pair of edges pr and xy is found in G, s.t. pr ∈ T , xy 6∈ T , Sidex[pr] = p,

Sidey[pr] = r, wx[y] = wp[r], and where d
def
= max{dT

p , dp[r]}. Default value:
EdgeElecp = udef.

Now, each node p executes the following steps.

Initial assumptions: Assume that the algorithm starts with any MWST T of G
already given. We need the algorithm constructing T to be “process terminating” (i.e.
every node knows that the MWST algorithm is terminated and distributed termination
detection is available). So, we can assume that p knows its degree dT

p in T , and for each

7

r ∈ NG(p), the variables Neighp[r], dp[r] and wp[r] are correctly computed. Let b > 1
be the desired approximation parameter.

Initialization phase:

1. In order to determine the maximum degree ∆T in the current tree T , p initiates
an election (all nodes in T are candidates) by sending the token 〈dT

p , p〉 to all its

neighbors in T . Node p wins the election if the token 〈dT
p , p〉 is maximal w.r.t. the

lexicographic order. Since all vertices are candidates in the election, we also use
this step to initialize the remaining local variables of p with their default values
(see the definition of local variables of p above).

2. For each edge uv ∈ T and for each node r ∈ T , we need to compute the values of
variables Sidep[uv] and Fatherp[r]. This is done as follows.

2.1. For each z ∈ NT (p) do

• Sidep[pz] ← p;

• send 〈side, p, z, p〉 to each node r ∈ NT (p) s.t. r 6= z;

2.2. Upon receipt of 〈side, u, v, q〉

• Sidep[uv] ← u;

• Fatherp[u] ← q;

• If p is not a leaf then send 〈side, u, v, p〉 to each node r ∈ NT (p) s.t.
r 6= q;

• If p is a leaf then send 〈end-side, u, v〉 to node Fatherp[u];

2.3. Upon receipt of 〈end-side, u, v〉

• CountSidep[uv] ← CountSidep[uv] + 1;

• If p 6= u and CountSidep[uv] = |NT (p)| − 1 then send 〈end-side, u, v〉
to node Fatherp[u];

• If p = u and CountSidep[uv] = |NT (p)| − 1 then send 〈check-side, u〉
to node v;
EndInitp[v] ← EndInitp[v] + 1;
If EndInitp[v] = 2 then edge pv ∈ T finishes the Initialization phase and
can go to Step 3.

2.4. Upon receipt of 〈check-side, q〉

• EndInitp[q] ← EndInitp[q] + 1;

• If EndInitp[q] = 2 then edge pq ∈ T finishes the Initialization phase and
can go to Step 3.

It is well known that a distributed election procedure on a tree on n nodes requires
O(n) messages and time. So, Step 1. of the Initialization phase is performed in O(n)
time and uses O(n) messages. During Step 2.1. of the previous phase, for each node

8

p and each neighbor node z of p, the node p sends a message 〈side, p, z, p〉 to each
one of its neighboring nodes r 6= z in order to inform that the side of node r w.r.t.
the edge pz is p. Moreover, the last parameter p serves node r to know from which
node it received such a message. Notice that each edge e ∈ T is traversed by n − 2
messages of type side coming from all edges of T but e. So, the number of messages
of type side in T is (n − 1)(n − 2). If a leaf p receives a message 〈side, u, v, q〉 from
node q, it sends a message 〈end-side, u, v〉 to q in order to inform node u that he has
instanced the variable Sidep[uv]. The number of messages of type end-side is also
(n − 1)(n − 2). Moreover, if a node p receives a message 〈end-side, p, v〉 and any node
k in the subtrees rooted at each of its neighbors but v have instanced their variable
Sidek[pv] (i.e. CountSidep[pv] = |NT (p)| − 1), it sends a message 〈check-side, p〉 to
node v in order to inform node v that he has terminated the Initialization phase w.r.t.
the edge pv and waits for node v to terminate such a phase as well, before edge pv
begins the Search-edge phase. So, the number of messages in the Initialization phase
is O

(

n2
)

and it is easily deduced that the time complexity is O(∆D), where ∆ is the
maximum degree of the current tree and D is its diameter, respectively.

Search-edge phase:

3. If there is some neighbor q of p in T for which EndInitp[q] = 2, it means that the
edge pq ∈ T is ready to initiate a search for some possible unused edge xy of G in
view of an appropriate exchange. For our purpose, the edge pq ∈ T must meet the
condition max{dT

p , dp[q]} ≥ ∆T − ⌈logb n⌉. Otherwise, pq can not be considered in
this phase. This is done as follows.
Before node p begins this phase, it waits that for all node q in NT (p) the condition
EndInitp[q] = 2 holds. Let Wp be a subset of NT (p) s.t. for all q ∈ Wp we have
that max{dT

p , dp[q]} ≥ ∆T − ⌈logb n⌉.

3.1. If Wp 6= ∅ then
For each node q ∈Wp do
send 〈change, p, q, µpq, wp[q]〉 to each node r ∈ NT (p), with r 6= q, and

where µpq
def
= max{dT

p , dp[q]};
else

#Failsp ← #Failsp + 1;
send 〈end, p, p〉 to each node r ∈ NT (p).

3.2. Upon receipt of 〈change, u, v, µuv , wu[v]〉

• If ∃r ∈ NG(p) s.t. Neighp[r] = unbranch,Sider[uv] = v,wp[r] =

wu[v], and µuv ≥ max{dT
p , dp[r]} + 2 then send 〈find, u, v, p, r〉 to node

Fatherp[u];
else

If p is a leaf then send 〈fail, u, v〉 to node Fatherp[u];
If p is not a leaf then send 〈change, u, v, µuv , wu[v]〉 to each node
r ∈ NT (p) s.t. r 6= Fatherp[u];

9

3.3. Upon receipt of 〈find, u, v, q, r〉

• EdgeFindp[uv] ← 1;

• If p 6= u then send 〈find, u, v, q, r〉 to node Fatherp[u];

• If p = u then p is ready to begin the Edge-election phase and can go to
Step 4.

3.4. Upon receipt of 〈fail, u, v〉

• CountFailp[uv] ← CountFailp[uv] + 1;

• If EdgeFindp[uv] 6= 1 then
If p 6= u and CountFailp[uv] = |NT (p)| − 1 then send 〈fail, u, v〉 to node
Fatherp[u];
If p = u and CountFailp[uv] = |NT (p)| − 1 then

NeighFailp ← NeighFailp + 1;

If NeighFailp = |Wp| then #Failsp ←#Failsp+1 and send 〈end, p, p〉
to each node r ∈ NT (p) in order to check whether the algorithm is
terminated;

3.5. Upon receipt of 〈end, r, q〉

• If #Failsp < |T | then #Failsp ← #Failsp + 1;

• send 〈end, r, p〉 to each node z 6= q in NT (p);

• If #Failsp = |T | then the algorithm terminates for p;

Let k ≤ n − 1 be the number of edges pq in T such that the sets Wp and Wq

(defined in Step 3) are not empty during the Search-edge phase. As in the analysis of
the Initialization phase, it is easy to conclude that the number of messages 〈change〉 in
T is at most k(n − 2) and so, the number of such messages is at most (n − 1)(n − 2).
If a node p receives a message 〈change, u, v, d, w〉 and finds an edge pr in G but
not in T for an appropriate improvement, it sends a message 〈find, u, v, p, r〉 to node
Fatherp[u] to inform node u (i.e. edge uv) of success. The number of messages 〈find〉
is also at most (n − 1)(n − 2). If a node p 6= u receives a message 〈fail, u, v〉 from
any node k of the subtrees rooted at each of its neighbors but node Fatherp[uv] (i.e.
CountFailp[uv] = |NT (p)| − 1), it informs node Fatherp[uv] of an impossibility to find an
edge for an appropriate improvement with edge uv. On the other hand, if p = u and
CountFailp[uv] = |NT (p)|−1 during the reception of a 〈fail, u, v〉 message, it means that
the edge pv, with v ∈ Wp, is unable to realize an appropriate edge-swap, and thus the
variable NeighFailp[uv] is incremented by one unity. Now, if all the edges pq for all nodes
q ∈ Wp are unable to realize an appropriate edge-swap in T (i.e. NeighFailp = |Wp|),
then the variable #Failsp is incremented by one unity and p broadcasts a message
〈end, p, p〉 to all other nodes in the tree, in order to check whether the algorithm is
terminated (the second parameter p in the message is to inform that the message comes
from p).
Notice that in the case when p has an empty set Wp, the node p increments its variable
#Failsp by one and also broadcasts the message 〈end, p, p〉 to all other nodes in the

10

tree (see Step 3.1). Since the number of messages 〈fail〉 and 〈end〉 can be bounded by
O

(

n2
)

, the total number of messages in such a phase is bounded by O
(

n2
)

. The time
required in such a phase is also bounded, as in the previous phase, by O(∆D), where ∆
is the maximum degree of the current tree and D is its diameter, respectively.

Edge-election phase:

4. This phase begins when p receives a message 〈find, p, r, x, y〉, which means that the
edge pr ∈ T can be changed for an unused edge xy ∈ G. However, it is possible that
other nodes in T , distinct from p, also reached this phase. So, all nodes reaching
this phase (i.e. the possible candidates) start an election procedure by forwarding
their identities on T . From all possible candidates, the elected node is the one with
the minimal identity. Note that from this step till the end of the current round,
any message of type 〈side〉, 〈end-side〉, 〈check-side〉, 〈change〉, 〈find〉, 〈fail〉

and 〈end〉 received by p is ignored. Now, let µpr
def
= max

{

dT
p , dp[r]

}

.

4.1. If Modep = non-election then

• EdgeElecp ← (µpr, p, r, x, y); NodeElecp ← p; Modep ← election;

• Send 〈elec, p, p〉 to each node q ∈ NT (p);

else /* Modep = election */

• If NodeElecp = p and Statep = udef then let (d, p, z, a, b) = EdgeElecp;
If µpr > d then EdgeElecp ← (µpr, p, r, x, y);

4.2. Upon receipt of 〈elec, q, z〉

• If Modep = non-election then
NodeElecp ← q; Modep ← election; Statep ← loser;
Send 〈lost, p, p〉 to each node r ∈ NT (p);
If p is not a leaf then send 〈elec, q, p〉 to each node r ∈ NT (p) s.t r 6= z;
else /* Modep = election */
If q < NodeElecp then

If Statep 6= loser and NodeElecp = p then
Statep ← loser;
send 〈lost, p, p〉 to each node r ∈ NT (p);

If p is not a leaf then send 〈elec, q, p〉 to each node r ∈ NT (p) s.t.
r 6= z;

NodeElecp ← q;

4.3. Upon receipt of 〈lost, q, t〉

• If Modep = election and Statep = udef then
If p 6= q then CountLoserp ← CountLoserp + 1.
Moreover, if CountLoserp = |T | − 1 then Statep ← winner;
go to Step 5.
If p = q then Statep ← loser;

11

• If Statep 6= winner and p is not a leaf then send 〈lost, q, p〉 to each node
r ∈ NT (p) s.t. r 6= t.

The previous Edge-election phase is a classical distributed election in a tree of n nodes
and requires O(n) messages and time.

Edge-exchange phase:

5. When node p wins the Edge-election phase, i.e. Statep = winner, with EdgeElecp =
(µpr, p, r, x, y), the edge pr ∈ T is ready to be changed for the unused edge xy ∈ G.
Note that from this step till the end of the current round, any message received by
p which is distinct from types 〈disconnect〉, 〈connect〉, 〈new〉, and 〈nround〉 is
ignored. So, during this phase the following is done.

5.1. • Send 〈disconnect, r, p〉 to node r;
• Neighp[r] ← unbranch; dp[r] ← dp[r]− 1; dT

p ← dT
p − 1;

• Send 〈connect, p, r, x, y〉 to each node t ∈ NT (p) : t 6= r;

5.2. Upon receipt of 〈disconnect, p, q〉
• Neighp[q] ← unbranch; dp[q] ← dp[q]− 1; dT

p ← dT
p − 1;

5.3. Upon receipt of 〈connect, u, v, x, y〉

• If p 6= x and p is not a leaf then send 〈connect, u, v, x, y〉 to each node
t ∈ NT (p) : t 6= Fatherp[u];

• If p = x then
send 〈new, y, p, u, v〉 to node y (via the unused edge py ∈ G);
Neighp[y] ← branch; dp[y] ← dp[y] + 1; dT

p ← dT
p + 1;

5.4. Upon receipt of 〈new, p, q, u, v〉
• Neighp[q] ← branch; dp[q] ← dp[q] + 1; dT

p ← dT
p + 1;

• Actualize the data structure of T , i.e. T ← (T \ {uv}) ∪ {pq};
• send 〈nround, p, p, q, u, v〉 to each node t ∈ NT (p);

5.5. Upon receipt of 〈nround, z, u, v, x, y〉
• Actualize the data structure of T , i.e. T ← (T \ {uv}) ∪ {xy};
• If p is not a leaf then send 〈nround, p, u, v, x, y〉 to each node w ∈ NT (p)
s.t. w 6= z;
• Go to Step 1. /* This round is ended and p executes a new round */

During this last phase, the elected node p begins the search for the node x ∈ Tp in order
to realize the appropriate edge-swap between the edges pr and xy. So, p broadcasts the
message 〈connect, p, r, x, y〉 to the nodes in the subtree Tp w.r.t. the edge pr. When
node x is found, it sends a message 〈new, y, x, u, v〉 to node y in order to inform that,
from now on, the edge xy belongs to the current tree T . When node y receives a message
〈new, y, x, u, v〉 from node x, it actualizes the data structure of the new current tree in
its local memory: the edge uv is deleted and the edge xy is added.
For example, if the tree is represented by an adjacent list, then O(n) local space and time

12

are required to actualize the new current tree. Moreover, node y broadcasts the message
〈nround, y, y, x, u, v〉 to all its neighbors in the tree, where the first parameter denotes
the sender of the message, and the remaining four parameters are used to actualize the
data structure representing the current tree. Since only the nodes p and y broadcast an
information to all other nodes in the tree, such a phase takes O(n) messages and time.

4 Correctness and Complexity

Theorem 2 The distributed algorithm described in Section 3 for computing a locally
optimal minimum weight spanning tree is correct.

Proof: Let T be the MWST computed in a current round of the algorithm. If any
node p of T meets the condition #Failsp = |T | (the number of nodes in T), it means
that no edge in T can find another edge outside T in view of a cost-neutral swap to
reduce the rank of T . In such a situation, the algorithm terminates. In order to prove
that such a condition is always reached by the algorithm, consider the Search-edge
phase. For a fixed node p, let Wp be the subset of neighbors of p in T such that for
all q ∈ Wp, the edge pq is ready for a possible appropriate edge-swap. In Step 3.1. of
the mentioned phase, if Wp is empty, the node p increments its variable #Failsp by one
unity and broadcasts the message 〈end〉 to all other nodes in the tree. Otherwise, if Wp

is not empty but all edges pq for all nodes q ∈ Wp are unable to realize an appropriate
edge-swap in T (i.e. NeighFailp = |Wp|), then p increment its variable #Failsp by one
unity and broadcast a message 〈end〉 to all other nodes in the tree (see Step 3.4 of the
Search-edge phase). Moreover, each time p receives an 〈end〉 message, it increments
its variable #Failsp by one unity (see Step 3.5 of the Search-edge phase). So, if no
edge in T is able to realize an appropriate edge-swap, it means that each node p in T
has received |T | − 1 〈end〉 messages, and thus, #Failsp = |T |. Hence, by definition, T
is indeed a locally optimal minimum weight spanning tree and the algorithm is correct. �

The following lemma is easily deduced from the previous comments, after, each phase
of the distributed algorithm.

Lemma 1 Each round of the distributed algorithm in Section 3 requires O
(

n2
)

messages
and O(∆n) time, where ∆ is the maximum degree of the initial MWST.

Lemma 2 For any constant b > 1, the number of rounds used by the distributed algo-
rithm in Section 3 can be bounded from above by O

(

n1+1/ln b
)

.

Proof: We use a potential function similar to Fischer’s, with the difference that only
high-degree nodes have a potential value greater or equal to one. A similar potential
function is also used in [8].
Let ∆T be the maximum degree of the current MWST T on n nodes during a round of

the algorithm. Let δ
def
= max{∆T − ⌈logb n⌉, 0} and let dT

v be the degree of a node v in

13

T . The potential of the node v is define as follows,

φv =

{

edT
v −δ if dT

v ≥ ∆T − ⌈logb n⌉,
1/2 otherwise.

Denote ΦT =
∑

v∈T φv. Since b > 1, ΦT ≤ ne⌈logb n⌉ ≤ ne2n1/ln b.

Let us now compute the change in potential, ∆Φ, when the algorithm performs a
local improvement involving a node of degree at least ∆T − ⌈logb n⌉ in T . Assume edge
xy is added to T and edge uv is removed from T ; also assume w.l.o.g. that dT

u ≥ dT
v .

Since the algorithm only performs swaps which reduce the degree of some high-degree
node, we have that dT

u ≥ ∆T − ⌈logb n⌉ and dT
u ≥ max{dT

x , dT
y } + 2. By a simple case

analysis, it is easy to check that, in a local improvement, the potential decreases of the
smallest amount possible if dT

u = ∆T − ⌈logb n⌉ and dT
v , dT

x , dT
y < ∆T − ⌈logb n⌉. In such

a case, any local improvement reduces the potential by 1/2. Therefore, in any local
improvement, ∆Φ ≥ 1/2. This implies that after at most two local improvements (i.e.
two rounds), ΦT decreases of at least one unit. Hence, the algorithm finds a locally
optimal MWST in O

(

n1+1/ ln b
)

rounds. �

Theorem 3 For any constant b > 1, the distributed algorithm in Section 3 requires
O

(

n3+1/ln b
)

messages and O(n) space per node to compute a minimum weight spanning
tree of maximum degree at most b∆∗ + ⌈logb n⌉, where n is the number of nodes of the
network and ∆∗ is the maximum degree value of an optimal solution. Moreover, the
algorithm takes O

(

∆n2+1/ln b
)

(virtual) time, where ∆ is the maximum degree of an
initial MWST.

Proof: The algorithm is assumed to start with any MWST T of G (e.g. by using
the algorithm in [1] beforehand). Now, for each edge uv ∈ T , each node p specifically
maintains the variables Sidep[uv], CountSidep[uv], CountFailp[uv] and EdgeFindp[uv]
(see Section 3.2). Since T is a tree of n nodes, its number of edges is n − 1, and so the
algorithm requires O(n) space per node. Finally, by Theorems 1 and 2, and Lemmas 1
and 2, the proof follows. �

Note that the proof of Lemma 2 works also in the sequential case. Therefore, we
obtain the following corollary, which improves on Fischer’s time complexity.

Corollary 1 For any constant b > 1, Fischer’s sequential algorithm in [4] (Section 2)
finds a minimum weight spanning tree of maximum degree at most b∆∗ + ⌈logb n⌉ in
O

(

n3+1/ln b
)

time.

5 Concluding Remarks

In the paper, we present a distributed approximation algorithm which computes a mini-
mum weight spanning tree of maximum degree at most b∆∗ + ⌈logb n⌉, for any constant

14

b > 1. The message complexity of the algorithm is O(n3+1/ln b), its time complexity is
O

(

∆n2+1/ln b
)

, where ∆ is the maximum degree of the initial MWST of G and O(n)
space per node is required.
Note that since the proof of Lemma 2 works also in the sequential case, the time com-
plexity obtained actually improves on Fisher’s upper bound in [4].

To our knowledge, this is the first distributed approximation algorithm for the mini-
mum degree minimum weight spanning tree problem.

Acknowledgments

We would like to thank an anonymous referee for providing helpful comments and point-
ing out serious flaws in the original paper.

References

[1] B. Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election and related problems, In Proc. Symp. on Theory of Com-
puting, 230-240, 1987.

[2] L. Blin, F. Butelle. The first approximated distributed algorithm for the minimum
degree spanning tree problem on general graphs, Int. J. on Fond. in Comput. Sci.,
15(3): 507-516, 2004.

[3] K. Chaudhuri, S. Rao, S. Riesenfeld, K. Talwar. What would Edmonds do ? Aug-
menting paths and witnesses for degree-bounded MSTs, In Proc. of Approx-Random,
LNCS 3624, 26-39, 2005.

[4] T. Fischer. Optimizing the degree of minimum weight spanning trees, Technical
Report 93-1338, Department of Computer Science, Cornell University, Ithaca, NY,
USA, 1993.

[5] M. Fürer, B. Raghavachari. Approximating the minimum degree spanning tree to
within one from the optimal degree, Journal of Algorithms, 17:409-423, 1994 (a
preliminary version appeared in SODA’92).

[6] R. G. Gallager, P. A. Humblet, P. M. Spira. A distributed algorithm for minimum
weight spanning trees, ACM Trans. Program. Lang. Syst., 5: 67-77 (1983).

[7] M. R. Garey, D. S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness, W. H. Freeman Eds., San Francisco, 1979.

[8] F. Neumann, M. Laumanns. Speeding up approximation algorithms for NP-hard
spanning forest problems by multi-objective optimization, Electronic Coll. on Com-
put. Complexity, Report No 29, 2005.

[9] G. Tel. Introduction to Distributed Algorithms, Cambridge University Press, 1994.

15

Appendix

In order to facilitate the reading of the paper, the proof of Fischer’s Theorem 1 in Section
2 and Fischer’s proof concerning the number of iterations needed for his sequential
algorithm are both given.

Proof of Theorem 1 (Fischer [4]). Let b > 1 be any constant and let G be a connected
graph on n nodes. Consider a locally optimal MWST T of G with maximum degree ∆T .
Let Si denote the set of nodes of degree at least i in T . Clearly, |S∆T

| ≥ 1. Since
|Si| ≤ n for all i, the ratio |Si−1|/|Si| can not be greater that b for logb n consecutive
values of i. Therefore, for any constant b > 1, there exists some integer ξ in the range
∆T − ⌈logb n⌉ ≤ ξ ≤ ∆T such that |Sξ−1|/|Sξ| ≤ b. Suppose we choose an integer ξ
to satisfy this property, and remove from T the edges adjacent to nodes in Sξ. Let Tξ

denote the remaining edges of T . As T is initially connected, then there are at least
ξ|Sξ|+ 1− (|Sξ| − 1) or (ξ − 1)|Sξ |+ 2 connected components in Tξ.

Consider the graph Gξ formed by contracting every component of Tξ. Since any
MWST of G must contain a MWST of Gξ, any MWST must include at least (ξ−1)|Sξ |+1
edges from Gξ.

Consider an edge vw ∈ G not in T between two components of Tξ. Let P T denote
the vw-path in T , and P T

ξ denote those edges of P T which appear in Gξ , the edges on
the path which are adjacent to any node in Sξ. Suppose neither v nor w is in Sξ−1. Since
T is locally optimal, no cost-neutral swap can reduce the rank of T , so vw must be more
expensive that any edge in P T

ξ . Since vw and P T
ξ form a cycle in Gξ , this implies that

vw may not participate in a MWST of Gξ. Therefore, only edges which are adjacent to
nodes in Sξ−1 may participate in a MWST of Gξ, and any MWST of G must contain at
least (ξ − 1)|Sξ |+ 1 edges that are adjacent to Sξ−1.

Above, we choose ξ to satisfy the inequality |Sξ−1|/b ≤ |Sξ|. Substituting, we see

there must be at least
(ξ − 1)|Sξ−1|

b + 1
edges adjacent to nodes in Sξ−1. Therefore, the

average degree of a node in Sξ−1 must be at least

(ξ − 1)|Sξ−1|+ b

b|Sξ−1|
,

and thus, ∆∗ > ξ−1
b .

Combining this with the possible range for ξ yields ∆T ≤ b∆∗ + ⌈logb n⌉. �

Regarding the number of iterations required for Fischer’s sequential algorithm, the
following lemma is proved in [4].

Lemma 3 (Lemma 2.6 in [4]) Fischer’s sequential algorithm presented in Section 2 will
terminate in O(n2+1/ ln b) iterations.

Proof: Define the potential of a vertex v to be edv , where e is the Euler’s constant and
dv is the degree of v in the current tree. Define Φ =

∑

v∈V edv . Let ∆ be the maximum

16

degree value of the current tree and let i = ∆ − ⌈logb n⌉, the lower limit on the degree
for our improvements. Since we only perform swaps which only improve the degree of
some vertex in Si (see definition in the proof of previous theorem in this appendix), the
reduction in Φ resulting from a swap is at least

ei + 2ei−2 − 3ei−1 = (e− 1)(e− 2)ei−2 ≥ cei for some constant c.

Now Φ ≤ ne∆, so each swap reduces Φ by at least a fraction of

cei

ne∆
=

ce−⌈logb n⌉

n
≥

c′

n1+1/ logb e
for some constant c′.

Therefore, in O
(

n1+1/ ln b
)

iterations, the potential reduces by a constant fraction, and

after O
(

n2+1/ ln b
)

iterations, the algorithm must halt. �

17

