
Idomatic partitions of direct products of complete

graphs∗

Mario Valencia-Pabon
†

Abstract

In this paper we give a full characterization of the idomatic
partitions of the direct product of three complete graphs. We also
show how to use such a characterization in order to construct ido-
matic partitions of the direct product of finitely many complete graphs.
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1 Introduction and preliminary results

Let G = (V,E) be an undirected finite simple graph without loops. A set
S ⊆ V is called a dominating set if for every vertex v ∈ V \ S there exists
a vertex u ∈ S such that u is adjacent to v. The minimum cardinality of a
dominating set in G is called the domination number of G and is denoted
γ(G). A set S ⊆ V is called independent if no two vertices in S are adja-
cent. A set S ⊆ V is called an independent dominating set of G if it is both
independent and dominating set of G. The minimum cardinality of an inde-
pendent dominating set in G is called the independent domination number

of G and is denoted i(G). The domatic number d(G) is the maximum order
of a partition of V into dominating sets. The domatic number of a graph
was introduced by Cockayne and Hedetniemi [3]. A partition of the vertex
set V into independent dominating sets is called an idomatic partition of
G [2, 3]. Clearly, an idomatic partition of a graph G represents a proper
coloring of the vertices of G. The maximum order of an idomatic partition
of G is called the idomatic number id(G). An idomatic partition of a graph
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G into k parts is called an idomatic k-partition of G. Notice that not every
graph has an idomatic k-partition, for any k. For example, the cycle graph
on five vertices C5 has no an idomatic k-partition for any k.

The direct product G×H of two graphs G and H is defined by V (G×H) =
V (G)×V (H), and where two vertices (u1, u2), (v1, v2) are joined by an edge
in E(G × H) if {u1, v1} ∈ E(G) and {u2, v2} ∈ E(H). This product is
commutative and associative in a natural way (see reference [8] for a detailed
description on product graphs).

Let n be a positive integer. We denote by [n] the set {0, 1, . . . , n − 1}.
The complete graph Kn will usually be on the vertex set [n].

Let Γ be a group and C a subset of Γ closed under inverses and identity
free. The Cayley graph Cay(Γ, C) is the graph with Γ as its vertex set, two
vertices u and v being joined by an edge if and only if u−1v ∈ C. The set
C is then called the connector set of Cay(Γ, C). Simple examples of Cayley
graphs include the cycles, which are Cayley graphs of cyclic groups, and
the complete graphs Kn which are Cayley graphs of any group of order n.
Cayley graphs constitute a rich class of vertex-transitive graphs (see [5, 6]
and references therein).

Let t ≥ 1 be an integer and let n1, n2, . . . , nt be positive integers. Notice
that the direct product graph G = Kn1

×Kn2
× . . .×Knt can be seen as the

Cayley graph of the direct product group G = Zn1
× Zn2

× . . . × Znt with
connector set [n1] \ {0} × . . . × [nt] \ {0}, where Zni

denotes the additive
cyclic group of integers modulo ni.

Some recent results concerning independence parameters in graphs with
connection to direct products graphs and Cayley graphs can be found in
[1, 9, 4] (see also references therein).

Idomatic partitions of graphs were studied in [4] as an special coloring
problem on graphs defined as fall colorings. In this work, the authors show
the following result.

Theorem 1 ([4]). Let n1 > 1 and n2 > 1 be two integers. The direct

product graph Kn1
× Kn2

admits an idomatic n1-partition and an idomatic

n2-partition. Furthermore, if t > 1 is an integer such that t 6∈ {n1, n2}, then

Kn1
× Kn2

has no idomatic t-partition.

Moreover, in [4] is posed the question of characterizing the idomatic
partitions of the direct product of three or more complete graphs. In this
note, we give in Section 2, a full characterization of the idomatic partitions of
the direct product of three complete graphs by using an standard algebraic
approach. In Section 3, we show how to use such a characterization in
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order to construct idomatic partitions of the direct product of four or more
complete graphs.

2 Direct product of three complete graphs

In the following, we characterize the independent dominating sets and the
idomatic partitions of the direct product of three complete graphs.

2.1 Independent dominating sets

Lemma 1. Let G = Kn0
× Kn1

× Kn2
with n0, n1, n2 ≥ 2 and let I be an

independent dominating set in G. If the set I contains at least two vertices

agreeing in exactly two coordinates, then I = pr−1
i (k), where i ∈ [3], pri is

the projection of G on Kni
and k ∈ [ni].

Proof. As G is vertex-transitive and the direct product is commutative, we
can assume w.l.o.g. that the vertices (x, i, j) and (y, i, j) of G belong to I,
with i and j fix, and x 6= y. First note that for all z ∈ [n0], with z 6∈ {x, y},
we have that (z, i, j) ∈ I. Otherwise, let z 6∈ {x, y} such that (z, i, j) 6∈ I. As
I is a dominating set, then there exists a vertex (a, b, c) ∈ I such that a 6= z,
b 6= i and c 6= j. If a 6∈ {x, y} then (a, b, c) is adjacent to vertices (x, i, j) and
(y, i, j). If a ∈ {x, y}, say a = x (the case a = y is analogous), then (a, b, c)
is adjacent to vertex (y, i, j). In both cases, we obtain a contradiction to
the independence of I. Now, assume that there exists a vertex (w, q, j) 6∈ I,
with q 6= i. Otherwise, I = pr−1

2 (j) and there is nothing to prove. As I is
a dominating set, then there exists a vertex (a, b, c) ∈ I with a 6= w, b 6= q
and c 6= j. As (z, i, j) belongs to I for any z ∈ [n0], then b = i, otherwise I
is not an independent set. Thus, the vertices (a, i, j) and (a, i, c) belong to
I. By using a similar argument as before, we can deduce that (a, i, h) ∈ I
for all h ∈ [n2]. Therefore, we have that (z, i, j) and (a, i, h) belong to I for
all z ∈ [n0] and for all h ∈ [n2] which implies, by the hypothesis that I is an
independent dominating set of G, that I = pr−1

1 (i).

Lemma 2. Let G = Kn0
× Kn1

× Kn2
, with n0, n1, n2 ≥ 2, and let I be

an independent set of G such that no two vertices in it agree in exactly two

coordinates. Thus, the set I is a dominating set of G if and only if

I = {(α0, α1, α2), (α0, β1, β2), (β0, α1, β2), (β0, β1, α2)},

for some αi, βi ∈ [ni], with αi 6= βi and i ∈ [3].
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Proof. Assume first that such independent set I is also a dominating set
of G. By hypothesis, I contains at least two vertices, and any pair of such
vertices agreeing in exactly one coordinate. As G is vertex-transitive, we can
assume w.l.o.g. that vertex (0, 0, 0) belongs to I. By the commutativity of
the direct product, we can assume that I contains also the vertex (0, β1, β2),
with βi 6= 0 for i = 1, 2. Furthermore, by hypothesis, I contains no vertex of
the form (0, 0, z), for any z 6= 0. As I is a dominating set, then there exists
(β0, b, c) ∈ I with β0 6= 0, b 6= 0 and c 6= z. If c 6= 0 then vertices (0, 0, 0) and
(β0, b, c) are adjacent which is a contradiction to the independence of I. So
c = 0 which implies that b = β1, otherwise there is again a contradiction with
the independence of I. Therefore, vertices (0, 0, 0), (0, β1, β2) and (β0, β1, 0)
belong to I. Similarly, by hypothesis, I contains no vertex of the form
(0, y, 0) for any y 6= 0. As I is a dominating set, there exists a vertex
(u, v,w) ∈ I with u 6= 0, v 6= y and w 6= 0, which implies that vertex
(β0, 0, β2) belongs to I. By hypothesis, it is clear that no other vertex
different to the previous four vertices can belong to I, otherwise there is a
contradiction to the independence of I.
Conversely, let I = {(α0, α1, α2), (α0, β1, β2), (β0, α1, β2), (β0, β1, α2)}, for
some αi, βi ∈ [ni], with αi 6= βi and i ∈ [3]. Clearly, I is a maximal
independent set w.r.t. the property that any pair of vertices in it agree
in exactly one coordinate. Suppose that there is a vertex (x0, x1, x2) ∈
G \ I such that it is not adjacent to any vertex in I. Thus, xi = αi for
some (but not for all) i ∈ [3]. So, assume that x2 6= α2 (the other cases
can be proved similarly). If x0 = α0 and x1 = α1 then (β0, β1, α2) is
adjacent to it. Therefore, assume that x1 6= α1. As x0 = α0, then it implies
that x1 = β1, otherwise (x0, x1, x2) is adjacent to (β0, β1, α2). But, the
last implies that x2 = β2, otherwise (x0, x1, x2) is adjacent to (β0, α1, β2).
Thus, (x0, x1, x2) = (α0, β1, β2) ∈ I that is a contradiction. Similarly, if we
assume that x0 6= α0, x1 = α1, and x2 6= α2 we obtain that (x0, x1, x2) =
(β0, α1, β2) ∈ I that is a contradiction. Therefore, I is an independent
dominating set of G.

Definition 1. Let G = Kn0
× Kn1

× Kn2
, with ni ≥ 2, and let I be an

independent dominating set in G. The set I is said to be of Type A if

it verifies the hypothesis in Lemma 1, and it is said to be of Type B if it

verifies the hypothesis in Lemma 2.

The following result is a consequence of Lemmas 1 and 2.

Theorem 2. Let G = Kn0
× Kn1

× Kn2
, with ni ≥ 2, and let I be an

independent set in G. Then, I is also a dominating set in G if and only if
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it is of Type A or Type B.

2.2 Idomatic partitions

Definition 2. Let G = Kn0
×Kn1

×Kn2
, with ni ≥ 2, and let G1, G2, . . . , Gt

be an idomatic t-partition of G, with t > 1. Such an idomatic partition is

called

- of Type A: If all independent dominating sets Gi are of Type A.

- of Type B: If all independent dominating sets Gi are of Type B.

- of Type C: If there is at least one independent dominating set Gi of

Type A, and at least one independent dominating set Gj of Type B,

with i 6= j.

Theorem 3. Let G = Kn0
× Kn1

× Kn2
, with ni ≥ 2. Then, G has an

idomatic ni-partition of Type A for each i ∈ [3]. Moreover, such partitions

are the only idomatic partitions of Type A of G.

Proof. Let pri be the projection of G on Kni
, for i ∈ [3]. It is easy to

deduce that pr−1
i (0),pr−1

i (1), . . . ,pr−1
i (ni − 1) is an idomatic ni-partition

of G. In order to proof the second part, assume that G has an idomatic
partition of Type A containing two different independent dominating sets
Ii and Ij such that Ii = Knk

× Knj
× {αi} for some fixed αi ∈ [ni] and

Ij = Knk
×{αj}×Kni

for some fixed αj ∈ [nj ], where i, j, k ∈ [3] and i, j, k
pairwise different. Clearly, Ii ∩ Ij 6= ∅ that is a contradiction.

Proposition 1. Let G = Kn0
× Kn1

× Kn2
, with ni ≥ 2. If G has an

idomatic partition of Type B then there exist j, k ∈ [3], with j 6= k, such that

nj and nk are both even.

Proof. By Lemma 2, we know that each part in an idomatic partition of Type
B has four vertices, and thus 4 is a divisor of n0.n1.n2. That is, there is at
least one nj, with j ∈ [3] such that 2|nj . By the commutativity of the direct
product, we can assume w.l.o.g. that j = 2. Let Gk be a part of the idomatic
partition of Type B. By definition, Gk is an independent dominating set
of Type B. So, let Gk = {(α0, α1, α2), (α0, β1, β2), (β0, α1, β2), (β0, β1, α2)},
where αi, βi ∈ [ni] with αi 6= βi. Fix the element α2 ∈ [n2]. The number of
vertices (x, y, α2) in G is exactly n0.n1. Moreover, as αi 6= βi then, there are
exactly n0.n1

2 parts in any idomatic partition of Type B each one containing
exactly two different vertices (x, y, α2) and (x′, y′, α2), with x 6= x′ and
y 6= y′. Therefore, 2|n0.n1, which implies that 2|n0 or 2|n1.
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Proposition 2. Let G = Kn0
× Kn1

× Kn2
, with ni ≥ 2. If there exist

j, k ∈ [3], with j 6= k, such that nj and nk are both even, then G has an

idomatic partition of Type B of order n0.n1.n2

4 .

Proof. As mentioned previously, the graph G = Kn0
×Kn1

×Kn2
can be seen

as the Cayley graph associated with the direct product group G = Zn0
×Zn1

×
Zn2

with connector set [n0] \ {0} × [n1] \ {0}× [n2] \ {0}, where Zni
denotes

the additive cyclic group of the integers modulo ni. By the commutativity of
the direct product, we can assume w.l.o.g. that 2|n1 and 2|n2. Let aj be an
element of order

nj

2 in the group Znj
, for j ∈ {1, 2}. Let H0 = < (1, 0, 0) >

be the cyclic subgroup of G generated by the element (1, 0, 0). Similarly, let
H1 = < (0, a1, 0) > and H2 = < (0, 0, a2) > be cyclic subgroups of G. It is
easy to deduce that Hi ∩ Hj = {(0, 0, 0)} for all i, j ∈ [3], with i 6= j. As G
is an abelian group then, by using standard group theoretic concepts, it can
be deduced that the set H0.H1.H2 = {h0 + h1 + h2 : hi ∈ Hi for i ∈ [3]} is a
subgroup of order n0.n1.n2

4 in G. Let P denotes the subgroup H0.H1.H2 and
let r = n0.n1.n2

4 . Moreover, let P = {p1, p2, . . . , pr}, where p1 = (0, 0, 0) is
the identity element. The following claim can be obtained by using standard
arguments in group theory.

Claim 1. Let P be the subgroup of G = Zn0
×Zn1

×Zn2
defined previously.

For j = 1, 2, let aj be the element of order nj/2 in Znj
chosen in order to

construct the subgroup Hj of G. Let β0 be any element in Zn0
, with β0 6= 0.

Moreover, for j = 1, 2, let βj be any element in Znj
such that βj 6∈< aj >.

Then, P, (0, β1, β2)+P, (β0, 0, β2)+P, (β0, β1, 0)+P is a partition of G into

left cosets of P .

In fact, let D = {(0, β1, β2), (β0, 0, β2), (β0, β1, 0)}. By construction, no
element in the set D belongs to the subgroup P . Moreover, let x, y be any
two different elements in D. It is easy to show that there exists no element
z ∈ P such that x + z = y. Otherwise, z = (p0, p1, p2) ∈ P is such that
p1 = ±β1 or p2 = ±β2 that is a contradiction. Therefore, Claim 1 holds.

Now, for each 1 ≤ i ≤ r, let Ci = {pi, (0, β1, β2) + pi, (β0, 0, β2) +
pi, (β0, β1, 0) + pi : pi ∈ P}. We want to show that C1, C2, . . . , Cr is an
idomatic r-partition of the graph G = Kn0

× Kn1
× Kn2

. By using the fact
that G is the Cayley graph Cay(

∏
Zni

,
∏

([ni]\{0})), we obtain the following
claim.

Claim 2. Let x, y, z be three vertices of G. Then, vertices x + y and x + z
are adjacent in G if and only if vertices y and z are adjacent in G.
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Notice that, by Claim 2, each part Ci is an independent set of the graph
G. Moreover, by Lemma 2, each set Ci is an independent dominating set of
Type B, which completes the proof.

By Propositions 1 and 2, we obtain the following theorem.

Theorem 4. Let G = Kn0
× Kn1

× Kn2
, with ni ≥ 2. Then, G has an

idomatic partition of Type B if and only if there exist j, k ∈ [3], with j 6= k,

such that nj and nk are both even.

Example 1. Let G = K2 × K3 × K4. An idomatic 6-partition of Type B

of G can be constructed as follows : let P =< (0, 0, 0) > . < (0, 1, 0) > .
< (0, 0, 2) >= {p0, p1, p2, p3, p4, p5} be a subgroup of the group Z2 ×Z3 ×Z4,

where p0 = (0, 0, 0), p1 = (0, 1, 0), p2 = (0, 2, 0), p3 = (0, 0, 2), p4 = (0, 1, 2),
and p5 = (0, 2, 2). Let x1 = (0, 1, 1), x2 = (1, 0, 1), and x3 = (1, 1, 0).
Then, Ci = {pi, pi + x1, pi + x2, pi + x3}, for i = 0, 1, . . . , 5, is an idomatic

6-partition of Type B of G .

Theorem 5. Let G = Kn0
× Kn1

× Kn2
, with ni ≥ 2, and let q1, q2 be two

positive integers. Then, G has an idomatic (q1 + q2)-partition of Type C

if and only if there exists i ∈ [3] such that ni − q1 > 1 and Knj
× Knk

×
Kni−q1

admits an idomatic q2-partition of Type B, with j, k, i ∈ [3] and j, k, i
pairwise different.

Proof. Assume first that G has an idomatic (q1 + q2)-partition of Type C,
where q1 (resp. q2) denotes the number of independent dominating sets of
Type A (resp. Type B) in such a partition. By Theorem 3, it can be deduced
that the q1 dominating sets of Type A must be all of the form Knj

×Knk
×{s}

for some s ∈ Kni
with i fix, where j, k, i ∈ [3] and j, k, i pairwise different.

So, by permuting (if necessarily) the elements in the factor Kni
, we can

assume w.l.o.g. that the q1 independent dominating sets of Type A are the
sets Knj

× Knk
× {s}, for s = ni − q1, . . . , ni − 1. Clearly, the remaining

q2 independent dominating sets of Type B induce an idomatic q2-partition
of Type B of the direct product graph Knj

× Knk
× Kni−q1

. Finally, note
that if ni− q1 = 1, then all the independent dominating sets in the idomatic
partition are of Type A, which is a contradiction, and thus, ni−q1 > 1. The
other direction of the proof is trivial.

Example 2. Let G = K2 ×K3 ×K4. An idomatic 5-partition of Type C of

G can be constructed as follows : consider first the graph G′ = K2×K2×K4

and let P =< (0, 0, 0) > . < (0, 0, 0) > . < (0, 0, 1) >= {p0, p1, p2, p3} be

a subgroup of the group Z2 × Z2 × Z4, where p0 = (0, 0, 0), p1 = (0, 0, 1),
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p2 = (0, 0, 2), and p3 = (0, 0, 3). Let x1 = (0, 1, 1), x2 = (1, 0, 1), and

x3 = (1, 1, 0). Then, C ′
i = {pi, pi + x1, pi + x2, pi + x3}, for i = 0, 1, 2, 3 is

an idomatic 4-partition of G′ of Type B. Then, (K2 × {2} × K4) ∪ (∪C ′
i) is

an idomatic 5-partition of Type C for G.

From Theorems 3, 4 and 5, we have a full characterization of the idomatic
partitions of the direct product of three complete graphs as follows.

Theorem 6. Let G = Kn0
× Kn1

× Kn2
, with ni ≥ 2. If I is an idomatic

partition of G, then I must be of Type A, B or C.

By Theorem 1 (see [4]) we know that the idomatic number of the graph
G = Kn0

× Kn1
, with n0, n1 ≥ 2, is equal to max{n0, n1}. Now, having

the characterization of the idomatic partitions of the direct product of three
complete graphs then, by using Theorems 3, 4, 5, and Proposition 2, we can
easily deduce the following corollary.

Corollary 1. Let G = Kn0
×Kn1

×Kn2
, with n0, n1, n2 ≥ 2, and let id(G)

denote the idomatic number of graph G. Let t = max{n0, n1, n2}. Then,

1. If ni is an odd integer for all i ∈ [3], then id(G) = t.

2. If ni is an even integer and nj ≤ nk are odd integers, with i, j, k ∈ [3]

and i, j and k pairwise different, then id(G) = max{t,
ni.nj .(nk−1)

4 +1}.

3. If ni and nj are even integers, with i, j ∈ [3] and i 6= j, then id(G) =
ni.nj .nk

4 .

3 The general case

Theorem 7. Let G × H be the direct product graph of graphs G and H
respectively. If G admits an idomatic r-partition for some r > 0, and if H
has no isolated vertices, then G × H admits an idomatic r-partition.

Proof. Assume that G admits an idomatic r-partition, for some positive
integer r. Let G1, G2, . . . , Gr be such an idomatic r-partition of G. Set
Si = Gi × H, for 1 ≤ i ≤ r. Clearly,

⋃r
i=1 Si is a vertex partition of the

graph G × H. As for each 1 ≤ i ≤ r, we have that Gi is an independent
dominating set in G, it follows, by the definition of direct product graph and
by the hypothesis that H has at least one edge, that Si is an independent
dominating set in G × H, and therefore

⋃r
i=1 Si is an idomatic r-partition

of G × H.
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So, by using Theorem 7, we can directly deduce the following result.

Proposition 3. Let G = Kn0
×Kn1

× . . .×Knt, with t ≥ 3 and ni ≥ 2 for

any i ∈ [t + 1]. Let J be any subset of [t + 1]. If
∏

i∈J Kni
has an idomatic

partition of size r, then G has an idomatic r-partition.

Notice that Theorem 3 can be generalized as follows.

Theorem 8. Let G = Kn0
× Kn1

× . . . × Knt, with t ≥ 3 and ni ≥ 2 for

any i ∈ [t + 1]. Then, G has an idomatic ni-partition of Type A for each

i ∈ [t + 1]. Moreover, such partitions are the only idomatic partitions of

Type A of G.

From Theorem 8 and Proposition 3 we are able to construct many ido-
matic partitions for a direct product of four or more complete graphs. How-
ever, we do not know if there exist other different types of idomatic parti-
tions. Therefore, a full characterization of such idomatic partitions for the
direct product of finitely many complete graphs remains an open question.
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