
Complexity of the cluster deletion problem on subclasses of chordal

graphs∗

Flavia Bonomo† Guillermo Duran‡ Mario Valencia-Pabon§

Abstract

We consider the following vertex-partition problem on graphs, known as the CLUSTER
DELETION (CD) problem: given a graph with real nonnegative edge weights, partition the
vertices into clusters (in this case, cliques) to minimize the total weight of edges outside the
clusters. The decision version of this optimization problem is known to be NP-complete even
for unweighted graphs and has been studied extensively. We investigate the complexity of
the decision CD problem for the family of chordal graphs, showing that it is NP-complete for
weighted split graphs, weighted interval graphs and unweighted chordal graphs. We also prove
that the problem is NP-complete for weighted cographs. Some polynomial-time solvable cases
of the optimization problem are also identified, in particular CD for unweighted split graphs,
unweighted proper interval graphs and weighted block graphs.

Keywords:Block graphs, Cliques, Edge-deletion, Cluster deletion, Interval graphs, Split graphs,
Submodular functions, Chordal graphs, Cographs, NP-completeness.

1 Introduction

Clustering is an important task in the data analysis process. It can be viewed as a data modeling
technique that provides an attractive mechanism for automatically finding the hidden structure of
large data sets. The input to the problem is typically a set of elements and pairwise similarity
values between elements. The goal is to partition these elements into subsets called clusters such
that two meta-criteria are satisfied: homogeneity–elements in a given cluster are highly similar
to each other; and separation–elements from different clusters have low similarity to each other.
In the graph theoretic approach to clustering, one builds from the raw data a similarity graph
whose vertices correspond to elements and there is an edge between two vertices if and only if
the similarity of their corresponding elements exceeds a predefined threshold [13, 14]. Cluster
graphs have been used in a variety of applications whenever clustering of objects is studied or when

∗Partially supported by MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France), UBACyT Grant
20020130100808BA, CONICET PIP 112-200901-00178 and 112-201201-00450CO and ANPCyT PICT 2012-1324 (Ar-
gentina), FONDECyT Grant 1140787 and Millennium Science Institute “Complex Engineering Systems” (Chile)
†CONICET and Dep. de Computación, FCEN, Universidad de Buenos Aires, Argentina. e-mail:

fbonomo@dc.uba.ar
‡CONICET and Dep. de Matemática and Instituto de Cálculo, FCEN, Universidad de Buenos Aires, Argentina,

and Dep. de Ingenieŕıa Industrial, FCFM, Universidad de Chile, Santiago, Chile. e-mail: gduran@dm.uba.ar
§Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse, France. Currently ”en délégation”

at the INRIA Nancy - Grand Est. e-mail: valencia@lipn.univ-paris13.fr

1

consistent data is sought among noisy or error-prone data [1, 5]. Ideally, the resulting graph would
be a cluster graph, that is, a graph in which every connected component is a clique (i.e., a complete
subgraph). In practice, it is only close to being such, since similarity data is experimental and
therefore error-prone.

The cluster deletion problem consists in finding the minimum number of edges that must be
removed from an input graph to make the resulting graph a cluster graph. In its decision version, the
cluster deletion problem has a non-negative integer parameter W and asks if one can remove a set of
at most W edges from the input graph such that the resulting graph is a cluster graph. There exist
several results for the cluster deletion problem (see for example [3, 17, 22] and references therein).
The cluster deletion problem is known to be NP-complete [22] for general graphs. Moreover, Shamir
et al. [22] showed that it remains NP-hard when imposing that the input graph should be clustered
into exactly d ≥ 3 components. They also showed that when the input graph is clustered into
exactly 2 components, the problem is polynomial-time solvable. Komusiewicz et al. [17] proved
that cluster deletion is hard for C4-free graphs with maximum degree 4 and gave a O(n1.5 log2 n)
time algorithm for solving cluster deletion on graphs with maximum degree 3, where n is the
number of vertices of the graph.

Based on results obtained by Demaine et al. [7] for a variant of a clustering problem, Dessmark
et al. [8] provided a polynomial O(log n)-approximation algorithm for the edge-weighted version of
the cluster deletion problem. In this version, the edges of the graph have an associated weight and
the aim is to minimize the sum of the weights of the removed edges. Considering it as a decision
problem, the aim is to determine, for some input parameter W , if there is a set of edges with a
total weight of at most W such that removing it from the input graph will make the resulting graph
a cluster graph. Note that if we allow the weight function to be negative on some edges, we can
reduce any clustering problem to a clustering problem whose input graph is a weighted complete
graph by assigning a negative weight with a large enough absolute value to the edges that are
missing in the original graph. Thus, the problem with arbitrary weights is NP-complete for any
graph class admitting arbitrarily large cliques. We will assume throughout that all of the weight
functions are nonnegative.

Dessmark et al. [8] also showed that for the unweighted version of cluster deletion on gen-
eral graphs, the greedy algorithm that finds iteratively maximum cliques gives a 2-approximation
algorithm to the optimal cluster deletion. The complexity of such an algorithm reflects the com-
plexity of iteratively finding maximum cliques, so it is a polynomial-time approximation algorithm
for certain graph classes. Recently, Gao et al. [11] showed that the greedy algorithm that finds
iteratively maximum cliques gives an optimal solution for the class of graphs known as cographs.
This implies that the cluster deletion problem is polynomial-time solvable on unweighted cographs.
With a different approach based on modular decomposition, it is proved in [4] that the unweighted
cluster deletion problem is polynomial-time solvable on a subclass of P4-sparse graphs that strictly
includes P4-reducible graphs (which are, in turn, a superclass of cographs). Gao et al. [11] also
showed that the cluster deletion problem is NP-hard on (C5, P5)-free graphs, on (2K2, 3K1)-free
graphs and on (C5, P5, bull, 4-pan, fork, co-gem, co-4-pan)-free graphs. For weighted graphs, the
cluster deletion problem can be solved in polynomial time on the class of triangle-free graphs given
that it is equivalent to maximum weighted matching [9]. The cluster deletion and other clustering
problems have been studied extensively in the context of fixed-parameter tractability (FPT) ([6, 18]
and references therein). Many of the recently-developed FPT algorithms rely on being able to solve
cluster deletion in polynomial-time on restricted graph structures [3].

2

Class Cluster Weighted Cluster
Deletion Deletion

General NP-c [22] NP-c [22]
Complete split P [11] NP-c (Thm 5.2)

3-split P (Thm 2.4) NP-c (Thm 2.1)
Split P (Thm 2.4) NP-c (Thm 2.1)

P5-free chordal NP-c (Thm 3.2) NP-c (Thm 3.2)
Block P (Thm 4.2) P (Thm 4.2)

Interval ? NP-c (Cor 5.3)
Proper interval P (Thm 5.6) ?
Paths of cliques P (Thm 5.1) P (Thm 5.1)

Cographs P [11] NP-c (Cor 5.7)
P4-reducible P [4] NP-c (Cor 5.7)

∆ = 3 P [17] ?
C4-free with ∆ = 4 NP-c [17] NP-c [17]

(C5, P5)-free NP-c [11] NP-c [11]
(2K2, 3K1)-free NP-c [11] NP-c [11]

(C5, P5, bull, 4-pan, fork,
co-gem, co-4-pan)-free NP-c [11] NP-c [11]

Table 1: A summary of some of the known complexity results, with those obtained in the present
work shown in bold face. Question marks denote open problems.

An heuristic for solving clustering problems consists in modifying a given input graph into
another graph having some nice algorithmic properties and then solving the clustering problem for
the modified graph. For example, to solve a genetic clustering problem, Kaba et al. [16] transform
any input graph into a chordal graph via minimal triangulations of the former one. Once the input
graph has been so transformed, they exploit the algorithmic properties of chordal graphs to obtain
good solutions to their clustering problem. If solving a clustering problem for a specific graph
family F is computationally hard, however, the heuristic which first transforms the input graph
into a graph in F and then solves the problem on the resulting graph may not be a good approach.
Therefore, it is important to know how to solve a clustering problem on specific graph families
before using the above-described heuristic for general input clustering graphs.

Some known results are summarized in Table 1; those obtained in the present work are shown
in bold face. We conclude this introduction with some definitions.

Let G = (V,E) be a graph. For each vertex v ∈ V , we denote as N(v) = {u : vu ∈ E} the set
of neighbors of v in G. Two vertices v and w are called true twins if N(v)∪ {v} = N(w)∪ {w}. A
graph G is said to be weighted if there is a nonnegative weight function w : E → R+ associated with
it. For the algorithms involving weighted graphs we will assume that the weights are rational (or
belong to any ordered field in which we can perform the field operations and the order comparisons
algorithmically). An unweighted graph is a graph in which each edge has a weight equal to 1. We
say that a set F of edges of a given graph has a uniform weight if all the edges in F have the same
weight.

Let H and G be graphs. If G contains no induced subgraph isomorphic to H then G is an

3

H-free graph. Let Pk (resp. Ck) denote a path (resp. cycle) on k vertices. Let Km,n = (A ∪B,E)
denote the complete bipartite graph, where A (resp. B) is an independent set of size m (resp. n)
and E is the set of all the edges with an endpoint in A and an endpoint in B. We refer to [23] for
standard definitions and results in graph theory. A graph is chordal if and only if it does not contain
a cycle of length at least four as an induced subgraph. Given a vertex partition S = C1, . . . , Ck

of a graph G, we call the weight of S, denoted w(S), the sum of the weights of all edges e = uv
such that u ∈ Ci, v ∈ Cj , with i 6= j. An edge is called external with respect to the partition S
if its endpoints belong to distinct sets of S, and internal otherwise. The cluster deletion problem
for a (un)weighted graph G can be redefined as the problem of finding a clique partition of G with
minimum weight. We will assume throughout that all NP-completeness results concern the decision
version of the cluster deletion problem.

2 Split graphs

A graph G = (V,E) is a split graph if and only if there is a partition of the vertex set V of G into
a clique K and an independent set I. Another necessary and sufficient condition for a graph G to
be a split graph is that G and its complement G be chordal graphs (see [10]). If each vertex of
the independent set is adjacent to exactly p vertices of the clique K with p ≥ 1, then G is called a
p-split graph.

In this section, we prove the NP-completeness of the weighted cluster deletion problem for
split graphs by a reduction from the exact cover by 3-sets problem (X3C problem for short). The
formal definition of the X3C problem can be stated as follows:

Instance: A set X with 3q elements and a collection C of 3-element subsets of X.

Question: Does C contain an exact cover for X? In other words, is there a subset C ′ ⊆ C such
that every element of X occurs in exactly one member of C ′?

The X3C problem is known to be NP-complete [12]. We may further assume that the union of
the subsets in C covers X, otherwise the answer is trivially no.

Theorem 2.1 (NP-completeness on weighted 3-split graphs). The cluster deletion problem is NP-
complete for weighted 3-split graphs, even if the weight of all the internal edges of the clique is 1
and the weight of the edges between the clique and the independent set is uniform.

Proof. It is easily seen that the cluster deletion problem is in NP, since we can readily verify in
polynomial time whether a vertex partition of a graph is a clique partition and whether its weight
is less than a given value W . Let X = {x1, . . . , x3q} and C = {c1, . . . , cm} be an instance of the
X3C problem, where each element ci ∈ C is a 3-element subset of X with m ≥ q ≥ 1. We want to
know if there exists a subset C ′ ⊆ C with size q such that each element in X belongs to exactly
one of the elements in C ′. We will construct a weighted split graph G = (KX ∪ IC , E), where KX

induces a clique with 3q vertices and IC induces an independent set with m vertices. For each
element xi ∈ X there is a vertex xi in KX and for each 3-subset cj ∈ C there is a vertex cj ∈ IC .
The edge set E is defined in such a way that KX induces a complete graph, IC is an independent
set, and xi in KX is adjacent to cj in IC if and only if xi is an element of X that belongs to the
set cj in C. We will call EX the set of edges with both endpoints in KX and EC the set of edges

4

with an endpoint in KX and an endpoint in IC . The weight of each edge in EX is equal to 1 and
the weight of each edge in EC is equal to 3q. Clearly, G is a split graph and can be obtained in
polynomial time from the instance (X,C). Let W =

(
3q
2

)
−3q+9q(m− q). We will show that there

exists a subset C ′ ⊆ C, with |C ′| = q exactly covering X if and only if G admits a clique partition
where the sum of the weights of the external edges is at most W . In other words, there exists a
solution for the X3C problem if and only if there exists a solution for the cluster deletion problem
for G with a weight of at most W .

Assume first that there exists C ′ ⊆ C, with C ′ = {c′1, . . . , c′q} such that c′i ∩ c′j = ∅ whenever
i 6= j, and

⋃
c′j∈C′

c′j = X. The clique partition for G can be constructed as follows: for each

c′j ∈ C ′, choose the clique of G formed by the corresponding vertex c′j in IC and its neighbors in
KX . Each of the remaining m−q vertices in IC forms a clique of size one (a singleton). The sum of
the edge weights outside those cliques is exactly equal to W . The weight of the clique partition is
equal to

(
3q
2

)
(the weight of all the edges in KX) minus 3q (each one of the q cliques with size four

has a triangle in KX) plus 9q(m− q) (the 3(m− q) edges of weight 3q joining the m− q singletons
and their neighbors in KX are external with respect to the partition).

Now assume conversely that G has a clique partition with a weight of at most W . We must
prove that there exists C ′ ⊆ C with |C ′| = q such that C ′ is an exact cover for X. We begin by
analyzing the structure of the optimal solutions of the optimization version of the cluster deletion
problem for G.

Claim 2.2. Let S be a clique partition of G that is an optimal solution for the cluster deletion
problem in G in its optimization version. Then no clique in S is formed only by vertices in KX .

Note first of all that it is not possible to have two cliques A1, A2 ∈ S formed only by vertices in
KX . If the case were otherwise we could define the clique partition S′ = S \ {A1, A2} ∪ {A1 ∪A2},
but then clearly w(S)− w(S′) = |A1|.|A2| ≥ 1, which contradicts the optimality of S. Thus, every
clique of S contains at most one vertex of IC , so there are m cliques (possibly singletons) each
containing a vertex of IC . Let S = A1, B1, . . . , Bm be the clique partition of G and let w(S) be
the weight of S. Assume that clique A1 is formed only by vertices in KX and each clique Bj ,
1 ≤ j ≤ m, contains the vertex cj of IC and zero, one, two or three vertices in KX .

Let cj be in IC . We consider the following cases:

• |Bj | < 3 and there is a neighbor y of cj in A1. Let S′ be the clique partition S′ = S \
{A1, Bj}∪{A1 \ {y}, Bj ∪{y}}. It is readily seen that w(S′) = w(S)− (3q+ 2) + (|A1| − 1) =
w(S) + |A1| − 3q − 3. However, |A1| ≤ 3q − 2. Therefore, w(S′) < w(S), which contradicts
the optimality of S.

• Similarly to the previous case, |Bj | = 2 (resp. |Bj | = 1) and there is a neighbor y of cj in
A1. Let S′ be the clique partition S′ = S \ {A1, Bj} ∪ {A1 \ {y}, Bj ∪ {y}}. Observe that
w(S′) = w(S) + |A1| − 3q − 2 < w(S) (resp. w(S′) = w(S) + |A1| − 3q − 1 < w(S)), which is
a contradiction to the optimality of S.

Since S is an optimal solution, it follows that no vertex in IC is adjacent to a vertex in A1. But
by construction, this implies that X is not covered by C, which contradicts our assumption about
the instances of X3C. This ends the proof of this claim. ♦

By the above claim, there must be an optimal solution S for the cluster deletion problem of
G (optimization version) of the form S = B1, . . . , Bm, where each clique Bj contains exactly one

5

vertex cj of IC , for 1 ≤ j ≤ m. Let ti be the number of cliques of S with i vertices in KX , for
i = 0, . . . , 3.

Claim 2.3. t3 > 0.

Suppose that t3 = 0. If t2 6= 0, then there is a clique Bj = {cj , xj1 , xj2} in S. By construction,
cj has another neighbor y ∈ KX . If y ∈ Bi with |Bi| = 3 (resp. |Bi| = 2), we then obtain another
clique partition S′ = S \{Bi, Bj}∪{Bi \{y}, Bj ∪{y}} such that w(S′) = w(S)−(3q+2)+3q+1 =
w(S)− 1 < w(S) (resp. w(S)− (3q+ 2) + 3q = w(S)− 2 < w(S)), which contradicts the optimality
of S. If t3 = t2 = 0, then there exist Bj , Bi, Bs ∈ S such that Bj = {cj , xj1}, Bi = {ci, xj2}
and Bs = {cs, xj3}, where xj1 , xj2 and xj3 are the three neighbors of cj in KX . We then obtain
another clique partition S′ = S \ {Bj , Bi, Bs} ∪ {Bj ∪ {xj2 , xj3}, Bi \ {xj2}, Bs \ {xj3}} such that
w(S′) = w(S) − (6q + 3) + 6q = w(S) − 3 < w(S), which again contradicts the optimality of S.
Therefore, t3 > 0, which ends the proof of this claim. ♦

The weight w(S) of S can be written as w(S) =
(
3q
2

)
− (3t3 + t2) + (t2 + 2t1 + 3t0)3q. Moreover,

m = t3+t2+t1+t0 and 3q = 3t3+2t2+t1. Therefore, 3(m−q) = t2+2t1+3t0 and 3t3+t2 = 3q−t2−t1.
Then, since 3q ≥ 3t3+t2 it follows thatW ≤ w(S), with equality if and only if t2 = t1 = 0 and t3 = q.
Indeed, recall that W =

(
3q
2

)
−3q+9q(m−q) and thus, ifW = w(S) then 3t3+2t2+t1 = 3q = 3t3+t2,

which implies that t2 = −t1. Since t2, t1 ≥ 0 it must be the case that t2 = t1 = 0, which forces t3
to be equal to q. So if G admits a clique partition S with weight W , then there is a solution to the
X3C problem. This ends the proof of the theorem.

For the unweighted case, we will show that the problem can be easily solved on split graphs.

Theorem 2.4 (Polynomiality on unweighted split graphs). The cluster deletion problem is
polynomial-time solvable for unweighted split graphs. Indeed, if (K, I) is a split partition of a
graph G such that K is a maximal clique of G, then {K}∪{{v} : v ∈ I} is an optimal solution un-
less there is a vertex v1 in I adjacent to all but one vertex w in K and that vertex w has a neighbor
v2 in I. In that case, an optimal solution is {{v1} ∪ (K −{w}), {w, v2}} ∪ {{v} : v ∈ I, v 6= v1, v2}.

Proof. Let G be a split graph and (K, I) be a split partition of G such that K is a maximal clique of
G. Note that the cluster deletion problem can be seen as the problem consisting in maximizing the
number of internal edges in a clique partition S. In order to break ties, we maximize the number of
internal edges joining vertices of K in G. We will refer to S0 = {K}∪{{v} : v ∈ I} as the standard
partition.

It is clear that no optimal solution has two different cliques strictly contained in K. So, every
possibly optimal partition that is not the standard one contains at least one clique with a nonempty
intersection with both K and I.

Suppose that we have an optimal solution S with respect to the above criterion that is strictly
better than S0. If S contains a clique A (K such that |A| = a ≥ 1 and a clique B containing one
vertex of I and b ≥ 1 vertices of K, then S′ = S \ {A,B} ∪ {A ∪ (B ∩K), B ∩ I} is another clique
partition which compared to S contains ab new internal edges that join two vertices of K in G
but no longer contains b edges that join vertices of K with vertices in I. Thus, it is either strictly
better than S or preferable to it by the tie-breaking rule, thereby contradicting the optimality of
S. Therefore, since as stated above clique B exists, we may assume that every clique of S contains
a vertex of I.

Suppose now that S contains a cliqueA with |A∩K| = a ≥ 2 and a cliqueB with |B∩K| = b ≥ 2.
Then S′ = S \{A,B}∪{(A∩K)∪ (B∩K), A∩I,B∩I} is another clique partition which compared

6

to S contains ab new internal edges that join two vertices of K in G but no longer contains a + b
edges that join vertices of K with vertices of I. Since a, b ≥ 2, S′ is either strictly better than S or
preferable to it by the tie-breaking rule, thus contradicting the optimality of S.

Finally suppose that there are three cliques A,B,C containing a vertex in I and a, b, c ≥ 1
vertices in K, respectively. Then S′ = S\{A,B,C}∪{(A∩K)∪(B∩K)∪(C∩K), A∩I,B∩I, C∩I}
is another clique partition which compared to S contains ab+ ac+ bc new internal edges that join
two vertices of K in G but no longer contains a+ b+ c edges that join vertices of K with vertices
of I. Since ab ≥ a, bc ≥ b, and ca ≥ c, then S′ is either strictly better than S or preferable to it by
the tie-breaking rule, thereby contradicting the optimality of S.

We conclude that S contains exactly two cliques A,B such that |A∩I| = |B∩I| = 1, |A∩K| ≥ 1
and |B ∩K| = 1. So, there is a vertex v1 in I adjacent to all but one vertex w in K which has a
neighbor v2 in I, and S = {{v1} ∪ (K − {w}), {w, v2}} ∪ {{v} : v ∈ I, v 6= v1, v2}.

3 Chordal graphs

Chordal graphs are a class of graphs that have been extensively studied thanks to their peculiar
clique-based structure, which lends itself to efficient solutions of algorithmic problems [2].

To prove the main result of this section, we first demonstrate a simple general lemma.

Lemma 3.1 (true twins). Let G be graph and v, z be true twins in G. Then, for every optimal
solution of the unweighted cluster deletion problem, v and z belong to the same clique of the partition.

Proof. Suppose, on the contrary, that there is an optimal clique partition S such that v belongs to
a clique C1 and z belongs to a different clique C2. Without loss of generality, we may assume that
|C1| ≤ |C2|. But then S′ = S \ {C1, C2} ∪ {C1 \ {v}, C2 ∪ {v}} is another clique partition such that
w(S′) < w(S), which is a contradiction.

Theorem 3.2 (NP-completeness on unweighted chordal graphs). The cluster deletion problem is
NP-complete for unweighted P5-free chordal graphs.

Proof. This proof is based on the proof of Theorem 2.1. The reduction is again from the X3C
problem. Let X = {x1, . . . , x3q} and C = {c1, . . . , cm} be an instance of the X3C problem, where
each element ci ∈ C is a 3-element subset of X, with m ≥ q ≥ 1. We want to know if there exists a
subset C ′ ⊆ C of size q such that each element in X belongs to exactly one of the elements in C ′.
We construct a graph G = (V,E) whose vertex set V is formed by m+ 1 disjoint cliques of size 3q,
namely KX ,Kc1 , . . . ,Kcm , such that the vertices of KX correspond to the elements of X, the clique
Kci corresponds to the element ci of C, for i = 1, . . . ,m, and vertex xj in KX is adjacent to all the
vertices of Kci if and only if the element xj of X belongs to the set ci of C. Clearly, this construction
can be done in polynomial time from the instance (X,C). Now, since for each 1 ≤ i ≤ m, all the
3q vertices of the clique Kci are true twins, by Lemma 3.1 they must belong to the same clique in
an optimal partition S for the optimization version of the cluster deletion problem. Therefore, we
can contract each clique Kci , with 1 ≤ i ≤ m, into a single vertex ci and replace each subset of
3q edges between Kci and the vertex xj ∈ KX by a single edge with weight 3q, for each xj in ci.
Hence, we obtain the weighted split graph constructed in the proof of Theorem 2.1. This shows (a)
that graph G is a P5-free chordal graph since split graphs also are and the true twins contraction
neither eliminates chordless cycles nor induces paths on five vertices; and (b) that the problem is
indeed NP-complete.

7

4 Block graphs

A graph G is a block graph if it is a connected graph and every block (i.e. maximal 2-connected
component) is a clique. Block graphs form a subclass of chordal graphs.

The first result in this section concerns weighted 1-split graphs, a special subclass of block
graphs. First, we will show how to use submodular function minimization in order to solve the
cluster deletion problem on 1-split graphs. Then we will explain how to reduce the problem on
weighted block graphs to the problem on weighted 1-split graphs.

Given a finite nonempty set V of cardinality n, a function f defined on all the subsets of V is
called submodular if it satisfies f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y), for every X,Y ⊆ V . In [15]
and [21], the authors present combinatorial polynomial-time algorithms for finding a minimizer of a
general submodular function provided an oracle for evaluating the function value is available. The
number of oracle calls is bounded by a polynomial in the size of the underlying set.

Theorem 4.1 (Polynomiality on weighted 1-split graphs). The cluster deletion problem is
polynomial-time solvable for weighted 1-split graphs.

Proof. Let G be a 1-split graph with split partition (K, I). Consider an optimal solution S of the
cluster deletion problem. Clearly, S contains at most one clique composed only of vertices of K,
otherwise a new partition obtained by replacing two such cliques by their union would contradict
the solution’s optimality. If this clique exists, denote it by K1. All other cliques in S are either
isolated vertices of I or cliques of size 2 with one vertex in K and one vertex in I. Also, if {u, v} ∈ S
with u ∈ K, v ∈ I, then necessarily w(uv) ≥ w(uw), for all w ∈ N(v) ∩ I, since minimizing the
weight of the external edges of the clique partition is equivalent to maximizing the weight of the
internal ones. We can then preprocess the graph, identifying a subset of vertices of I that will be
singletons in the solution and leaving a graph with vertex partition (K, I ′) in which each vertex v
of K has at most one neighbor u in I ′ (one of the neighbors of v maximizing the weight of the edge
vu). Moreover, by definition of 1-split graph, each vertex of I has at most one neighbor in K.

If the subset K0 of vertices of K having no neighbors in I ′ is nonempty, it will be part of the
clique K1 in the solution. We name the set K \K0 as {v1, . . . , vr} and their respective neighbors
in I ′ as {u1, . . . , ur}. A candidate solution must be {{vi, ui}}i 6∈R ∪{K1 ∪{vi : i ∈ R}}∪ {{ui}}i∈R,
where R is a subset of {1, . . . , r} and is totally determined by that subset R.

The subset R is not necessarily a proper subset of {1, . . . , r} and may be empty. In what follows
we will prove that the function f that assigns to R the weight difference between the candidate
solution associated with R and the solution associated with the empty set is submodular, and thus
the set R that minimizes that function can be found in polynomial time.

The function f can be computed in polynomial time for a subset R, and is defined as

f(R) =
∑
i∈R

w(viui)−
∑
i,j∈R

w(vivj)−
∑

i∈R,z∈K0

w(viz)

Let R, T ⊆ {1, . . . , r}. We will show that f(R) + f(T) ≥ f(R∪T) + f(R∩T) provided that the
weights of the edges joining two vertices of K are nonnegative, which holds under our assumptions.
It is easily seen that∑

i∈R
w(viui) +

∑
i∈T

w(viui) =
∑

i∈R∪T
w(viui) +

∑
i∈R∩T

w(viui)

8

and that ∑
i∈R,z∈K0

w(viz) +
∑

i∈T,z∈K0

w(viz) =
∑

i∈R∪T,z∈K0

w(viz) +
∑

i∈R∩T,z∈K0

w(viz).

We therefore have to show that∑
i,j∈R

w(vivj) +
∑
i,j∈T

w(vivj) ≤
∑

i,j∈R∪T
w(vivj) +

∑
i,j∈R∩T

w(vivj).

The inequality holds because∑
i,j∈R∪T

w(vivj) +
∑

i,j∈R∩T
w(vivj)−

∑
i,j∈R

w(vivj)−
∑
i,j∈T

w(vivj) =

=
∑

i∈R\T,j∈T\R

w(vivj) ≥ 0.

If the weight of the internal edges is 1, the algorithm is very simple. We denote the vertices
in K \ K0 as {v1, . . . , vr} and their respective neighbors in I as {u1, . . . , ur}, in such a way that
w(v1u1) ≤ · · · ≤ w(vrur). Then the only sets that are candidates for minimizing f are the empty
set and the sets {1, . . . , j}, for 1 ≤ j ≤ r.

Based on the solution of cluster deletion for weighted 1-split graphs, we now solve the problem
for weighted block graphs.

Theorem 4.2 (Polynomiality on weighted block graphs). The cluster deletion problem is
polynomial-time solvable for weighted block graphs.

Proof. Let G = (V,E) be a weighted block graph. An end-block of a graph is a block containing
exactly one cut-vertex. It is known that every connected graph that is not 2-connected has an
end-block. Inductively, the blocks of G can be enumerated as B1, . . . , Br in such a way that Bi is
an end-block of the graph induced by Bi ∪Bi+1 ∪ · · · ∪Br. We will process the blocks in that order
by solving a subproblem at each iteration and thus reduce the graph to a simpler one. Then we
will reconstruct the solution for the original graph based on the solution of each subproblem and
the recursive solution of the reduced graph.

Given the order in which the blocks were chosen, when we process block Bi for i < r it will have
exactly one cut-vertex v joining it with the non-processed blocks. The graph G0 will be G and we
will create a graph Gi (i ≥ 1) from Gi−1 by replacing the connected component of Gi−1 \ {v} that
contains Bi \ {v} with a vertex u adjacent to v. We will then assign a suitable weight to edge vu.
Inductively, this means that when block Bi is processed, the connected component H of Gi−1 \ {v}
that contains Bi \{v} is a 1-split graph, and so is the graph induced by V (H)∪{v}. We will define
w(uv) =

∑
y∈H,vy∈E w(vy) + w(SH) − w(SH∪{v}), where SH∪{v} and SH are optimal solutions for

the cluster deletion problem on the 1-split graph induced by V (H) ∪ {v} and H, respectively. If
the weight w(uv) is negative we do not create the edge since no optimal solution will use it (i.e.,
no optimal solution will have a clique containing both v and vertices of H). Note that we can find
SH∪{v} and SH by Theorem 4.1.

9

Claim 4.3. Let Si be an optimal solution of the cluster deletion problem for Gi. If {u, v} ∈ Si,
then Si \ {{u, v}} ∪ SH∪{v} is an optimal solution for Gi−1. If {u, v} 6∈ Si, then Si \ {{u}} ∪ SH is
an optimal solution for Gi−1.

Let Si−1 be an optimal solution of the cluster deletion problem for Gi−1. Let S1
i−1 be the

subset of cliques of Si−1 containing vertices of H and S2
i−1 = Si−1 \ S1

i−1. Then v either does or
does not belong to a clique in S1

i−1. Since v is a cut-vertex of Gi−1 it is clear that under the first
alternative S1

i−1 is an optimal solution for the cluster deletion problem on the graph induced by
V (H) ∪ {v} while under the second, S1

i−1 is an optimal solution for the cluster deletion problem
on graph H. Also, under the first alternative S2

i−1 ∪ {v, u} will be a feasible solution for Gi with
weight w(Si−1) − w(SH∪{v}) while under the second, S2

i−1 ∪ {u} will be a feasible solution for Gi

with weight w(Si−1)−w(SH)−
∑

y∈H,vy∈E w(vy) +w(uv) = w(Si−1)−w(SH∪{v}). Therefore, if Si
is an optimal solution of the cluster deletion problem for Gi, then w(Si) ≤ w(Si−1) − w(SH∪{v}),
which implies that w(Si) + w(SH∪{v}) ≤ w(Si−1).

We now prove that the weight of the solutions proposed for Gi−1 under each alternative is
exactly w(Si) + w(SH∪{v}), making them both optimal.

If {u, v} ∈ Si, it is easily seen that w(Si\{{u, v}}∪SH∪{v}) = w(Si)+w(SH∪{v}). If {u, v} 6∈ Si,
then, when considering Si \ {{u}} ∪ SH in Gi−1, we do not have to delete the edge uv but do have
to delete every edge joining v with vertices in H so that w(Si \ {{u}} ∪ SH) = w(Si) − w(uv) +∑

y∈H,vy∈E w(vy) + w(SH) = w(Si) + w(SH∪{v}). This ends the proof of this claim. ♦
When block Br is processed, the graph Gr−1 is a 1-split graph so we can also apply the algorithm

of Theorem 4.1 in order to obtain an optimal partition for Gr−1. Claim 4.3 describes an optimal
partition of Gi−1 in terms of an optimal partition of Gi. Applying this claim iteratively for i =
r − 1, . . . , 1, we construct an optimal solution for the graph G0 = G.

Notice that if the graph G is unweighted, the 1-split graphs in which we need to solve the
subproblems have a weight of 1 on every internal edge. In this case, as we noted before Theorem 4.2,
the algorithm is very simple.

5 Interval graphs

Another interesting subclass of chordal graphs is the class of interval graphs. A graph G is an
interval graph if G is the intersection graph of a finite family of intervals of the real line, and it
is a proper interval graph if it admits an intersection model in which no interval properly contains
another. A unit interval graph is the intersection graph of a finite family of intervals of the real line,
all of the same length. Proper interval graphs and unit interval graphs are equivalent classes and
are also equivalent to the class of claw-free interval graphs [20] (the claw is the complete bipartite
graph K1,3).

A restricted subclass of unit interval graphs is the class of paths of cliques. A graph is a path
of cliques if after contracting true twins into a single vertex, the resulting graph is a single path.
In other words, its vertex set can be partitioned into sets A1, . . . , An in such a way that any pair
of vertices v, w such that v ∈ Ai and w ∈ Aj is adjacent if and only if either i = j or i = j + 1 or
i = j − 1. Paths of cliques are also known in the literature as line graphs of multipaths.

In a clustering context, if the measured data arrive during a time-line as a sequence of sets and it
is desired to cluster the data on the basis of both a similarity function, defined by intrinsic properties

10

of the data, and closeness in time, defined as arriving either in the same set or in consecutive sets,
these paths of cliques will arise.

In what follows, we prove a result using an approach similar to that used for Theorem 4.1. We
begin by defining an initial solution, then represent every solution by a subset of a set, and finally
show that the function that assigns to every subset the weight difference between its associated
solution and the initial one is submodular.

Theorem 5.1 (Polynomiality on weighted paths of cliques). The cluster deletion problem is
polynomial-time solvable for weighted paths of cliques.

Proof. Let A1, . . . , An be the vertex set partition of a path of cliques G = (V,E). Without loss
of generality, we may assume that n is even, if necessary adding a set An+1 with only one vertex
adjacent to every vertex in An with edges of zero weight. Let n = 2r and define the initial solution
as the cliques A2k−1∪A2k for 1 ≤ k ≤ r. Every vertex of Ai, for 1 < i < n, has two possibilities: to
be either part of a clique contained in Ai−1 ∪Ai or part of a clique contained in Ai ∪Ai+1. Hence,
any solution is completely defined by the subset S of V \ (A1 ∪An) that is moved from the initial
solution to a clique contained in A2j ∪A2j+1, for some integer 1 ≤ j ≤ r− 1. We define f(S) for a
subset S of V \ (A1∪An) as the difference between the weight of the solution associated with S and
the weight of the initial solution. The optimal solution will be given by the subset S that minimizes
the function f . We now show that S is a submodular function, implying that a minimizer can be
found in strongly polynomial time.

The function f can be expressed as f(S) =
∑

1≤k≤r f
k(S), where

fk(S) =
∑

v∈S∩A2k
u∈A2k−1

w(vu) +
∑

v∈S∩A2k−1
u∈A2k

w(vu) +
∑

v∈S∩A2k−1

u∈A2k−1\S

w(vu) +
∑

v∈S∩A2k
u∈A2k\S

w(vu)−
∑

v∈S∩A2k
u∈S∩A2k+1

w(vu)−
∑

v∈S∩A2k−1
u∈S∩A2k

w(vu)

. To simplify this expression we let A2r+1 = ∅. Note that the last term in the sum prevents double
counting by the first two terms.

For each value of k, define fk1 (S), . . . , fk6 (S) as the six terms of fk(S). It can easily be seen that
for i = 1, 2 and S, T subsets of V \ (A1 ∪An), it holds fki (S) + fki (T) = fki (S ∪ T) + fki (S ∩ T). We
will prove that for i = 3, . . . , 6, fki (S) + fki (T) ≥ fki (S ∪ T) + fki (S ∩ T).

For S, T subsets of V \ (A1 ∪ An), and by decomposing S as (S \ T) ∪ (S ∩ T) (resp. T as
(T \S)∪ (S ∩T)); V \S as (T \S)∪ (V \ (S ∪T)) (resp. V \T as (S \T)∪ (V \ (S ∪T))); S ∪T as
(S \ T)∪ (T \ S)∪ (S ∩ T); and V \ (S ∩ T) as (T \ S)∪ (S \ T)∪ (V \ (S ∪ T)), it can be seen that

fk3 (S) + fk3 (T)− fk3 (S ∪ T)− fk3 (S ∩ T) = 2
∑

v∈(S\T)∩A2k−1

u∈(T\S)∩A2k−1

w(vu) ≥ 0

because the weights are nonnegative, so fk3 is submodular. The proof for fk4 is identical.
Recall that fk5 (S) = −

∑
v∈S∩A2k,u∈S∩A2k+1

w(vu). By using again the decomposition S as

(S \ T)∪ (S ∩ T) (resp. T as (T \ S)∪ (S ∩ T)); and S ∪ T as (S \ T)∪ (T \ S)∪ (S ∩ T), it can be
seen that

fk5 (S) + fk5 (T)− fk5 (S ∪ T)− fk5 (S ∩ T) =∑
v∈(S\T)∩A2k

u∈(T\S)∩A2k+1

w(vu) +
∑

v∈(T\S)∩A2k

u∈(S\T)∩A2k+1

w(vu) ≥ 0

11

because the weights are nonnegative, so fk5 is submodular. The proof for fk6 is identical. Finally,
the sum of submodular functions is submodular, and this completes the proof.

A split graph is called complete if each vertex of the independent set is adjacent to all the
vertices of the clique. By modifying the proof of Theorem 2.1 slightly, we can prove the following.

Theorem 5.2 (NP-completeness on weighted complete split graphs). The cluster deletion problem
is NP-complete for weighted complete split graphs even if the weight of all the internal edges of the
clique is 1.

Proof. We again use a reduction of the X3C problem. Let X = {x1, . . . , x3q} and C = {c1, . . . , cm}
be an instance of the X3C problem where each element ci ∈ C is a 3-element subset of X, with
m ≥ q ≥ 1. We want to know if there exists a subset C ′ ⊆ C with size q such that each element
in X belongs to exactly one of the elements in C ′. We construct an edge-weighted complete split
graph G = (KX ∪ IC , E), where KX induces a clique with 3q vertices, IC induces an independent
set with m vertices, and each vertex of C is adjacent to every vertex in KX . To each element
xi ∈ X we associate a vertex xi in KX , and to each 3-subset cj ∈ C we associate a vertex cj ∈ IC .
The weight of the edges with both endpoints in KX is 1 and the weight of an edge xicj with xi
in KX and cj in IC is β =

(
3q
2

)
+ 3m(q − 1) + 1 if the element xi of X belongs to the set cj of

C, and 1 otherwise. Clearly, its construction can be done in polynomial time from (X,C). Let
W =

(
3q
2

)
− 3q + 3(m − q)β + 3m(q − 1). We will show that there exists a subset C ′ ⊆ C, with

|C ′| = q, exactly covering X if and only if G admits a clique partition where the sum of the weights
of the edges outside the cliques is at most W . In other words, there exists a solution for the X3C
problem if and only if there exists a clique partition of G with a weight of at most W .

Assume first that there exists C ′ ⊆ C, with C ′ = {c′1, . . . , c′q} such that c′i ∩ c′j = ∅ whenever
i 6= j, and

⋃
c′j∈C′

c′j = X. We construct a clique partition of G as follows: for each c′j ∈ C ′, with

c′j = {xj1 , xj2 , xj3}, choose the clique {c′j , xj1 , xj2 , xj3} in G. Each one of the remaining m − q
vertices in IC forms a clique of size 1. It is easily seen that the sum of the edge weights outside
those cliques is exactly equal to W .

Now assume conversely that G admits a clique partition with a weight of at most W . We will
prove that there exists C ′ ⊆ C, with |C ′| = q, such that C ′ is an exact cover for X. To do this,
we first analyze the structure of such a partition. Note that β is greater than the number of edges
of weight 1 in G, so a solution with weight W has as its external edges exactly 3(m − q) edges of
weight β. It cannot have less than 3(m − q) external edges of weight β because each KX vertex
belongs to a clique of the partition with at most one vertex of IC . So, every vertex of KX belongs
to a clique with exactly one vertex of IC , and is joined to that vertex by an edge of weight β. This
means that all the edges of weight 1 and one endpoint in IC are external edges and that each clique
of the partition contains at most three vertices of KX . By the value of W we can see that each
clique should contain exactly three vertices of KX , and this solution, following the general lines of
the proof of Theorem 2.1, is a solution of the X3C instance, thus ending the proof of the present
theorem.

Complete split graphs are also interval graphs but not (in general) unit interval graphs. Indeed,
if the size of the independent set is at least 3 and the clique is nonempty, we obtain a claw (the
complete bipartite graph K1,3), that is not a unit interval graph. We therefore have the following
corollary.

12

Corollary 5.3 (NP-completeness on weighted interval graphs). The cluster deletion problem is
NP-complete for weighted interval graphs.

Turning now to the case of unweighted unit interval graphs, we will show that the cluster
deletion problem is polynomial-time solvable. But first we must state some known results and
prove a lemma describing the structure of an optimal solution.

Theorem 5.4 (Roberts, 1969 [20]). A graph G is a unit interval graph if and only if its vertices can
be linearly ordered such that, for each clique M of G, the vertices contained in M are consecutive.

Such an ordering is called a canonical ordering of the vertices.

Lemma 5.5 (Consecutiveness for unweighted unit interval graphs). Let G be an unweighted unit
interval graph and v1, . . . , vn be a canonical ordering of the vertices of G. Then there is an optimal
solution of the cluster deletion problem for G such that each clique of the solution consists of
consecutive vertices in that ordering.

Proof. Let us define, for each clique B of an optimal solution S, m(B) = max{j : vj ∈ B}. Now
let B1, . . . , Bk be the cliques of the solution such that m(Bi) ≤ m(Bi+1), for i = 1, . . . , k − 1.
Suppose that not all the cliques consist of consecutive vertices, and let i be a minimum such that
either i < m(B1) and vi 6∈ B1, or m(Bj−1) < i < m(Bj) but vi 6∈ Bj , for some j. Let j′ be such
that vi ∈ Bj′ . Then, by the choice of i, all the vertices of Bj′ have subindex greater than i and
j′ > j so that m(Bj′) > m(Bj). Since vi is adjacent to vm(Bj′)

and G is a proper interval graph
with canonical ordering v1, . . . , vn, the vertices vi, . . . , vm(Bj′)

form a clique, and in particular,

Bj′ ∪ {vm(Bj)} is a clique and vi is adjacent to vm(Bj). So, independently of i being greater or
less than the minimum index of a vertex in Bj , Bj ∪ {vi} is a clique. Then, either |Bj | ≥ |B′j |
and S \ {Bj , Bj′} ∪ {Bj ∪ {vi}, Bj′ \ {vi}} is a clique partition whose weight is less than w(S), or
|Bj | < |B′j | and S \ {Bj , Bj′} ∪ {Bj \ {vm(Bj)}, Bj′ ∪ {vm(Bj)}} is a clique partition whose weight is
less than w(S), which in both cases are contradictions.

Theorem 5.6 (Polynomiality on unweighted unit interval graphs). The cluster deletion problem
can be solved in polynomial time on unweighted unit interval graphs.

Proof. Using Lemma 5.5, we can easily develop a dynamic programming algorithm. For i =
0, 1, . . . , n, let f(i) be the value of an optimal cluster deletion solution for the subgraph of G
induced by v1, . . . , vi. Then f(0) = f(1) = 0 and, for i > 1, f(i) is the minimum, over all j such
that {vj , . . . , vi} is a clique (i.e., either j = i or vjvi ∈ E(G)) of f(j−1) plus the amount of vertices
joining {v1, . . . , vj−1} with {vj , . . . , vi} (which is 0 if j = 1). By keeping the number j that yields
the minimum f(i), we can also reconstruct the partition itself.

A very similar approach is used in [19] to solve the cluster editing problem on unit interval
graphs, where edge insertions and deletions can be performed in order to obtain a cluster graph.

General interval graphs do not have the same clique structure as unit interval graphs and for
weighted unit interval graphs, Lemma 5.5 does not hold. An example of this is the graph P 2

6 , whose
vertices are v1, . . . , v6 and vi is adjacent to vj if and only if 1 ≤ |i − j| ≤ 2. It is easily seen that
the only possible canonical orderings for P 2

6 are v1, . . . , v6 or v6, v5, . . . , v1. Let w be defined on the
edges of P 2

6 such that w(v2v4) = w(v3v5) = 100 and w(e) = 1 for every other edge e. Any solution
to the cluster deletion problem that does not contain {v2, v4} and {v3, v5} as cliques has a weight of

13

at least 100 so the optimal solution is to have {v2, v4}, {v3, v5} and isolated vertices with a weight
of 7.

The example shows that the idea behind Theorem 5.6 cannot be generalized in a straightforward
manner. Therefore, the computational complexity of the cluster deletion problem on unweighted
interval graphs and on weighted unit interval graphs remains unknown.

Complete split graphs are also cographs (i.e., P4-free graphs). The cluster deletion problem
on unweighted cographs was solved in polynomial time by Gao et al. in [11]. As a corollary of
Theorem 5.2, we have the following complexity result for the weighted case.

Corollary 5.7 (NP-completeness on weighted cographs). The cluster deletion problem is NP-
complete for weighted cographs.

6 Further results and open problems

In Theorem 2.1 we showed that the cluster deletion problem is NP-complete for weighted 3-split
graphs even if the weight of all the internal edges of the clique is 1 and the weight of the edges
between the clique and the independent set is uniform. We have seen also in Theorem 4.1 that
the cluster deletion problem is polynomial-time solvable for weighted 1-split graphs. As for 2-split
graphs, we will now show that under the conditions of Theorem 2.1 (the weight of all the internal
edges of the clique is 1 and the weight of the edges between the clique and the independent set is
uniform), the problem is polynomial-time solvable.

Theorem 6.1 (Polynomiality on restricted weighted 2-split graphs). The cluster deletion problem
is polynomial-time solvable for weighted 2-split graphs if the weight of all the internal edges of the
clique is 1 and the weight of the edges between the clique and the independent set is uniform.

Proof. Let G be a 2-split graph with split partition (K, I) and β be the weight of the edges between
K and I. Let us create a graph G′ with vertex set K ′, where K ′ is the subset of vertices of K
that have at least one neighbor in I, such that two vertices are adjacent in G′ if they have a
common neighbor in I in the graph G. Minimizing the sum of the weights of the external edges
of a clique partition of G is equivalent to maximizing the sum of the weights of the internal edges
of the partition. Let S be an optimal solution to the cluster deletion problem in G. There are
four possible classes of cliques in S: those containing one vertex of I and two vertices of K, those
containing one vertex of I and one vertex of K, those that consist of a single vertex of I, and those
completely included in K, and by optimality there is at most one clique that is completely included
in K. Suppose S contains a cliques composed of one vertex of I and two vertices of K, and b cliques
composed of one vertex of I and one vertex of K. Then the sum of the weights of the internal
edges of S is a(2β+ 1) + bβ+ c(c−1)/2 (∗), where 0 ≤ a ≤ ν(G′) (ν(G′) is the value of a maximum
matching of G′), 0 ≤ b ≤ |K ′|−2a, and c = |K|−2a−b. It is easily seen that in an optimal solution,
either a = ν(G′) or b = 0. In the first case, after the substitution a = ν(G′), the coefficient of b in
the expression (∗) is positive, so the maximum is attained either by b = 0 or by b = |K ′| − 2ν(G′).
In the second case, after the substitution b = 0, the coefficient of a in the expression (∗) is positive,
so the maximum is attained either by a = 0 or by a = ν(G′). The problem is therefore reduced
to solving maximum matching in G′ and then computing the value of (∗) for the three possible
optimal solutions a = 0, b = 0; a = ν(G′), b = 0; and a = ν(G′), b = |K ′| − 2ν(G′).

14

We leave as an open problem the determination of the computational complexity of the cluster
deletion problem in general weighted 2-split graphs, or in 2-split graphs when the weight of all the
internal edges of the clique is 1 but the weights of the edges between the clique and the independent
set is arbitrary and not necessarily uniform.

Acknowledgments. The authors are indebted to the anonymous referees for their insightful
comments, corrections, and observations that helped to improve this paper. We also want to thank
Kenneth Rivkin for his many useful suggestions.

References

[1] N. Bansal, A. Blum, S. Chawla. Correlation clustering. Machine Learning, 56(1-3):89–113,
2004. Extended abstract appeared in FOCS 2002, pp. 238–247.

[2] J.R.S. Blair, B. Peyton. An introduction to chordal graphs and clique trees. In: Graph Theory
and Sparse Matrix Computation, The IMA Volumes in Mathematics and its Applications
Volume 56, 1993, pp. 1–29.

[3] S. Böcker, P. Damaschke. Even faster parametrized cluster deletion and cluster editing. In-
formation Processing Letters, 111:717–721, 2011.

[4] F. Bonomo, G. Durán, A. Napoli, M. Valencia-Pabon. A one-to-one correspondence between
potential solutions of the cluster deletion problem and the minimum sum coloring problem,
and its application to P4-sparse graphs. Information Processing Letters, 115:600–603, 2015.

[5] M. Charikar, V. Guruswami, A. Wirth. Clustering with qualitative information. In Proc. of
44th Annu. IEEE Symp. Foundations of Computer Science, FOCS 2003, pp. 524–533.

[6] P. Damaschke, O. Mogren. Editing simple graphs. Journal of Graph Algorithms and Applica-
tions, 18(4):557–576, 2014.

[7] E. D. Demaine, D. Emanuel, A. Fiat, N. Immorlica. Correlation clustering in general weighted
graphs. Theoretical Computer Science, 361:172-187, 2006.

[8] A. Dessmark, A. Lingas, E. M. Lundell, M. Persson, J. Jansson. On the approximability of
maximum and minimum edge clique partitions problems. International Journal of Foundations
of Computer Science, 18(2):217–226, 2007.

[9] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of
the National Bureau of Standards–B, Mathematics and Mathematical Physics, 69B:125–130,
1965.

[10] S. Földes, P. L. Hammer. Split graphs. In Proc. of 8th South-Eastern Conference on Combi-
natorics, Graph Theory and Computing, Congressus Numerantium, 19:311–315, 1977.

[11] Y. Gao, D. R. Hare, J. Nastos. The cluster deletion problem for cographs. Discrete Mathe-
matics, 313:2763–2771, 2013.

[12] M. R. Garey, D. S. Johnson. Computers and Intractability, Freeman, San Francisco, 1979.

15

[13] P. Hansen, B. Jaumard. Cluster analysis and mathematical programming. Mathematical
Programming, 79:191–215, 1997.

[14] J. Hartigan. Clustering Algorithms, Wiley, New York, 1975.

[15] S. Iwata, L. Fleischer, S. Fujishige. A combinatorial strongly polynomial algorithm for mini-
mizing submodular functions. Journal of the ACM, 48:761–777, 2001.

[16] B. Kaba, N. Pinet, G. Lelandais, A. Sigayret, A. Berry. Clustering gene expression data using
graph separators. In Silico Biology, 7(4-5):433–452, 2007.

[17] C. Komusiewicz, J. Uhlmann. Cluster editing with locally bounded modifications. Discrete
Applied Mathematics, 160(15):2259–2270, 2012.

[18] I. Kovac, I. Seleceniova, M. Steinova. On the clique editing problem. In Proc. of MFCS 2014,
LNCS 8635, pp. 469–480.

[19] B. Mannaa. Cluster editing problem for points on the Real line: A polynomial time algorithm.
Information Processing Letters, 1610:961–965, 2010.

[20] F.S. Roberts. Indifference graphs. In: Proof Techniques in Graph Theory (F. Harary, ed.),
Academic Press, 1969, pp. 139–146.

[21] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polyno-
mial time. Journal of Combinatorial Theory, Series B, 80:346–355, 2000.

[22] R. Shamir, R. Sharan, D. Tsur. Cluster graph modification problems. Discrete Applied Math-
ematics, 144(1–2):173–182, 2004.

[23] D. B. West. Introduction to Graph Theory. 2nd edition, Prentice-Hall, 2001.

16

