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apprécié son dynamisme, sa disponibilit´e, sa rigueur et sa bonne humeur.
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Introduction

Ce document pr´esente mes activit´es de recherche et les principaux r´esultats obtenus
aprés l’obtention du diplˆome de doctorat en Informatique `a l’Université Paris-Sud en
décembre 2000. J’ai travaill´e pendant quatre ans (janvier 2001 - d´ecembre 2004) comme
enseignant assistant au d´epartement des math´ematiques de l’Universit´e des Andes (Colom-
bie). Pendant cette p´eriode, j’ai enseign´e et travaillé en théorie des graphes, th´eorie
algébrique des graphes, th´eorie des groupes et algorithmique. De janvier 2005 `a juin 2006,
j’ai enseigné algorithmique au d´epartement des math´ematiques appliqu´ees de l’Universit´e
de Padoue (Italie). C’est en 2006 que j’ai ´eté recruté comme Maˆıtre de Conférences `a
l’Université Paris-Nord, o`u je travaille dans l’´equipeOptimisation Combinatoire et Al-
gorithmique Distribúee(OCAD) au sein duLaboratoire d’Informatique de l’Université
Paris-NordUMR CNRS 7030.

Mes travaux de recherche font partie desMathématiques Discr̀etes, plus précisément,
de laThéorie des Graphes. Ils portent sur l’étude de certaines variantes du probl`eme de
coloration des graphes. Je m’int´eresse `a l’étude de nouvelles propri´etés pour l’obtention
des algorithmes polynomiaux ainsi comme `a l’analyse de la complexit´e algorithmique de
certaines variantes de la coloration dans certaines familles des graphes. Ma recherche
porte aussi sur l’´etude de probl`emes alg`ebriques concernant la coloration des graphes. Ce
document est compos´e principalement des trois chapitres suivants.

Chapitre 2 : b-coloration des graphes

Dans ce chapitre, on montre d’abord qu’il n’existe pas une constanteε > 0 pour
laquelle le probl`eme de la d´etermination du nombre b-chromatique d’un graphe peut ˆetre
approché avec un facteur de120/113−ε en temps polynomial, sauf si P= NP. Ce résultat
est jusqu’à présent, l’unique r´esultat concernant la difficult´e d’approximer tel param`etre
dans les graphes. Ce travail `a été réalisé avec la collaboration de Sylvie Corteel (CNRS,
France) et Juan Vera (University of Waterloo, Canada) (voir r´eférence [19]).

Ensuite, on montre que les graphesP4-sparse (et en particulier, les cographes) sont
b-continus et b-monotones. En plus, il est donn´e un algorithme de programmation dy-
namique pour d´eterminer en temps polynomial le nombre b-chromatique dans cette famille
des graphes. Ce travail `a été réalisé avec la collaboration de Flavia Bonomo, Guillermo
Dúran (Universidad de Buenos Aires, Argentina), Fr´edéric Maffray (CNRS, France), et
Javier Marenco (Universidad Nacional de General Sarmiento, Argentina) (voir r´eférence
[8]).
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Chapitre 3 : Produit direct de certains graphes sommet-transitifs

Dans ce chapitre, on ´etudie d’abord le nombre d’ind´ependence et le nombre chroma-
tique du produit direct de graphes circulaires, graphes de Kneser et de graphes puissance
des cycles via homomorphismes. Ce travail `a été réalisé avec la collaboration de Juan
Vera (University of Waterloo, Canada) (voir r´eférence [80]).

Ensuite, en utilisant des m´ethodes alg´ebriques classiques, on obtient une charact´erisation
complète des partitions idomatiques du produit direct de trois graphes complets ainsi que
la détermination du nombre idomatique de ces graphes (voir r´eférence [78]).

Chapitre 4 : Somme-coloration de graphes

Dans ce chapitre, on ´etudie d’abord le probl´eme de la somme-coloration minimum
(MSC) dans les graphesP4-sparse. Dans ce cas, le but consiste en colorier les sommets
du graphe avec des entiers positifs, tout en minimisant la somme des couleurs affect´ees
aux sommets. On montre qu’il y a une grande sous-famille des graphesP4-sparse pour
laquelle ce probl´eme peut ˆetre résolu en temps polynomial. Ce travail `a été réalisé avec la
collaboration de Flavia Bonomo (Universidad de Buenos Aires, Argentina) (voir r´eférence
[10]).

Le probléme de la somme-arˆete-coloration minimum d’un graphe (MSEC) peut se
définir de manière analogue. Dans ce chapitre, on ´etudie le probl`eme MSEC dans le cas
des multicycles (cycles avec des arˆetes multiples). On propose des algorithmes simples
(pseudo) polynomiaux pour r´esoudre ce probl`eme dans cette famille de multigraphes. Ce
travail à été réalisé avec la collaboration de Jean Cardinal (Universit´e Libre de Bruxelles,
Belgique) et Vlady Ravelomanana (Universit´e Paris-Nord, France) (voir r´eférences [13,
14]).

Finalement, on a d´efini le problème de la somme-ensemble-coloration minimum (MSSC)
d’un graphe, lequel consiste `a affecter un ensemble d’entiers positifs de tailleω(v) à
chaque sommetv du graphe, de telle sorte que l’intersection des ensembles affect´esà des
sommets adjacents soit vide et que la somme totale des ensembles des entiers affect´es aux
sommets soit minimum. Il est clair que siω(v) = 1 pour tout sommetv du graphe, alors le
problème MSSC deviens le probl`eme MSC. On montre que, dans les arbres, le probl`eme
MSSC peut ˆetre résolu en temps polynomial (resp. est un probl`eme NP-difficile) dans le
cas où l’ensemble des entiers affect´esà chaque sommet est un intervalle cons´ecutif (resp.
non-cons´ecutif). On montre aussi que, dans le cas des graphes repr´esentatifs des arˆetes
des arbres, le probl`eme MSSC est NP-difficile quand l’ensemble des entiers affect´es à
chaque sommet est un intervalle cons´ecutif. Ce travail `a été réalisé avec la collaboration
de Flavia Bonomo, Guillermo D´uran (Universidad de Buenos Aires, Argentina), et Javier
Marenco (Universidad Nacional de General Sarmiento, Argentina) (voir r´eférence [9]).

Conclusions et Perspectives

Le dernier chapitre conclut ce document et s’ouvre sur les diff´erentes perspectives de
recherche que pourront ˆetre dans le futur trait´ees par ult´erieures collaborations nationales
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et internationales ainsi qu’ˆetreà la base de nouvelles th´ematiques de th`ese en Informatique
Théorique ou en Math´ematiques Discr`etes.
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Chapter 1

Introduction

This manuscript presents the principal results that I have obtained after my Ph.D. de-
gree in Computer Science at Paris-Sud University in December 2000. After my Ph.D.
degree I have worked four years (from January 2001 to December 2004) as Assistant
Professor at the Mathematical Department of ”Los Andes” University in Bogot´a (Colom-
bia). During this period, I have had the opportunity of teaching and working on Algebraic
Graph Theory, Graph Theory, Group Theory and Algorithmic. From January 2005 till
June 2006, I have taught some Algorithmic courses at the Mathematical Department of
the University of Padova (Italy). From September 2006, I have obtained a tenure position
as ”Maı̂tre de Conférences” in Computer Science at Paris-Nord University. Actually, I’m
working in the Computer Science Department of the Paris-Nord University in the OCAD
team (”Optimisation Combinatoire et Algorithmique Distribuée”).

My research domain isDiscrete Mathematics. Precisely, the main goal of my research
is the study of several problems on variations of the famous classical problem of graph
coloring. I have studied new properties to develop algorithms for solving some of the pro-
posed problems and to address the computational complexity of some of these variations
of graph coloring in different graph classes, not overlooking the practical applications of
these models. This manuscript is composed of three principal chapters as in the following.

Chapter 2 : b-coloring of graphs

In this chapter, it is proved that there is no constantε > 0 for which the problem of
determining the b-chromatic number of a graph can be approximated within a factor of
120/113 − ε in polynomial time, unless P= NP. This result is until now the only hard-
ness approximation result known for this parameter. This work has been done with the
collaboration of Sylvie Corteel (CNRS, France) and Juan Vera (University of Waterloo,
Canada) (see reference [19]).

Next, it is proved thatP4-sparse graphs (and, in particular, cographs) are b-continuous
and b-monotonic. Besides, it is given a dynamic programming algorithm to compute the
b-chromatic number in polynomial time within these graph classes. These algorithms rely
on the structural properties of the corresponding classes and are based on the notion of
dominance vector. This work has been done with the collaboration of Flavia Bonomo and

11
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Guillermo Dúran (Universidad de Buenos Aires, Argentina), Fr´edéric Maffray (CNRS,
France), and Javier Marenco (Universidad Nacional de General Sarmiento, Argentina)
(see reference [8]).

Chapter 3 : Direct products of some vertex-transitive graphs

In this chapter, the independence and chromatic numbers of finite direct products
graphs of circular graphs, Kneser graphs and powers of cycles is studied. In the case
of circular and Kneser graphs, this is done via classical homomorphisms. For the direct
product graph of powers of cycles, first it is analyzed its independence number and then
such a parameter is used to compute its chromatic number. This work has been done with
the collaboration of Juan Vera (University of Waterloo, Canada) (see reference [80]).

Next, by using an standard algebraic approach, a full characterization of the idomatic
partitions of the direct product of three complete graphs is given, and it is shown how to
use such a characterization in order to construct idomatic partitions of the direct product
of four or more complete graphs (see reference [78]).

Chapter 4 : Sum-coloring of graphs

In this chapter, the Minimum Sum Coloring (MSC) problem onP4-sparse graphs is
studied. In the MSC problem, the goal is to assign natural numbers to vertices of a graph
such that adjacent vertices get different numbers, and the sum of the numbers assigned
to the vertices is minimum. It is introduced the concept of maximal sequence associated
with an optimal solution of the MSC problem of any graph. Based in such maximal
sequences, it is shown that there is a large sub-family ofP4-sparse graphs for which
the MSC problem can be solved in polynomial-time. This work has been done with the
collaboration of Flavia Bonomo (Universidad de Buenos Aires, Argentina) (see reference
[10]).

In an analogous way, it has been defined the edge coloring version of the MSC prob-
lem : theMinimum Sum Edge Coloring(MSEC) problem. Thechromatic edge strength
of a graph is the minimum number of colors required in a minimum sum edge coloring of
this graph. In this part, it is studied the case of multicycles, defined as cycles with parallel
edges, and it is given a closed-form expression for the chromatic edge strength of a mul-
ticycle, thereby extending a theorem due to Berge. It is shown that the minimum sum can
be achieved with a number of colors equal to the chromatic index. It is also proposed sim-
ple algorithms for finding a minimum sum edge coloring of a multicycle. These results
are generalized to a large family of minimum cost coloring problems. This work has been
done with the collaboration of Jean Cardinal (Universit´e Libre de Bruxelles, Belgique)
and Vlady Ravelomanana (Universit´e Paris-Nord, France) (see references [13, 14]).

Finally, it is defined the Minimum Sum Set Coloring (MSSC) problem which consists
in assign a set ofω(v) positive integers to each vertexv of a graph so that the intersection
of sets assigned to adjacent vertices be empty and the sum of the assigned set of numbers
to each vertex of the graph is minimum. Clearly, whenω(v) = 1 for each vertexv of
the graph, the MSSC problem becomes the MSC problem. It is shown that the MSSC
problem on trees is polynomial-time solvable in thenon-preemptivecase (i.e. the set of
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integers assigned to each vertex is a consecutive interval) but NP-hard in thepreemptive
case. Finally, it is shown that thenon-preemptivecase of the MSSC problem is NP-hard
for line graphs of trees. This work has been done with the collaboration of Flavia Bonomo
and Guillermo Dúran (Universidad de Buenos Aires, Argentina), and Javier Marenco
(Universidad Nacional de General Sarmiento, Argentina) (see reference [9]).

Conclusions and Perspectives

This final chapter contains the conclusions of this manuscript and gives some perspec-
tives for a future work at the basis of the formulation of new Ph.D. subjects in Theoretical
Computer Science and Discrete Mathematics.
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Chapter 2

b-coloring of graphs

We consider finite undirected graphs without loops or multiple edges. Avertex color-
ing (i.e. proper coloring) of a graphG = (V, E) is an assignment of colors to the vertices
in V such that adjacent vertices receive different colors. We assume that the colors are
positive integers. A vertext-coloring of a graphG is a coloring where the color of each
vertex inV is taken from the set{1, 2, . . . , t}. The smallest numbert such thatG admits
a t-coloring is called thechromatic numberof G and is denoted byχ(G).

Given a coloring of a graphG with t colors, a vertexv is said to bedominantor
t-dominantif v is adjacent to at least one vertex receiving each of thet − 1 colors not
assigned tov. A b-coloring of a graph is a coloring such that every color class admits
a dominant vertex. Note that every coloring ofG with χ(G) colors is a b-coloring. The
b-chromatic numberof a graphG, denoted byχb(G), is the maximum numbert such that
G admits a b-coloring witht colors. This parameter has been introduced by R. W. Irving
and D. F. Manlove [45], by considering proper colorings that are minimal with respect to
a partial order defined on the set of all the partitions of the vertex set ofG. They proved
that determiningχb(G) is NP-hard for general graphs, but polynomial-time solvable for
trees. In [57], Kratochvil, Tuza and Voigt show that determiningχb(G) is NP-hard even
if G is a connected bipartite graph.

Several related concepts concerning b-colorings of graphs have been studied in [25,
42, 43, 53, 54, 63]. A graphG is defined to beb-continuous[25] if it admits a b-coloring
with t colors, for everyt = χ(G), . . . , χb(G). For example, the graph in Figure 2.1 is
not b-continuous since it admits b-colorings with 2 colors and 4 colors, but no b-coloring
with 3 colors. In [53] (see also [25]) it is proved that chordal graphs and some planar
graphs are b-continuous.

Hoàng and Kouider [42] defined the concept ofb-perfectnessof a graph. A graph
G is b-perfectif χb(H) = χ(H) for every induced subgraphH of G. The property
χb(G) = χ(G) is not hereditary: the graph in Figure 2.2 hasχb(G) = χ(G) = 3 but
it contains an induced subgraphH with χb(H) = 4 andχ(H) = 3. Also a graphG is
b-imperfectif it is not b-perfect, andminimally b-imperfectif it is b-imperfect and every
proper induced subgraph ofG is b-perfect (see [54, 43, 63] and references therein).

We define a graphG to beb-monotonicif χb(H1) ≥ χb(H2) for every induced sub-
graphH1 of G, and every induced subgraphH2 of H1. This property does not hold in
general, see Figure 2.2. Notice that, by the monotonicity of the chromatic number, both

15



16 CHAPTER 2. B-COLORING OF GRAPHS

Figure 2.1: A non-b-continuous graph, admitting b-colorings with 2 and 4 colors but no
b-coloring with 3 colors.

b-perfect and minimally non b-perfect graphs are b-monotonic.

Figure 2.2: A non-b-monotonic graphG. We haveχb(G) = 3, but the subgraphH
obtained fromG by deleting the central vertex hasχb(H) = 4.

Recently, the theory of b-colorings of graphs has been applied in [21] to some cluster-
ing problems in data mining processes. In fact, clustering is generally defined as an unsu-
pervised data mining process which aims to divide a set of data into groups, or clusters,
such that the data within the same group are similar to each other while data from different
groups are dissimilar. However, additional background information (namely constraints)
is available in some domains and must be considered in the clustering solutions. A b-
coloring-based approach exhibits more important clustering features an enables to build a
fine partition of the data set in clusters when the number of clusters is not predefined.

In this chapter, we first prove in Section 2.1 that, there is no constantε > 0 for
which the problem of determining the b-chromatic number of a graph can be approxi-
mated within a factor of120/113 − ε in polynomial time, unless P= NP. This result is
until now, the only hardness approximation result known for this parameter. This work
has been done with the collaboration of Sylvie Corteel (CNRS, France) and Juan Vera
(University of Waterloo, Canada) (see reference [19]). In Section 2.2, we prove thatP4-
sparse graphs (and, in particular, cographs) are b-continuous and b-monotonic. Besides,
we describe a dynamic programming algorithm to compute the b-chromatic number in
polynomial time within these graph classes. These algorithms rely on the structural prop-
erties of the corresponding classes, and are based on the notion of dominance vector that
we will introduce in Section 2.2. This work has been done with the collaboration of Flavia
Bonomo and Guillermo D´uran (Universidad de Buenos Aires, Argentina), Fr´edéric Maf-
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fray (CNRS, France), and Javier Marenco (Universidad Nacional de General Sarmiento,
Argentina) (see reference [8]).

2.1 On approximating the b-chromatic number

2.1.1 Preliminaries

LetP be a maximization problem and letα ≥ 1. For an instancex ofP letOPT (x) be
the optimal value. Anα-approximation algorithmfor P is a polynomial time algorithmA
such that on each input instancex of P it outputs a numberA(x) such thatOPT (x)/α ≤
A(x) ≤ OPT (x).

To show the hardness of approximating the b-chromatic number we relate it to the
hardness of approximating the optimization version of thek-ESAT problem. Letk be an
integer greater than 1.

k-ESAT problem.
Instance: A setX = {x1, x2, . . . , xn} of boolean variables, a collectionC = {c1, c2, . . . , cp}
of disjunctive clauses with exactlyk different literals, where a literal is a variable or a
negated variable inX.
Question: Does there exist a truth assignment for the variables inX such that each clause
in C is satisfied?

The decision version of thek-ESAT problem is NP-complete fork ≥ 3 [29]. Johnson
showed in [52] the following result.

Theorem 1 (Theorem 3 in [52]) Let(X, C) be an instance of thek-ESAT problem. Then,
there is a deterministic polynomial time algorithm that finds a truth assignment for vari-
ables inX which satisfies at least|C|(1 − 1/2k) clauses inC.

The MAX k-ESAT problem is the optimization version of thek-ESAT problem in
which, given an instance ofk-ESAT, the goal consists of finding the maximum number
of clauses that can be satisfied simultaneously by any truth assignment of the boolean
variables. The MAXk-ESAT problem is NP-hard [29].

Note that in the casek = 3, Theorem 1 gives an8/7-approximation algorithm for the
MAX 3-ESAT problem. Moreover, H˚astad showed in [37] the following inapproximabil-
ity result for the MAX 3-ESAT problem.

Theorem 2 (Theorem 6.1 in [37]) The MAX 3-ESAT problem is not approximable within
8/7 − ε for anyε > 0, unless P= NP.

In the following section, we use Theorem 2 restricted to a special kind of instances in order
to obtain an inapproximability result for the b-chromatic number problem of a graph.

Definition 1 We say that an instance(X, C) of MAX 3-ESAT is non-trivial if|C| > 4,
and for allx ∈ X
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• There is noc ∈ C such thatx, x ∈ c,

• There arec, d ∈ C such thatx ∈ c andx ∈ d.

We now show that Theorem 2 holds when restricted to non-trivial instances of MAX
3-ESAT.

Corollary 1 The MAX 3-ESAT problem is not approximable within8/7−ε for anyε > 0,
even when restricted to non-trivial instances.

Proof : We present a proof by contradiction. Assume that there is an(8/7−ε)-approximation
algorithm running in polynomial timep(|X|+ |C|) for non-trivial instances(X, C) of the
MAX 3-ESAT problem, for some0 < ε ≤ 1/7. We prove that there is an(8/7 − ε)-
approximation algorithm for the MAX 3-ESAT problem. This contradicts Theorem 2.

We prove this by induction on|X| + |C|. The base case is trivial. Now, letk > 1 and
assume that the statement holds for all instances(X, C) such that|X| + |C| < k, and let
(X, C) be an instance of MAX 3-ESAT such that|X| + |C| = k. If the instance is non-
trivial, the statement follows from our initial assumption. If not we have three possible
cases:

• There isx ∈ X such that there isc ∈ C with x, x ∈ c. Let C ′ = C \ {c}. By
induction hypothesis applied to(X, C ′), we can get, in polynomial time, a truth
assignment for the variables inX that satisfies at least|C

′|
8/7−ε

clauses inC ′. This
assignment also satisfiesc and therefore satisfies at least

|C ′|
8/7 − ε

+ 1 ≥ |C|
8/7 − ε

clauses ofC.

• There isx ∈ X such that no clausec ∈ C containsx. Let X ′ = X \ {x} and
C ′ = C \ {c ∈ C : x ∈ c}. By induction hypothesis we can get, in polynomial
time, a truth assignment for the variables inX ′ that satisfies at least|C

′|
8/7−ε

clauses
in C ′. Now we assign the value True tox, and all clauses inC containing it are
satisfied. Therefore we have a truth assignment satisfying at least

|C ′|
8/7 − ε

+ |C \ C ′| ≥ |C|
8/7 − ε

clauses.

• There isx ∈ X such that no clausec ∈ C containsx. This case is analogous to the
previous one.

Therefore, there is a(8/7 − ε)-approximation algorithm for the MAX 3-ESAT problem
running in polynomial-timeO(k2)p(k), where theO(k2) term represents the time needed
to find the desiredx and constructX ′ andC ′ and is certainly not the best possible. �
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2.1.2 Hardness of approximation

In this section we prove the hardness result for approximating the b-chromatic number
problem of a graph.

Let (X, C) be an instance of the 3-ESAT problem. We defineG(X, C) = (V, E) to
be the graph constructed as follows:

Let X = {x1, x2, . . . , xn} be the set of boolean variables, and letC = {c1, c2, . . . , cp}
be the collection of disjunctive clauses, withci = {li,1, li,2, li,3} for i = 1, 2, . . . , p, where
li,j = xk or li,j = xk for some1 ≤ k ≤ n.

Let

V ={v} ∪ {zi : 1 ≤ i ≤ p − 1} ∪ {wj : 1 ≤ j ≤ 2p}
∪ {yi : 1 ≤ i ≤ p} ∪ {xi,j , xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ p},

and let

E ={{zi, wj} : 1 ≤ i ≤ p − 1, 1 ≤ j �= i ≤ 2p}
∪ {{v, zi} : 1 ≤ i ≤ p − 1} ∪ {{v, yi} : 1 ≤ i ≤ p}
∪ {{yi, yj} : 1 ≤ i < j ≤ p}
∪ {{xi,j, xi,k} : 1 ≤ i ≤ n, 1 ≤ j, k ≤ p}
∪ {{yi, xj,k} : 1 ≤ i ≤ p, 1 ≤ j ≤ n, 1 ≤ k ≤ p, xj ∈ ci}
∪ {{yi, xj,k} : 1 ≤ i ≤ p, 1 ≤ j ≤ n, 1 ≤ k ≤ p, xj ∈ ci}.

Notice that|V | = 2np + 4p.

The resulting graphG(X, C) = (V, E) is shown in Figure 2.3.
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Figure 2.3: Partial construction ofG from (X, C), where the clauseci ∈ C contains the
literalsx1 andxn.
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Theorem 3 Let (X, C) be a non-trivial instance of the 3-ESAT problem, where|X| = n
and|C| = p. Then,χb(G(X, C)) = p + t wheret is the maximum number of clauses that
can be satisfied inC.

The proof of Theorem 3 requires Propositions 1 and 2 below.

Proposition 1 Let (X, C) be a non-trivial instance of the 3-ESAT problem, where|X| =
n and|C| = p. Let t be the maximum number of clauses that can be satisfied inC. Then
there is ab-coloring ofG(X, C) with p + t colors.

Proof : Fix a truth assignment of the variables that satisfies exactlyt clauses. W.l.o.g.
assume that the clauses satisfied inC arec1, c2, . . . , ct.

Color the vertices ofG(X, C) with p + t colors as follows:

• for 1 ≤ i ≤ p − 1, assign colori to vertexzi,

• assign colorp to vertexv,

• for 1 ≤ i ≤ t, assign colorp + i to vertexyi.

The previous vertices will be the dominating vertices of each one of thep+t color classes.
For 1 ≤ j ≤ p + t, assign colorj to vertexwj, and for1 ≤ j ≤ p − t, assign color

p + t to vertexwp+t+j. In this way, the vertexzi is dominating for the color classi.
Vertexv is already a dominating vertex for the color classp.
For t + 1 ≤ i ≤ p, assign to vertexyi the colori − t.
For every1 ≤ i ≤ n, do the following. Ifxi is true, choose1 ≤ s ≤ p such that

xi ∈ cs. Notice thatcs is satisfied and therefores ≤ t. Assign to eachxi,j color j and to
xi,j colorp + s, for 1 ≤ j ≤ p. If xi is false thenxi is true, and proceed in the analogous
way.

Now, we just need to check that the coloring is proper and that for1 ≤ i ≤ t, yi is a
dominating vertex for its color class.

The coloring is not proper only if there are1 ≤ i ≤ p, 1 ≤ j ≤ n and1 ≤ k ≤ p
such that there is an edge betweenyi andlj,k, wherelj,k = xj,k or lj,k = xj,k, with yi and
lj,k of the same color (all the other edges are taken care of directly by the construction).
Without loss of generality we assumelj,k = xj,k, because the other case is analogous. By
construction ofG(X, C), we know thatxj ∈ ci. There are two cases. If1 ≤ i ≤ t, as
the color ofxj,k is the same as the color ofyi, and this isp + i > p, thenxj is false,
soxj is true. Therefore by the construction of the coloringxj ∈ ci, but thenxj , xj ∈ ci

contradicting the non-triviality of the instance. Ift < i ≤ p, as the color ofxj,k is the
same as the color ofyi, and this isi − t < p, xj is true. Thereforeci is satisfied, but this
contradicts our assumption that the truth assignment satisfies exactly the firstt clauses.

Now, consider1 ≤ i ≤ t, and letli be a literal in clauseci such that the truth assign-
ment satisfiesli. Notice thatyi is adjacent to thep vertices that correspond to this literal,
and they received colors1, . . . , p. Since vertexyi is also adjacent to every other vertexyj,
for 1 ≤ j �= i ≤ t, vertexyi is a dominating vertex. �
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Proposition 2 Let (X, C) be a non-trivial instance of MAX 3-ESAT and let1 < t. If
there is a b-coloring ofG(X, C) with p + t colors, Then there exists a truth assignment
for X such that at leastt clauses are satisfied inC.

Proof : Fix a b-coloring ofG(X, C) with p + t colors. There are three possible cases:

• There exist1 ≤ j ≤ n and1 ≤ k ≤ p such thatxj,k is a dominating vertex. In this
case, vertexxj,k is adjacent at least top + t − 1 other vertices and thereforexj,k is
adjacent to at leastt− 1 of the verticesy ′

is. This impliesxj belongs to at leastt− 1
of thec′is. If xj belongs to at leastt of thec′is, any truth assignment wherexj is true
will satisfy t clauses inC. If xj belongs to exactlyt − 1 y ′

is, takec ∈ C such that
xj �∈ c, and letj ′ �= j, 1 ≤ j ′ ≤ n, be such thatxj′ ∈ c (or xj′ ∈ c ). Then any truth
assignment wherexj is true andxj′ is true (resp.xj′ is false) will satisfy at leastt
clauses inC.

• There are1 ≤ j ≤ n and1 ≤ k ≤ p such thatxj,k is a dominating vertex. This case
is completely analogous to the first one.

• For every1 ≤ j ≤ n and1 ≤ k ≤ p neitherxj,k norxj,k is a dominating vertex. In
this case the dominating vertices are among the set{v}∪{zi : 1 ≤ i ≤ p−1}∪{yi :
1 ≤ i ≤ p}. Now letB the set of dominating vertices belonging to{yi : 1 ≤ i ≤ p}.
Then|B| ≥ t. Without loss of generality assume that for1 ≤ i ≤ p the color of
eachyi is i and that the color assigned tov is p + 1. Now define the following truth
assignment for the boolean variables:

σ(xj) is True if and only if for all1 ≤ k ≤ p the color ofxj,k is notp + 2.

Now, let1 ≤ i ≤ p be such thatyi ∈ B. As yi is a dominating vertex, it has to be
connected to some vertex of colorp + 2, and this one has to be one of thexj,k or
xj,k for some1 ≤ j ≤ n and1 ≤ k ≤ p. Notice that ifxj,k has colorp + 2 then
for all 1 ≤ l ≤ p, the color ofxj,l is notp + 2 and thusσ(xj) is True. On the other
hand ifxj,k has colorp + 2 thenσ(xj) is False. In either caseσ satisfiesci. �

Proof of the Theorem 3. From Theorem 1,t ≥ 7p/8 > 1, and the result follows from
Propositions 1 and 2. �

By Corollary 1 and Theorem 3, the hardness approximation result for the b-chromatic
number problem now follows.

Theorem 4 The b-chromatic number problem is not approximable within120/113 − ε
for anyε > 0, unless P= NP.

Proof : Suppose that the b-chromatic number problem can be approximated within a
factor of120/113 − ε, for someε > 0. Let (X, C) be a non-trivial instance of 3-ESAT,
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as defined in Section 2. Letp be the number of clauses inC, and lett be the maximum
number of clauses ofC that can be satisfied by a truth assignment toX. By Theorem 3, we
can construct in polynomial time a graphG, namelyG(X, C), such thatχb(G) = p + t.
By the assumption, we can compute in polynomial time a b-coloring forG with l colors
such that

χb(G)

120/113 − ε
≤ l ≤ χb(G),

and by Proposition 2, we can derive a truth assignment of(X, C) which satisfies at least
l − p clauses. Then

p + t

120/113 − ε
− p ≤ l − p ≤ t.

113t − 7p + 113pε

120 − 113ε
≤ l − p ≤ t

But, from Theorem 1,p ≤ 8t/7, therefore

t

8/7 − ε
=

105t

120 − 105ε
≤ 105t + 113pε

120 − 113ε
≤ 113t− 7p + 113pε

120 − 113ε
≤ l − p ≤ t

Thus, we can get a8/7 − ε approximation tot which contradicts Corollary 1. �

2.2 On the b-coloring of cographs andP4-sparse graphs

2.2.1 Definitions and preliminary results

Given a graphG, we define thedominance sequenceto be domG ∈ Z
N≥χ(G) , such that

domG[t] is the maximum number of distinct color classes admitting dominant vertices in
any coloring ofG with t colors, for everyt ≥ χ(G). Note that it suffices to consider this
sequence untilt = |V (G)|, since domG[t] = 0 for t > |V (G)|. The algorithmic treatment
of this sequence will be based on this observation, i.e., we shall consider thedominance
vector (domG[χ(G)], . . . , domG[|V (G)|]) instead of the whole sequence. For example,
the dominance vector of the graph in Figure 2.4 is(3, 3, 2, 0).
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Figure 2.4: A pyramid and its coloring with 3, 4, 5 and 6 colors admitting 3, 3, 2 and 0
distinct color classes with dominant vertices, respectively.

Notice that a graphG admits a b-coloring witht colors if and only if domG[t] = t.
Moreover, it is clear that domG[χ(G)] = χ(G).
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Let G1 = (V1, E1) andG2 = (V2, E2) be two graphs withV1 ∩ V2 = ∅. Theunionof
G1 andG2 is the graphG1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2), and thejoin of G1 andG2 is the
graphG1 ∨ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2) (i.e.,G1 ∨ G2 = G1 ∪ G2).

A cographis aP4-free graph [17], i.e. a graph that does not contain a path with four
verticesP4 as an induced subgraph. Many NP-complete problems are polynomial time
solvable on cographs; but there are some expections, e.g. achromatic number [6], list
coloring [50], etc. The b-coloring problem on cographs was studied in [54], where b-
perfect cographs have been characterized. Nevertheless, the complexity of computing the
b-chromatic number of a cograph was not known. Cographs have a really nice structure,
since they admit a fully decomposition theorem.

Proposition 3 [17] Every non-trivial cograph is either union or join of two smaller cographs.

To each cographG one can associate a corresponding decomposition rooted treeT ,
called thecotreeof G, in the following way. Each non-leaf node in the tree is labeled
with either “∪” (union-nodes) or “∨” (join-nodes) and each leaf is labeled with a vertex
of G. Each non-leaf node has two or more children. LetTx be the subtree ofT rooted
at nodex and letVx be the set of vertices corresponding to the leaves inTx. Then, each
nodex of the cotree corresponds to the graphGx = (Vx, Ex). An union-node (join-node)
corresponds to the disjoint union (join) of the cographs associated with the children of
the node. Finally, the cograph that is associated with the root of the cotree is justG,
the cograph represented by this cotree. In the sequel, we assume that the union and join
nodes in the cotree alternate on each path from a leaf to the root. The cotree associated to
a cograph can be computed in linear time [18].

The chromatic number of a cograph can be recursively calculated from its cotree by
applying the following result.

Theorem 5 [18] If G is the trivial graph, thenχ(G) = 1. LetG1 = (V1, E1) andG2 =
(V2, E2) be two graphs such thatV1 ∩ V2 = ∅. Then,

(i) χ(G1 ∪ G2) = max{χ(G1), χ(G2)}.

(ii) χ(G1 ∨ G2) = χ(G1) + χ(G2).

For b-coloring there is a similar result, but the relation between the b-chromatic num-
ber of two graphs and the b-chromatic number of their union is weaker.

Theorem 6 [54] If G is the trivial graph, thenχb(G) = 1. Let G1 = (V1, E1) and
G2 = (V2, E2) be two graphs such thatV1 ∩ V2 = ∅. Then,

(i) χb(G1 ∪ G2) ≥ max{χb(G1), χb(G2)}.

(ii) χb(G1 ∨ G2) = χb(G1) + χb(G2).

The graphH in Figure 2.2 is an example of a graph verifying the strict inequality in
Theorem 6:χb(H1) = χb(H2) = 3, butχb(H) = 4.

A spider is a graph whose vertex set can be partitioned intoS, C andR, whereS =
{s1, . . . , sk} (k ≥ 2) is a stable set;C = {c1, . . . , ck} is a complete set;si is adjacent to
cj if and only if i = j (a thin spider), or si is adjacent tocj if and only if i �= j (a thick
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spider); R is allowed to be empty and if it is not, then all the vertices inR are adjacent
to all the vertices inC and non-adjacent to all the vertices inS. Clearly, the complement
of a thin spider is a thick spider, and viceversa. The triple(S, C, R) is called thespider
partition, and can be found in linear time [46].

A graph isP4-sparseif every 5-vertex subset contains at most oneP4. P4-sparse
graphs were introduced in [41], they generalize cographs, can be recognized in linear
time [46], and are a subclass of perfect graphs. Besides, b-perfectP4-sparse graphs have
been characterized in [42].P4-sparse graphs have also a nice decomposition theorem.

Theorem 7 [41, 47] If G is a non-trivial P4-sparse graph, then eitherG or G is not
connected, orG is a spider.

In fact, Theorem 7 say that ifG is a non-trivialP4-sparse graph, then either (i)
G1, . . . , Gp (p > 1) are the connected components ofG (G) andG is the disjoint union
(join) of Gi’s (Gi’s), or (ii) G andG are connected andG is a spider.

Let G be a graph andA ⊂ V (G). Denote byG[A] the subgraph ofG induced byA.
In [47] is observed that ifG is a spider with vertex partition(S, C, R), thenG is P4-sparse
if and only if G[R] is P4-sparse.

In [48], it is implicitly stated the following lemma, which allows to compute the chro-
matic number of aP4-sparse graph recursively in linear time.

Lemma 1 [48] Let G be a spider with spider partition(S, C, R). If R is empty, then
χ(G) = |C|. Otherwise,χ(G) = |C| + χ(G[R]).

The algorithm is based on the decomposition theorem and the recognition algorithm,
which finds the decomposition tree in linear time.

2.2.2 b-continuity in cographs

Minimally b-imperfect cographs, i.e., graphsG such thatχb(G) > χ(G) butχb(H) =
χ(H) for every proper induced subgraphH of G, are characterized in [54]. Such graphs
are the disjoint union of two diamonds and the disjoint union of threeP3. In both cases
χb(G) = χ(G) + 1 holds. It is natural to ask whether there exist cographs with a bigger
difference between their chromatic number and their b-chromatic number.

Let Bn be the graph composed byn+1 copies of the starK1,n. We have thatχ(Bn) =
2 andχb(Bn) = n + 1. A b-coloring withn + 1 colors is obtained by coloring each of
then + 1 central vertices with a different color and, for every star, coloring each of the
n non-central vertices with a different color (such that this color does not coincide with
the color assigned to the corresponding central vertex). In such a coloring, all the central
vertices are(n + 1)-dominant, and each color class admits a dominant vertex.

Since there are cographs with arbitrarily large difference between their b-chromatic
number and their chromatic number, it makes sense to analyze b-continuity in cographs.

Lemma 2 LetG1 = (V1, E1) andG2 = (V2, E2) be two graphs such thatV1 ∩ V2 = ∅. If
G1 andG2 are b-continuous andG = G1 ∪ G2, thenG is b-continuous.
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Proof. AssumeG admits a b-coloring witht+1 colors such thatt+1 > χ(G). We shall
show that there exists a b-coloring ofG with t colors. Sinceχ(G) = max{χ(G1), χ(G2)}
by Theorem 5, thent + 1 > χ(Gi) for i = 1, 2. We are going to eliminate colort + 1
and obtain a b-coloring ofG with t colors. To this end, consider the following cases for
i = 1, 2:

(a) If Gi does not admit dominant vertices assigned the colort+1, recolor every vertex
v ∈ Gi receiving colort + 1 with some color between 1 andt not used by any
neighbor ofv.

(b) If Gi admits dominant vertices assigned the colort + 1 but no dominant vertex
assigned colorj for somej �= t + 1, then swap the colorst + 1 andj, and then
resort to Case (a), since now there are no dominant vertices with colort + 1 in Gi.

(c) If Gi admits dominant vertices for every color, then we have a b-coloring ofGi

with t + 1 colors, wheret + 1 > χ(Gi). SinceGi is b-continuous, there exists a
b-coloring ofGi with t colors.

After these operations, it is clear that the resulting coloring is a b-coloring ofG with t
colors (since we have yet dominant vertices with every color from 1 tot) . �

Lemma 3 LetG1 = (V1, E1) andG2 = (V2, E2) be two graphs such thatV1 ∩ V2 = ∅. If
G1 andG2 are b-continuous andG = G1 ∨ G2, thenG is b-continuous.

Proof. AssumeG admits a b-coloring witht + 1 colors such thatt + 1 > χ(G).
We shall show that there exists a b-coloring ofG with t colors. We have thatχ(G) =
χ(G1) + χ(G2) andχb(G) = χb(G1) + χb(G2) by Theorems 5 and 6. Furthermore, any
b-coloring ofG1 andG2 generates a b-coloring ofG by renaming the colors assigned to
G2 starting by the largest color assigned toG1 plus one, and any b-coloring ofG restricted
to G1 (resp.G2) is also a b-coloring. Therefore, in the b-coloring ofG with t + 1 colors,
eitherG1 or G2 (perhaps both) is colored with more colors than its chromatic number.
Suppose without loss of generality that this is the case forG1. By restricting the coloring
of G to G1, we obtain a b-coloring ofG1 with k + 1 colors such thatk + 1 > χ(G1).
SinceG1 is b-continuous, there exists a b-coloring ofG1 with k colors. Combine this
coloring with the original b-coloring ofG restricted toG2, thus constructing a b-coloring
of G with t colors. �

Theorem 8 Cographs are b-continuous.

Proof. We proceed by induction, using Proposition 3, Lemma 2, and Lemma 3, since the
trivial graph is b-continuous. �
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2.2.3 A polynomial time algorithm for b-coloring cographs

Theorem 6 does not lead to an algorithm to compute the b-chromatic number of a
cograph. In fact, it is not difficult to build examples showing that the b-chromatic number
of the graphG1 ∪ G2 does not depend only on the b-chromatic numbers ofG1 andG2.
For this reason, we introduce the notion of dominance vector. Our goal is to recursively
compute this vector using the decomposition theorem for cographs, hence obtaining the
b-chromatic number of the graph as the maximumt such that domG[t] = t.

Theorem 9 LetG1 = (V1, E1) andG2 = (V2, E2) be two graphs such thatV1 ∩ V2 = ∅.
If G = G1 ∪ G2 andt ≥ χ(G), then

domG[t] = min{t, domG1 [t] + domG2 [t]}.
Proof. Let t ≥ χ(G). If t > |V (G)|, then t > |V (G1)| and t > |V (G2)|, hence
domG[t] = 0 = min{t, domG1[t] + domG2[t]}. If t ≤ |V (G)|, we take a coloring ofG
with t colors and domG[t] color classes with dominant vertices. Leta1 be the number of
color classes with dominant vertices inG1, and leta2 be the number of color classes with
dominant vertices inG2 not having dominant vertices inG1. Then domG[t] = a1 + a2.
Notice that, fori = 1, 2, if ai > 0 then thet colors are used inGi. Therefore, by
restricting the coloring toG1 (resp.G2) we obtain domG1 [t] ≥ a1 and domG2 [t] ≥ a2, so
domG[t] ≤ domG1 [t] + domG2 [t]. Since clearly domG[t] ≤ t, we conclude domG[t] ≤
min{t, domG1 [t] + domG2[t]}.

On the other hand, sincet ≥ χ(G) thent ≥ χ(G1) andt ≥ χ(G2). If t > |V (G1)|
andt > |V (G2)|, then domG[t] = 0 = min{t, domG1 [t] + domG2[t]}. If t > |V (G1)|
but t ≤ |V (G2)|, then domG1 [t] = 0 and domG[t] = domG2 [t] = min{t, domG1 [t] +
domG2 [t]} holds. If t ≤ |V (G1)| andt ≤ |V (G2)|, take a coloring ofG1 (resp. a col-
oring of G2) with t colors and domG1 [t] (resp. domG2 [t]) color classes with dominant
vertices. If domG1 [t] + domG2 [t] ≤ t, then we can rename the colors inG2 in such a way
that the dominant vertices use domG2[t] color classes differing from the domG1 [t] color
classes with dominant vertices inG1. This implies domG[t] ≥ domG1 [t] + domG2 [t] =
min{t, domG1 [t]+domG2 [t]}. If domG1 [t]+domG2 [t] > t, then we can rename the colors
in G2 in such a way that the dominant vertices use thet−domG1 [t] color classes differing
from the domG1[t] color classes with dominant vertices inG1 plus some additional colors.
We conclude, therefore, that domG[t] ≥ t = min{t, domG1[t] + domG2 [t]}. �

Theorem 10 LetG1 = (V1, E1) andG2 = (V2, E2) be two graphs such thatV1 ∩V2 = ∅.
Let G = G1 ∨ G2 and χ(G) ≤ t ≤ |V (G)|. Let a = max{χ(G1), t − |V (G2)|} and
b = min{|V (G1)|, t − χ(G2)}. Thena ≤ b and

domG[t] = max
a≤j≤b

{domG1 [j] + domG2 [t − j]}.

Proof. We will show first four inequalities that implya ≤ b. By Theorem 5,χ(G1) +
χ(G2) = χ(G) ≤ t, soχ(G1) ≤ t − χ(G2); on the other hand,χ(G1) ≤ |V (G1)| and
χ(G2) ≤ |V (G2)|, sot−|V (G2)| ≤ t−χ(G2); finally, t ≤ |V (G)| = |V (G1)|+ |V (G2)|,
sot − |V (G2)| ≤ |V (G1)|.
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Consider anyt-coloring ofG with domG[t] color classes with dominant vertices. Let
t1 (resp.t2) be the number of colors used by this coloring inG1 (resp.G2), and leta1

(resp.a2) be the number of color classes with dominant vertices inG1 (resp.G2). Notice
that any coloring ofG assigns disjoint color sets toG1 and G2, so t = t1 + t2 and
domG[t] = a1 + a2. Since thet1 colors fromG1 are not used inG2, the t-dominant
vertices inG which are inG1 are t1-dominant vertices in the coloring restricted toG1,
hencea1 ≤ domG1 [t1]. Similarly, thet-dominant vertices inG which are inG2 are t2-
dominant vertices in the coloring restricted toG2. Sincet2 = t − t1, we obtaina2 ≤
domG2 [t− t1], implying domG[t] = a1 +a2 ≤ domG1[t1]+domG2[t− t1]. As t1 ≥ χ(G1),
t1 ≥ t−|V (G2)|, t1 ≤ |V (G1)| andt1 ≤ t−χ(G2), thena ≤ t1 ≤ b. Therefore, we have
domG[t] ≤ maxa≤j≤b{domG1 [j] + domG2 [t − j]}.

Consider anyt1 such thata ≤ t1 ≤ b. Sinceχ(G1) ≤ t1 ≤ |V (G1)|, there exists
some coloring ofG1 with exactly t1 colors. Take any such coloring having domG1 [t1]
color classes with dominant vertices. Lett2 = t − t1. Sinceχ(G2) ≤ t2 ≤ |V (G2)|,
there exists some coloring ofG2 with exactly t2 colors. Take any such coloring hav-
ing domG2 [t2] color classes with dominant vertices, and rename theset2 colors in such
a way that only colors in{t1 + 1, . . . , t} are used in the new coloring. By combining
these two colorings forG1 andG2, we obtain a coloring ofG with exactlyt colors. Each
t1-dominant vertex inG1 has inG all the vertices inG2 as neighbors, hence it admits
a neighbor with every color in{t1 + 1, . . . , t} and, therefore, it is at-dominant vertex
in G. Similarly, eacht2-dominant vertex inG2 can be shown to bet-dominant inG.
Conversely, everyt-dominant vertex inG is eithert1-dominant inG1 or t2-dominant in
G2. Moreover, since the color sets corresponding toG1 andG2 are disjoint, the num-
ber of t-dominant vertices in such a coloring ofG is domG1 [t1] + domG2[t2]. Therefore,
domG[t] ≥ maxa≤j≤b{domG1 [j] + domG2 [t − j]}. �

Theorem 11 The dominance vector and the b-chromatic number of a cograph can be
computed inO(n3) time.

Proof. The previous results give a dynamic programming algorithm to compute the dom-
inance vector of a cograph from its cotree. IfG = G1 ∪G2 (as in Theorem 9) the value of
domG[t] is obtained directly from domG1 [t] and domG2 [t]. If G = G1∨G2 (as in Theorem
10), then at mostn values ofj must be examined. Moreover, each of these two theorems
reduces the computation of domG[t] to the computation on two disjoint subgraphs. Thus,
there are at mostn occurrences of such reduction steps. In total, the computation time is
O(n2) for every value oft, and soO(n3) for all possible values oft. From the dominance
vector of a graphG, the b-chromatic number can be computed easily as the maximumt
such that domG[t] = t. �

2.2.4 b-monotonicity in cographs

The monotonicity on induced subgraphs is a desirable property that holds for many
known optimization parameters of a graph, like chromatic number, maximum clique,
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maximum degree. This is not the case of the b-chromatic number in general, so it is inter-
esting to analyze the monotonicity of the b-chromatic number within different classes of
graphs. In this section we study the b-monotonicity of cographs. We first state some pre-
liminary properties of the dominance vector of a graph, and then use the decomposition
theorem to analyze the b-monotonicity in this class of graphs.

Lemma 4 If G is a graph andt ≥ χ(G), then eitherdomG[t+1] = t+1 or domG[t+1] ≤
domG[t].

Proof. If t + 1 > |V (G)|, then0 = domG[t + 1] ≤ domG[t]. Assume, therefore,
t + 1 ≤ |V (G)| and domG[t + 1] < t + 1. Take any coloring ofG with t + 1 colors
having domG[t + 1] color classes with dominant vertices. Since domG[t + 1] < t + 1,
there exists some color class with no dominant vertices, say the colort + 1. For every
vertexv with color t + 1, change the color ofv to any color in{1, . . . , t} not used by
any of the neighbors ofv. The resulting coloring is a coloring ofG with t colors. Note
that every dominant vertex in the original coloring is dominant in the new coloring, and
that the number of color classes with dominant vertices in the new coloring is at least the
same. Therefore, domG[t] ≥ domG[t + 1]. �

A direct consequence of this lemma is the following.

Corollary 2 LetG be a graph. The maximum value ofdomG[t] is attained int = χb(G).

Lemma 5 Let G1 = (V1, E1) andG2 = (V2, E2) be two graphs such thatV1 ∩ V2 = ∅,
and letG = G1 ∪ G2. Assume that for everyt ≥ χ(Gi) and every induced subgraphH
of Gi we havedomH [t] ≤ domGi

[t], for i = 1, 2. Then, for everyt ≥ χ(G) and every
induced subgraphH of G, domH [t] ≤ domG[t] holds.

Proof. Let H be an induced subgraph ofG and lett ≥ χ(G). By Theorem 9, we have
domG[t] = min{t, domG1 [t] + domG2 [t]}. If domG[t] = t, then domH [t] ≤ domG[t]
clearly holds. Assume, therefore, domG[t] = domG1 [t] + domG2 [t]. If H is completely
contained inGi, for i = 1 or i = 2, then domH [t] ≤ domGi

[t] ≤ domG[t]. Otherwise,
H = H1 ∪ H2, whereHi is an induced subgraph ofGi, for i = 1, 2. By the hypothesis,
domHi

[t] ≤ domGi
[t], hence domH1 [t]+domH2 [t] ≤ domG1[t]+domG2 [t]. Therefore, we

conclude domH [t] ≤ domG[t]. �

Lemma 6 Let G1 = (V1, E1) andG2 = (V2, E2) be two b-continuous graphs such that
V1∩V2 = ∅, and letG = G1∨G2. Assume that for everyt ≥ χ(Gi) and for every induced
subgraphH of Gi we havedomH [t] ≤ domGi

[t], for i = 1, 2. Then, for everyt ≥ χ(G)
and for every induced subgraphH of G, domH [t] ≤ domG[t] holds.

Proof. Let H be an induced subgraph ofG, and lett ≥ χ(G). By hypothesis,G1

andG2 are b-continuous. So, by Theorem 3, we have thatG is b-continuous. Hence
it suffices to considert > χb(G), otherwiset = domG[t] ≥ domH [t]. Recall that, by
Theorem 6,χb(G) = χb(G1)+χb(G2), sot > χb(G1)+χb(G2). By Theorem 10, we have
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domG[t] = maxa≤j≤b{domG1 [j] + domG2 [t − j]}, wherea = max{χ(G1), t − |V (G2)|}
andb = min{|V (G1)|, t− χ(G2)}, anda ≤ b holds.

If H is completely contained inG1 orG2, sayG1, by the hypothesis we have domH [t] ≤
domG1 [t]. Let j ′ = max{a, χb(G1)}. We know thata ≤ b, andχb(G1) ≤ |V (G1)|.
Furthermore,χb(G1) < t − χb(G2) ≤ t − χ(G2), hencea ≤ j′ ≤ b. Finally, t >
χb(G1) ≥ χ(G1) and clearlyt ≥ t − |V (G2)|, hencet ≥ j′. Sincet ≥ j′ ≥ χb(G1)
and domG1[t] < t, by Lemma 4, domG1 [t] ≤ domG1 [j

′], and since domG2 [t − j′] ≥ 0, we
have domG[t] = maxa≤j≤b{domG1 [j] + domG2 [t − j]} ≥ domG1 [j

′] + domG2 [t − j′] ≥
domG1 [j

′] ≥ domG1 [t] ≥ domH [t]. Therefore, domH [t] ≤ domG[t].
If H is not completely contained inG1 or G2, thenH = H1 ∨ H2, whereHi is an

induced subgraph ofGi, for i = 1, 2. By the hypothesis, domHi
[j] ≤ domGi

[j] for each
j ≥ χ(Gi). By Theorem 10, we have domH [t] = maxa′≤j≤b′{domH1 [j] + domH2 [t− j]},
wherea′ = max{χ(H1), t − |V (H2)|} andb′ = min{|V (H1)|, t − χ(H2)}, anda′ ≤
b′ holds. Letj ′ ∈ {a′, . . . , b′} be the color realizing such maximum, and consider the
following three possible cases:

(a) If a ≤ j′ ≤ b, then domH1 [j
′] ≤ domG1 [j

′] and domH2 [t−j′] ≤ domG2 [t−j′], hence
domG[t] = maxa≤j≤b{domG1 [j] + domG2 [t − j]} ≥ domG1 [j

′] + domG2[t − j′] ≥
domH1 [j

′] + domH2[t − j′] = domH [t].

(b) If j′ < a, then in particulara′ < a and, sincet − |V (H2)| ≥ t − |V (G2)|, we have
a = χ(G1). Therefore, domH1 [j

′] ≤ j′ < a = domG1 [a]. Sincet > χb(G1) +
χb(G2) anda ≤ χb(G1), it holdst − a > χb(G2). Sincet − j′ > t − a > χb(G2),
then Lemma 4 implies domG2 [t − j′] ≤ domG2 [t − a]. Finally, as domH2 [t −
j′] ≤ domG2 [t− j′], we obtain domG[t] = maxa≤j≤b{domG1[j] + domG2 [t− j]} ≥
domG1 [a] + domG2[t − a] ≥ domH1 [j

′] + domH2 [t − j′] = domH [t].

(c) If j′ > b the argumentation is similar. We haveb′ > b and, since|V (H1)| ≤
|V (G1)|, we haveb = t − χ(G2). Therefore, domH2[t − j′] ≤ t − j′ < t − b =
χ(G2) = domG2 [t − b]. Following the same argument as in Case (b), we conclude
that domH1[j

′] ≤ domG1 [b], hence domG[t] = maxa≤j≤b{domG1[j] + domG2[t −
j]} ≥ domG1 [b] + domG2 [t − b] ≥ domH1 [j

′] + domH2 [t − j′] = domH [t].

In the three cases we obtain domH [t] ≤ domG[t]. �

Theorem 12 Cographs are b-monotonic.

Proof. As cographs are hereditary, it is enough to prove that given a cographG,
χb(G) ≥ χb(H), for every induced subgraphH of G. By applying Proposition 3, The-
orem 8, Lemma 5, and Lemma 6, an induction argument shows that for every cograph
G, everyt ≥ χ(G), and every induced subgraphH of G, domH [t] ≤ domG[t] holds.
Let G be a cograph, and letH be an induced subgraph ofG. If χb(H) < χ(G), then
χb(H) < χb(G). Otherwise,χb(H) = domH [χb(H)] ≤ domG[χb(H)], and by Corol-
lary 2 domG[χb(H)] ≤ domG[χb(G)] = χb(G). Henceχb(G) ≥ χb(H). �



30 CHAPTER 2. B-COLORING OF GRAPHS

2.2.5 P4-sparse graphs

In this section we extend the results about cographs to a superclass of them:P4-sparse
graphs. For the b-chromatic number of a spider, a result similar to Lemma 1 can be
proved.

Lemma 7 LetG be a spider with spider partition(S, C, R). If R is empty thenχb(G) =
|C|. Otherwise,χb(G) = |C| + χb(G[R]).

Proof. Let G be a spider with spider partition(S, C, R), where|S| = |C| = k ≥ 2. If R
is empty thenχ(G) = k, and the vertices inS have degree at mostk−1, thus they cannot
be dominant in a coloring with more thank colors. So,χb(G) = k = |C|. Assume now
thatR is non-empty. Then, by Lemma 1,χb(G) ≥ χ(G) = k + χ(G[R]) ≥ k + 1. Any
b-coloring ofG[R] with p colors generates a b-coloring ofG with p + k colors, by using
k new colors onC and coloring each vertex inS with a color used by a non-neighbor of
it in C, thusχb(G) ≥ k + χb(G[R]); conversely, any b-coloring ofG with t colors, when
restricted toG[R] is also a b-coloring witht− k colors, since the color sets used inC and
R are disjoint and vertices inS cannot be dominant in a coloring with more thank colors,
soχb(G) ≤ k + χb(G[R]). Hence, the lemma holds. �

Nevertheless, in order to compute recursively the b-chromatic number of aP4-sparse
graph, we will need to calculate the dominance vector of a spider instead.

Theorem 13 LetG be a spider with spider partition(S, C, R), andk = |S| = |C| ≥ 2.

(a) If R is empty andG is a thin spider, thendomG[k] = domG[k + 1] = k, and
domG[j] = 0 for j > k + 1.

(b) If R is non-empty andG is a thin spider, thendomG[k + r] = k + domG[R][r] for
χ(G[R]) ≤ r ≤ |R|, domG[k + |R|+1] = k, anddomG[j] = 0 for j > k + |R|+1.

(c) If R is empty andG is a thick spider, thendomG[k + s] = min{k, 2k − 2s} for
0 ≤ s ≤ k, anddomG[j] = 0 for j > 2k.

(d) If R is non-empty andG is a thick spider, thendomG[k + r] = k + domG[R][r] for
χ(G[R]) ≤ r ≤ |R|, domG[k + |R| + s] = min{k, 2k − 2s} for 1 ≤ s ≤ k, and
domG[j] = 0 for j > 2k + |R|.

Proof. Let G be a spider with spider partition(S, C, R), andk = |S| = |C| ≥ 2. Let
C = {c1, . . . , ck} andS = {s1, . . . , sk}.

(a) If R is empty andG is a thin spider, thenχ(G) = k, implying domG[k] = k. Thek
vertices inC have degreek and the vertices inS have degree1, hence domG[k+1] ≤
k and domG[j] = 0 for j > k + 1, sinceG does not admit any vertex with degree at
leastk + 1. Finally, a coloring ofG with k + 1 colors andk colors with dominant
vertices can be obtained by assigning colors1 to k to the vertices inC, and color
k + 1 to the vertices inS.
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(b) If R is non-empty andG is a thin spider, then, by Lemma 1,χ(G) = k + χ(G[R]),
implying domG[k + χ(G[R])] = k + χ(G[R]). The k verticesc1, . . . , ck in C
have degreek + |R|, the vertices inR have degree at mostk + |R| − 1 and the
vertices inS have degree1, hence domG[k + |R| + 1] ≤ k and domG[j] = 0 for
j > k + |R| + 1. On the other hand, a coloring ofG with k + |R| + 1 colors
andk color classes with dominant vertices can be obtained by assigning the colors
1, . . . , k to the vertices inC, the colorsk + 1, . . . , k + |R| and the colork + |R|+ 1
to the vertices ofS. For χ(G[R]) < r ≤ |R|, in a coloring withk + r colors,
the vertices ofS cannot be dominant. Moreover, if they use a color non present
in C ∪ R, then at most thek vertices inC can be dominant. Suppose now that
all the colors used inS are also present inC ∪ R. Then all the vertices inC are
dominant, and they have pairwise different colors. In fact, they are dominant also in
the coloring restricted toG[C∪R] as well as the dominant vertices inR, since there
are no edges betweenR andS. Besides, any coloring ofG[C ∪R] can be extended
to G without introducing new colors. So, domG[k + r] = domG[C∪R][k + r], and,
by Theorem 10, domG[k + r] = k + domG[R][r].

(c) If R is empty andG is a thick spider, thenχ(G) = k, implying domG[k] = k.
Furthermore, the vertices inS have degreek − 1 and the vertices inC have degree
2k − 2, hence domG[j] = 0 for j ≥ 2k. Finally, for s = 1, . . . , k, the vertices inS
cannot be dominant in a coloring ofG with k + s colors, thus domG[k + s] ≤ k. In
any coloring ofG the vertices inC are assigned pairwise different colors, say the
colors1, . . . , k. Moreover, the vertexci is dominant if and only if the color assigned
to si is also assigned to some other vertex inG. By symmetry, at leasts vertices
from S must be assigned thes colors betweenk + 1 andk + s, says1, . . . , ss. If
k < 2s then at leasts − (k − s) of them get a color not used by any other vertex
in G. This implies domG[k + s] ≤ k − (s − (k − s)) = 2k − 2s. As in the
casek ≥ 2s we have2k − 2s ≥ k and this already is an upper bound, we obtain
domG[k + s] ≤ min{k, 2k − 2s}. A coloring attaining this bound is obtained by
assigning the colors1, . . . , k to the vertices inC, and the colorsk + 1, . . . , k + s
to the verticess1, . . . , ss. If k ≥ 2s, the verticesss+1, . . . , s2s receive the colors
k + 1, . . . , k + s, and fori > 2s, si gets the same color asci. In this case, we have
k color classes with dominant vertices, since every vertex fromC is dominant. If
k < 2s, the verticesss+1, . . . , sk are assigned the colorsk + 1, . . . , 2k − s. Here,
we get2k − 2s color classes with dominant vertices. Therefore, domG[k + s] =
min{k, 2k − 2s}.

(d) If R is non-empty andG is a thick spider, then, by Lemma 1,χ(G) = k +χ(G[R]),
implying domG[k + χ(G[R])] = k + χ(G[R]). Furthermore, the vertices inS have
degreek− 1, the vertices inC have degree2k + |R| − 2, and the vertices inR have
degree at mostk + |R| − 1 hence domG[j] = 0 for j ≥ 2k + |R|. Fors = 1, . . . , k,
neither the vertices inS nor the vertices inR can be dominant in a coloring ofG
with k + |R| + s colors, hence domG[k + |R| + s] ≤ k. In any coloring ofG,
the vertices fromC are assigned pairwise different colors, say the colors1, . . . , k.
Moreover, the vertexci is dominant if and only if the color assigned tosi is also
assigned to some other vertex inG. Since the vertices inR can use at most|R|
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colors, sayk + 1, . . . , k + |R|, then by symmetry, at leasts vertices fromS must
be assigned thes colors betweenk + |R| + 1 andk + |R| + s, says1, . . . , ss. If
k < 2s, at leasts − (k − s) of them are assigned a color not used by any other
vertex inG. Therefore, domG[k + |R| + s] ≤ k − (s − (k − s)) = 2k − 2s. As
in the casek ≥ 2s we have2k − 2s ≥ k and this already is an upper bound, we
obtain domG[k + |R| + s] ≤ min{k, 2k − 2s}. A coloring attaining this bound
can be constructed by assigning the colors1, . . . , k to the vertices inC, the colors
k +1, . . . , k + |R| to the vertices inR, and the colorsk + |R|+1, . . . , k + |R|+s to
the verticess1, . . . , ss. If k ≥ 2s, the verticesss+1, . . . , s2s are assigned the colors
k + |R| + 1, . . . , k + |R| + s, andsi gets the same color asci, for i > 2s. In
this case, we obtaink color classes with dominant vertices, since all the vertices
in C are dominant. Ifk < 2s, the verticesss+1, . . . , sk are assigned the colors
k + |R| + 1, . . . , 2k + |R| − s. In this case, we have2k − 2s color classes with
dominant vertices. Therefore, domG[k+1+s] = min{k, 2k−2s}. For domG[k+r]
with χ(G[R]) < r ≤ |R|, we can use the same argumentation as in case (b), so
domG[k + r] = domG[C∪R][k + r] = k + domG[R][r].

�

Theorem 14 The dominance vector and the b-chromatic number of aP4-sparse graph
can be computed inO(n3) time.

Proof. By combining Theorem 9, Theorem 10, Theorem 7, and Theorem 13, and since
P4-sparse graphs are a hereditary class, we can recursively calculate the dominance vector
and, consequently, the b-chromatic number of aP4-sparse graph inO(n3) time. The com-
plexity analysis is the same as for Theorem 11, noting that for the base cases (spiders) the
computation of domG[t] for each value oft is given directly in the proof of Theorem 13.�

Now, we study the b-continuity onP4-sparse graphs.

Theorem 15 P4-sparse graphs are b-continuous.

Proof. We proceed by induction, using Theorem 7 and Lemmas 2 and 3. So, it remains
to analyze the case of spiders. Suppose thatG is a spiderP4-sparse graph, with spider
partition(S, C, R), where|S| = |C| = k ≥ 2. AssumeG admits a b-coloring witht + 1
colors such thatt + 1 > χ(G). We shall show that there exists a b-coloring ofG with
t colors. We have thatχ(G) = k + χ(G[R]) andχb(G) = k + χb(G[R]) by Lemmas 1
and 7. So,R must be non-empty andχb(G[R]) > χ(G[R]). As observed in the proof of
Lemma 7, any b-coloring ofG[R] with p colors generates a b-coloring ofG with p + k
colors and, conversely, any b-coloring ofG restricted toG[R] is also a b-coloring. There-
fore, by restricting the b-coloring ofG with t+1 colors toG[R], we obtain a b-coloring of
G[R] with t+1−k colors, andt+1−k > χ(G[R]). SinceP4-sparse is a hereditary graph
class,G[R] is aP4-sparse graph, and by inductive hypothesis, there exists a b-coloring of
G[R] with t−k colors. As observed before, this b-coloring ofG[R] generates a b-coloring
of G with t colors. �

Finally, we analyze the b-monotonicity onP4-sparse graphs.
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Lemma 8 Let G be a spider with spider partition(S, C, R). Assume that for everyt ≥
χ(G[R]) and for every induced subgraphH of G[R] we havedomH [t] ≤ domG[R][t].
Then, for everyt ≥ χ(G) and for every induced subgraphH of G, domH [t] ≤ domG[t]
holds.

Proof. Let G be a spider with spider partition(S, C, R), where|S| = |C| = k ≥ 2,
and letH be an induced subgraph ofG. For convenience, if a graph is empty define its
dominance sequence as the zero sequence, beginning at zero. LetRH beV (H) ∩ R. By
hypothesis,domG[RH ][r] ≤ domG[R][r], for eachr ≥ χ(G[R]). Following the arguments
used in the proof of Theorem 13, it can be seen that:

- If G is a thin spider, then domH [k + r] ≤ k + domG[RH ][r] ≤ k + domG[R][r] =
domG[k + r] for χ(G[R]) ≤ r ≤ |R|, domH [k+ |R|+1] ≤ k = domG[k + |R|+1],
and domH [j] = 0 = domG[j] for j > k + |R| + 1.

- If G is a thick spider, then domH [k + r] ≤ k + domG[RH ][r] ≤ k + domG[R][r] =
domG[k + r] for χ(G[R]) ≤ r ≤ |R|, domH [k + |R| + s] ≤ min{k, 2k − 2s} =
domG[k + |R| + s] for 1 ≤ s ≤ k, and domH [j] = 0 = domG[j] for j > 2k + |R|.

We conclude domG[t] ≥ domH [t], for everyt ≥ χ(G). �

Theorem 16 P4-sparse graphs are b-monotonic.

Proof. As P4-sparse graphs are hereditary, it is enough to prove that given aP4-
sparse graphG, χb(G) ≥ χb(H), for every induced subgraphH of G. By applying
Lemma 5, Theorem 15, Lemma 6, Lemma 8, and Theorem 7, sinceP4-sparse graphs
is a hereditary class, we can inductively show that for everyP4-sparse graphG, every
induced subgraphH of G, and everyt ≥ χ(G), domH [t] ≤ domG[t] holds. LetG be
a P4-sparse graph, and letH be an induced subgraph ofG. If χb(H) < χ(G), then
χb(H) < χb(G). Otherwise,χb(H) = domH [χb(H)] ≤ domG[χb(H)] and by Corol-
lary 2, domG[χb(H)] ≤ domG[χb(G)] = χb(G) implying thatχb(G) ≥ χb(H). �

2.3 Conclusions

In Section 2.1, we have shown that the b-chromatic number of a graph is hard to
approximate in polynomial time within a factor of120/113 − ε, for anyε > 0, unless
P = NP. This is the first and only hardness result for approximating the b-chromatic
number. An interesting open problem is the existence of a constant-factor approximation
algorithm for the b-chromatic number in general graphs.

In Section 2.2, we have proved that cographs andP4-sparse graphs are b-continuous and
b-monotonic. Besides, we have designed a dynamic programming algorithm to compute
the b-chromatic number in polynomial time within these graph classes. One interesting
problem is to extend our results to superclasses of these graph families, as for example,
the class of distance-hereditary graphs. Finally, it would be an interesting problem to
characterize b-monotonic graphs by forbidden induced subgraphs.



34 CHAPTER 2. B-COLORING OF GRAPHS



Chapter 3

Direct product of some vertex-transitive
graphs

Thedirect productG×H of two graphsG andH is defined byV (G×H) = V (G)×
V (H), and where two vertices(u1, u2), (v1, v2) are joined by an edge inE(G × H) if
{u1, v1} ∈ E(G) and{u2, v2} ∈ E(H). This product is commutative and associative
in a natural way (see reference [44] for a detailed description on product graphs). A
coloring of G × H can be easily derived from a coloring of any of its factors, hence
χ(G × H) ≤ min{χ(G), χ(H)}. One of the outstanding problems in graph theory is a
formula concerning the chromatic number of the direct product of any two graphsG and
H, called theHedetniemi conjecture[39] (see also [32, 33, 22] and ref.), which states
χ(G × H) = min{χ(G), χ(H)}. The inherent difficulty of Hedetniemi’s conjecture lies
in finding lower bounds forχ(G×H). In this paper we prove the Hedetniemi’s conjecture
to be true in some classes of vertex-transitive graphs.

On the other hand, ifI is an independent set of one factor, the pre-image ofI under the
projection is an independent set of the product. Then,α(G×H) ≥ max{α(G)|H|, α(H)|G|}.
In this case it is known that the equality does not hold in general. In fact, Jha and Klavˇzar
show in [51] that for any graphG with at least one edge and for anyj ∈ N there is a graph
H such thatα(G × H) > max{α(G).|V (H)|, α(H).|V (G)|} + j. In [77], Tardif asks
whetherαk(G × H) = max{αk(G)|H|, αk(H)|G|} always holds for vertex-transitive
graphs, whereαk(G) is the maximal size of an inducedk-colourable subgraph ofG.

In other related work, Larose and Tardif investigate in [60] the relationship between
projectivity and the structure of maximal independent sets of finite direct products of sev-
eral copies of the same graphG, beingG a circular graph, a Kneser graph or a truncated
simplices.

Independence and chromatic properties of circular graphs and Kneser graphs are ana-
lyzed using graph homomorphism. An edge-preserving map fromφ : V (G) → V (H) is
called ahomomorphismfrom G to H and it is denoted byφ : G → H. We say thatG and
H arehomomorphically equivalentif there existφ : G → H andψ : H → G. Notice that
if there isφ : G → H thenχ(G) ≤ χ(H). In particular ifG andH are homomorphically
equivalent thenχ(G) = χ(H). The following result is direct.

Lemma 9 Let G be a graph and letH be an induced subgraph ofG. Then,G × H and
H are homomorphically equivalent and therefore,χ(G × H) = χ(H).

35
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In the context of vertex transitive graphs The “No-Homomorphism” lemma of Albert-
son and Collins is useful to get bounds on the size of independent sets.

Lemma 10 (Albertson-Collins [2]) LetG, H be graphs such thatH is vertex-transitive
and there is a homomorphismφ : G → H. Then,

α(G)

|V (G)| ≥
α(H)

|V (H)| .

The chromatic number of a graphG and its independence number are closely related
via the inequality

χ(G) ≥ �|V (G)|/α(G)�.
Let n be a positive integer. We denote by[n] the set{0, 1, . . . , n − 1}. The complete

graphKn will usually be on the vertex set[n]. By using this relation, Lemma 10, and
Lemma 9, we can deduce the following well known result.

Corollary 3 Letk ≥ 2 be an integer and letn1, n2, . . . , nk be positive integers. Then,

α (
∏

iKni
) = max

i

{
(
∏

jnj)/ni

}
andχ(

∏
iKni

) = min
i
{ni},

where1 ≤ i, j ≤ k.

A setS ⊆ V is called adominating setif for every vertexv ∈ V \ S there exists a
vertexu ∈ S such thatu is adjacent tov. The minimum cardinality of a dominating set
in G is called thedomination numberof G and is denotedγ(G). A setS ⊆ V is called
independentif no two vertices inS are adjacent. A setS ⊆ V is called anindependent
dominating setof G if it is both independent and dominating set ofG. The minimum
cardinality of an independent dominating set inG is called theindependent domination
numberof G and is denotedi(G). Thedomatic numberd(G) is the maximum order of
a partition ofV into dominating sets. The domatic number of a graph was introduced
by Cockayne and Hedetniemi [16]. A partition of the vertex setV into independent
dominating sets is called anidomatic partitionof G [15, 16]. Clearly, an idomatic partition
of a graphG represents a proper coloring of the vertices ofG. The maximum order of an
idomatic partition ofG is called theidomatic numberid(G). An idomatic partition of a
graphG into k parts is called anidomatick-partition of G. Notice that not every graph
has an idomatic k-partition, for anyk. For example, the cycle graph on five verticesC5

has no an idomatick-partition for anyk.
Let Γ be a group andC a subset ofΓ closed under inverses and identity free. The

Cayley graph Cay(Γ, C) is the graph withΓ as its vertex set, two verticesu andv being
joined by an edge if and only ifu−1v ∈ C. The setC is then called theconnector set
of Cay(Γ, C). Simple examples of Cayley graphs include the cycles, which are Cayley
graphs of cyclic groups, and the complete graphsKn which are Cayley graphs of any
group of ordern. Cayley graphs constitute a rich class of vertex-transitive graphs (see
[32, 33] and references therein).

Let t ≥ 1 be an integer and letn1, n2, . . . , nt be positive integers. Notice that the direct
product graphG = Kn1 ×Kn2 × . . .×Knt can be seen as the Cayley graph of the direct
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product groupG = Zn1 ×Zn2 × . . .×Znt with connector set[n1] \ {0}× . . .× [nt] \ {0},
whereZni

denotes the additive cyclic group of integers moduloni.
Some recent results concerning independence parameters in graphs with connection to

direct products graphs and Cayley graphs can be found in [11, 61, 20] (see also references
therein).

Idomatic partitions of graphs were studied in [20] as an special coloring problem on
graphs defined asfall colorings. In this work, the authors show the following result.

Theorem 17 ([20]) Let n1 > 1 andn2 > 1 be two integers. The direct product graph
Kn1 × Kn2 admits an idomaticn1-partition and an idomaticn2-partition. Furthermore,
if t > 1 is an integer such thatt �∈ {n1, n2}, thenKn1 × Kn2 has no idomatict-partition.

Moreover, in [20] is posed the question of characterizing the idomatic partitions of the
direct product of three or more complete graphs.

In this chapter, we study in Section 3.1 the independence and chromatic numbers of finite
direct products graphs of circular graphs, Kneser graphs and powers of cycles. In the case
of circular and Kneser graphs, this is done via classical homomorphisms. For the direct
product graph of powers of cycles, we first analyze its independence number and then we
use such a result to compute its chromatic number. This work has been done with the
collaboration of Juan Vera (University of Waterloo, Canada) (see reference [80]).

In Section 3.2, we give a full characterization of the idomatic partitions of the direct
product of three complete graphs by using an standard algebraic approach, and we show
how to use such a characterization in order to construct idomatic partitions of the direct
product of four or more complete graphs (see reference [78]).

3.1 Independence and chromatic properties

3.1.1 Circular graphs

Let m, n be integers such thatm ≥ 2n > 0. Thecircular graphCm
n is the Cayley

graph for the cyclic groupZm with connector set{n, n + 1, n + 2, . . . , m − n}. These
graphs play an important role in the definition of the star chromatic number defined by
Vince in [81]. The following result can be easily deduced.

Lemma 11 Let m, n be integers withm ≥ 2n > 0. Then,α(Cm
n ) = n andχ(Cm

n ) =
�m

n
�.
Concerning homomorphisms between circular graphs, Bondy and Hell show in [7] the

following result.

Lemma 12 (Bondy-Hell [7]) Letm, n, k be positive integers such thatm ≥ 2n. Then,
Cm

n andCkm
kn are homomorphically equivalent.

Lemma 13 Let r, m be positive integers and letn1, n2, . . . , nr be positive integers such
thatn1 ≤ n2 ≤ . . . ≤ nr andm ≥ 2ni, for eachi ∈ [r]. Then,Cm

nr
is a subgraph of the

graphCm
n1

× Cm
n2

× . . . × Cm
nr

.
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Proof : Let φ : Cm
nr

→ ∏
i C

m
ni

be the map defined byx �→ (x, x, . . . , x) for all
x ∈ V (Cm

nr
). It is easy to deduce that this map is an injective graph homomorphism.

�

By Lemma 13 and Lemma 9 we have the following result.

Corollary 4 Let r, m be positive integers and letn1, n2, . . . , nr be positive integers such

thatm ≥ 2ni, for eachi ∈ [r]. Then,χ
(∏

i C
m
ni

)
= min

i
{χ(Cm

ni
)} = min

i

{⌈
m

ni

⌉}
.

Let m1, m2, . . . , mr be positive integers, withr ≥ 1. We denote by[m1, m2, . . . , mr]
the least common multiple ofm1, m2, . . . , mr.

Theorem 18 Let r be a positive integer, and letm1, m2, . . . , mr, n1, n2, . . . , nr be posi-
tive integers such thatmi ≥ 2ni, for eachi ∈ [r]. Then,χ

(∏
i C

mi
ni

)
= min

i
{χ(Cmi

ni
)}.

Proof : Let m = [m1, m2, . . . , mr] andki = m/mi for eachi ∈ [r]. By Lemma 12,
for eachi, we haveCm

niki
homomorphically equivalent toCmi

ni
. Therefore

∏
i C

m
niki

is
homomorphically equivalent to

∏
i C

mi
ni

. By Corollary 4, we have

χ

(∏
i

Cmi
ni

)
= χ

(∏
iC

m
niki

)
= min

i

{
χ(Cm

niki
)
}

= min
i

{⌈
mi

ni

⌉}
= min

i

{
χ(Cmi

ni
)
}

.

�

Lemma 14 Let r, m be positive integers and letn1, n2, . . . , nr be positive integers such
thatm ≥ 2ni, for eachi ∈ [r]. Then,α

(∏
iC

m
ni

)
= mr−1 max

i
{α(Cm

ni
)} = mr−1 max

i
{ni}.

Proof : W.l.o.g. we can assume thatn1 ≤ n2 ≤ . . . ≤ nr. By Lemma 13, the graphCm
nr

is
a subgraph of the graphCm

n1
×Cm

n2
× . . .×Cm

nr
and thus, there is a natural homomorphism

(i.e. the inclusion map) fromCm
nr

to
∏

i C
m
ni

. Moreover, as
∏

i C
m
ni

is vertex-transitive, by
Lemma 10 we haveα(Cm

nr
)/m ≥ α

(∏
i C

m
ni

)
/mr. Therefore,

α
(∏

iC
m
ni

) ≤ mr−1α(Cm
nr

) = mr−1nr = mr−1 maxi{ni}. �

Theorem 19 Let r be a positive integer, and letm1, m2, . . . , mr, n1, n2, . . . , nr be pos-
itive integers such thatmi ≥ 2ni, for eachi ∈ [r]. Let M = m1m2 . . .mr. Then,
α
(∏

i C
mi
ni

)
= max

i
{α(Cmi

ni
)M/mi} = max

i
{niM/mi}.

Proof : Let m = [m1, m2, . . . , mr] and letki = m/mi for eachi ∈ [r]. By Lemma 12,∏
i C

m
niki

is homomorphically equivalent to
∏

i C
mi
ni

. Moreover, as
∏

i C
m
niki

and
∏

i C
mi
ni

are vertex-transitive, by Lemma 10, we haveα(
∏

i C
m
niki

)/mr = α(
∏

i C
mi
ni

)/M . Now,
by Lemma 14, we haveα(

∏
i C

m
niki

) = mr−1 maxi{niki}. W.l.o.g. we can assume that
n1k1 ≤ n2k2 ≤ . . . ≤ nrkr. Therefore,α(

∏
i C

mi
ni

) = nrkrM/m = m1m2 . . . mr−1nr =
maxi{niM/mi} = maxi{α(Cmi

ni
)M/mi}. �
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3.1.2 Kneser graphs

Let m, n be positive integers such thatm ≥ 2n. TheKneser graphKm
n is the graph

whose vertices are then-subsets of{0, 1, . . . , m − 1}, where two vertices are adjacent if
they are disjoint. In a celebrated paper, Lov´asz shows the following result.

Theorem 20 (Lovász [62]) The chromatic number ofKm
n is m − 2n + 2.

The independence number of Kneser graphs is related to the following classical inequality.

Theorem 21 (Erdös-Ko-Rado, [23]) Letm, n be positive integers such thatn < m/2,
andF a family of pairwise intersectingn-subsets of[m]. Then|F| ≤ (m−1

n−1

)
.

Theorem 21 implies that the setsIk = {A ∈ V (Km
n ) : k ∈ A} are independent sets

of maximal cardinality inKm
n , for k = 0, 1, . . . , m − 1. Hilton-Milner [40], show that

those are the only independent sets of maximal cardinality inKm
n . Recently, the diameter

of Kneser graphs has been computed in [79].
Concerning homomorphisms between Kneser graphs, Stahl shows the following use-

ful result.

Theorem 22 (Stahl [75]) Letm, n be integers such thatn > 1 andm ≥ 2n. Then, there
is an homomorphism fromKm

n to Km−2
n−1 .

Lemma 15 Letn, r be positive integers and letm1 ≤ m2 ≤ . . . ≤ mr be positive integers
such thatmi ≥ 2n, for i ∈ [r]. Then,Km1

n is a subgraph of the graphKm1
n × Km2

n ×
. . . × Kmr

n .

Proof : Let Φ : Km1
n → ∏

i K
mi
n be the map defined byΦ(A) = (A, A, . . . , A) for all

A ∈ V (Km1
n ). It is clear that this map is an injective homomorphism. �

By Lemma 15, Lemma 9 and Theorem 20 we can deduce the following result.

Corollary 5 Letn, r be positive integers and letm1, m2, . . . , mr be positive integers such
thatmi ≥ 2n, for i ∈ [r]. Then,χ(

∏
i K

mi
n ) = min

i
{χ(Kmi

n )} = min
i
{mi} − 2n + 2.

Lemma 16 Letr be a positive integer, and letm1, m2, . . . , mr, n1, n2, . . . , nr be positive
integers such thatmi ≥ 2ni, for i ∈ [r], and assume thatn1 ≤ n2 ≤ . . . ≤ nr, with
nr > 1. Then, there is a graph homomorphismΦ :

∏
i K

mi+2(nr−ni)
nr →∏

i K
mi
ni

.

Proof : By Theorem 22, for eachi ∈ [r], there is a graph homomorphismφi : K
mi+2(nr−ni)
nr →

Kmi
ni

. Therefore, there is a graph homomorphismΦ :
∏

i K
mi+2(nr−ni)
nr →∏

i K
mi
ni

. �

Theorem 23 Let r be a positive integer, and letm1, m2, . . . , mr, n1, n2, . . . , nr be posi-
tive integers such thatmi ≥ 2ni, for i ∈ [r]. Then,χ

(∏
i K

mi
ni

)
= min

i
{χ(Kmi

ni
)}.
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Proof : W.l.o.g. we can assume thatn1 ≤ n2 ≤ . . . ≤ nr, and assume thatnr >

1. Then, by Lemma 16, there is a graph homomorphismΦ :
∏

i K
mi+2(nr−ni)
nr →∏

i K
mi
ni

, which implies thatχ(
∏

i K
mi
ni

) ≥ χ
(∏

i K
mi+2(nr−ni)
nr

)
. By Corollary 5 we

haveχ
(∏

i K
mi+2(nr−ni)
nr

)
= min

i
{mi + 2(nr − ni)− 2nr + 2} = min

i
{mi − 2ni + 2} =

min
i
{χ(Kmi

ni
)}. �

Let m, n be positive integers such thatm ≥ 2n. The circular graphCm
n is a subgraph

of the Kneser graphKm
n . More precisely the mapφ : Cm

n → Km
n defined byφ(u) =

{u, u + 1, . . . , u + n − 1} (arithmetic operations are taken modulom) is an injective
graph homomorphism. Notice that the Erd¨os-Ko-Rado inequality (Theorem 21) can be
easily deduced by using the fact thatCm

n is a subgraph ofKm
n , and then, using the No-

Homomorphism-Lemma (Lemma 10). In the same way, we can deduce the independence
number of the direct product of Kneser graphs, which is a particular case of a more general
result of Ahlswede, Aydinian, and Khachatrian [1] in extremal set theory.

Theorem 24 Let r be a positive integer, and letm1, m2, . . . , mr, n1, n2, . . . , nr be posi-
tive integers such thatmi ≥ 2ni, for i ∈ [r]. LetN =

∏
i

(
mi

ni

)
. Then,

α
(∏

iK
mi
ni

)
= max

i

{
α(Kmi

ni
)N/

(
mi

ni

)}
.

Proof : We know that for eachi ∈ [r], we have thatCmi
ni

is a subgraph ofKmi
ni

. Therefore,
there is a homomorphism from

∏
i C

mi
ni

to
∏

i K
mi
ni

. Let M =
∏

i mi. By Lemma 10,
we haveα(

∏
i C

mi
ni

)/M ≥ α(
∏

i K
mi
ni

)/N . Moreover, by Theorem 19,α
(∏

i C
mi
ni

)
=

max
i

{niM/mi}. Thus,α(
∏

i K
mi
ni

) ≤ N max
i

{ni/mi} = max
i

{(mi−1
ni−1

)
N/
(

mi

ni

)} =

max
i

{α(Kmi
ni

)N/
(

mi

ni

)}, which proves this theorem. �

3.1.3 Powers of cycles

For positive integersn anda such thatn ≥ 2a, we denote byC(n, a) the graph with
vertex set{0, 1, . . . , n − 1} and edge set{ij : i − j ≡ ±k mod n, 1 ≤ k ≤ a}; the
graphC(n, a) is thea-th power of then-cycleC(n, 1). Notice that graphC(n, a) is the
complement graph of the circular graphCn

a+1. Prowse and Woodall analyze in [72] a
restricted coloring problem (the list-coloring problem) on powers of cycles. In particular,
they show the following result.

Theorem 25 (Prowse-Woodall [72]) Letn, a be positive integers such thata ≤ n/2 and
n = q(a + 1) + r, whereq ≥ 1 and0 ≤ r ≤ a. Then,α(C(n, a)) = � n

a+1
� = q and

χ(C(n, a)) = � n
α(C(n,a))

� = a + 1 + � r
q
�.

Let V1, V2, . . . , Vj be a vertex decomposition (i.e. a partition of the vertex setV ) of the
graphG. Then, it is easy to deduce thatα(G) ≤ ∑

i α(G[Vi]), where, for1 ≤ i ≤ j,
G[Vi] denotes the subgraph ofG induced byVi.
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Lemma 17 Let m, n, a be positive integers such thata ≤ n/2, and letα = α(C(n, a)).
Then,

α(Km × C(n, a)) = max{n, mα}.

Proof : Let n = q(a + 1) + r, with q ≥ 1 and0 ≤ r ≤ a. By Theorem 25 we have
thatα = q, and thus we need to prove thatα(Km × C(n, a)) ≤ max{n, mq}. Let I be a
maximal independent set ofKm × C(n, a). We can assume that|I| > n. Otherwise, the
lemma trivially holds. Thus, there existsj ∈ {0, . . . , n − 1} such that there are at least
two vertices inI with the second coordinate equal toj. AsC(n, a) is vertex transitive, we
can assume thatj = 0. AsI is an independent set, there is no vertex inI having as second
coordinate an integeri, such that0 < i ≤ a or such thatn − a ≤ i ≤ n − 1. Thus, as
0 ≤ r ≤ a, we can assume that the remaining vertices ofI form an independent set in the
induced subgraphKm×C(n, a)[{a+1, a+2, . . . , n−r−1}]. This induced subgraph ad-
mits a vertex decomposition intoq − 1 subgraphs all of them isomorphic toKm × Ka+1.
Therefore, by using Corollary 3, we have that|I| ≤ m + (q − 1)α(Km × Ka+1) =
m+(q−1) max{m, a+1}. If m ≥ a+1 then|I| ≤ mq. Otherwise,|I| ≤ (a+1)q ≤ n.
�

Theorem 26 For i = 1, 2, let ni, ai be positive integers such thatni ≥ 2ai, and let
αi = α(C(ni, ai)). Then,

α(C(n1, a1) × C(n2, a2)) = max{α1n2, α2n1}.

Proof : For i = 1, 2, arithmetic operations on the vertex set ofC(ni, ai) will be taken
moduloni. Letni = qi(ai+1)+ri, with qi ≥ 1 and0 ≤ ri ≤ ai. By Theorem 25,αi = qi,
for i = 1, 2. Let I be a maximal independence set in the graphC(n1, a1) × C(n2, a2).
We should prove that|I| ≤ max{q1n2, q2n1}. We defineI1 = {x ∈ I : (x1 − 1, x2) ∈
I or (x1 + 1, x2) ∈ I} andI2 = I \ I1. For x ∈ I we defineSx = {(x1, x2 + i) : i =
0, . . . , a2} if x ∈ I1 andSx = {(x1 + i, x2) : i = 0, . . . , a1} if x ∈ I2.

Claim 1 Letx, y ∈ I. If x �= y thenSx ∩ Sy = ∅.

Let x, y ∈ I be such thatx �= y. First we showy �∈ Sx andx �∈ Sy. W.l.o.g. assume
y ∈ Sx. If x ∈ I1, thenx1 = y1 and0 < y2 − x2 ≤ a2. By the maximality ofI,
{(x1, x2 + i) : i = 1, . . . , y2 − x2} ⊂ I, contradictingx ∈ I1. By a similar argument
x �∈ I2. Now, assumeSx ∩ Sy �= ∅. Note that ifx, y ∈ I1 or x, y ∈ I2, thenx ∈ Sy or
y ∈ Sx. Therefore,x ∈ I1 if and only if y ∈ I2. W.l.o.g. assumex ∈ I1 andy ∈ I2. Let
z ∈ Sx ∩ Sy. Thenz1 = x1 andz2 = y2. Thus,0 ≤ y2 − x2 ≤ a2 and0 ≤ x1 − y1 ≤ a1,
contradictingx, y ∈ I, proving this Claim.

Now, w.l.o.g. assume thata1 ≤ a2 and|I| > n2q1; and letA = ∪x∈ISx. By Claim 1,
we have|A| = |I1|(a2 +1)+ |I2|(a1 +1) ≥ |I|(a1 +1) > n2q1(a1 +1). Then there is0 ≤
j < n2 such thatAj = {0 ≤ x < n1 : (x, j) ∈ A} has size larger thanq1(a1 + 1). Given
x ∈ Aj let x̂ be defined as the only point inI such that(x, j) ∈ Sx̂. Also, for i = 1, 2, let
Bi = {x ∈ Aj : x̂ ∈ Ii} and letB′

2 = {x ∈ Aj : (x, j) = x̂ ∈ I2}. By Claim 1, we have
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B′
2 is an independence set inC(n1, a1) and|Aj| = (a1+1)|B′

2|+|B1| ≤ (a1+1)q1+|B1|.
Therefore,B1 is nonempty. AsC(n1, a1) × C(n2, a2) is vertex-transitive we can assume
Aj = {xi : i = 1, . . . , |Aj|} ordered such thatxi+1 > xi for all i andx1 = 0 ∈ B1. Notice
that as|Aj| > q1(a1+1), thenxi+1−xi ≤ a1 for all i. Now we want to proveB2 is empty.
For this assumeB ′

2 �= ∅ and letk = mini {xi ∈ B′
2} = mini {xi ∈ B2}. Thenxk−1 ∈ B1.

Now, x̂k−1, x̂k ∈ I, but x̂k
1 − x̂k−1

1 = xk − xk−1 ≤ a1 andx̂k−1
2 − x̂k

2 = j − x̂k−1
2 ≤ a2.

Thenx̂k−1
2 = j and by maximality ofI we getxk = xk−1+1, but this contradictŝxk ∈ I2.

ThereforeB2 is empty.
Finally, by a similar argument to the one above, for every1 ≤ i ≤ |Aj | we havêxi

2 =
x̂i+1

2 andxi+1 = xi + 1. Therefore there is0 ≤ j′ < n2 such that[0, n1 − 1] × {j′} ⊆ I.
W.l.o.g assumej ′ = 0. The vertices inI \ [0, n1 − 1] × {0} belong to the induced
subgraphC(n1, a1) × C(n2, a2)[{a2 + 1, a2 + 2, . . . , n2 − r2 − 1}], which admits a ver-
tex decomposition intoq2 − 1 subgraphs all of them isomorphic toC(n1, a1) × Ka2+1.
Therefore, by Lemma 17, we have that|I| ≤ n1 + α(C(n1, a1) × Ka2+1)(q2 − 1) =
n1 + (q2 − 1) max{n1, (a2 + 1)q1} ≤ max{q2n1, q1n2}. �

Theorem 27 For i = 1, 2, let ni, ai be positive integers such thatni ≥ 2ai, and let
αi = α(C(ni, ai)). Then,

χ(C(n1, a1)×C(n2, a2)) = min {χ(C(n1, a1)), χ(C(n2, a2))} = min

{⌈
n1

α1

⌉
,

⌈
n2

α2

⌉}
.

Proof : For i = 1, 2, let ni = qi(ai + 1) + ri, with qi ≥ 1 and 0 ≤ ri ≤ ai.
By Theorem 25 we have thatχ(C(ni, ai)) = �ni

αi
�, whereαi = qi. Moreover, by

Theorem 26, we have thatα(C(n1, a1) × C(n2, a2)) = max{n1α2, n2α1}. So, we
have thatχ(C(n1, a1) × C(n2, a2)) ≥ � n1n2

max{n1α2,n2α1}�. Thus, if n1α2 ≥ n2α1 then
χ(C(n1, a1) × C(n2, a2)) ≥ �n1n2

n1α2
� = �n2

α2
� = χ(C(n2, a2)). Otherwise,χ(C(n1, a1) ×

C(n2, a2)) ≥ �n1n2

n2α1
� = �n1

α1
� = χ(C(n1, a1)). Therefore,χ(C(n1, a1) × C(n2, a2)) ≥

min{χ(C(n1, a1)), χ(C(n2, a2))}. �

We have not be able to generalize Theorem 26 for any finite product of powers of
cycles graphs, and so it remains as an open problem.

3.2 Idomatic sets and idomatic partitions

3.2.1 Independent dominating sets

Lemma 18 Let G = Kn0 × Kn1 × Kn2 with n0, n1, n2 ≥ 2 and letI be an independent
dominating set inG. If the setI contains at least two vertices agreeing in exactly two
coordinates, thenI = pr−1

i (k), wherei ∈ [3], pri is the projection ofG on Kni
and

k ∈ [ni].

Proof. As G is vertex-transitive and the direct product is commutative, we can assume
w.l.o.g. that the vertices(x, i, j) and(y, i, j) of G belong toI, with i andj fix, andx �= y.
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First note that for allz ∈ [n0], with z �∈ {x, y}, we have that(z, i, j) ∈ I. Otherwise,
let z �∈ {x, y} such that(z, i, j) �∈ I. As I is a dominating set, then there exists a vertex
(a, b, c) ∈ I such thata �= z, b �= i andc �= j. If a �∈ {x, y} then(a, b, c) is adjacent
to vertices(x, i, j) and(y, i, j). If a ∈ {x, y}, saya = x (the casea = y is analogous),
then(a, b, c) is adjacent to vertex(y, i, j). In both cases, we obtain a contradiction to the
independence ofI. Now, assume that there exists a vertex(w, q, j) �∈ I, with q �= i.
Otherwise,I = pr−1

2 (j) and there is nothing to prove. AsI is a dominating set, then
there exists a vertex(a, b, c) ∈ I with a �= w, b �= q andc �= j. As (z, i, j) belongs to
I for anyz ∈ [n0], thenb = i, otherwiseI is not an independent set. Thus, the vertices
(a, i, j) and(a, i, c) belong toI. By using a similar argument as before, we can deduce
that (a, i, h) ∈ I for all h ∈ [n2]. Therefore, we have that(z, i, j) and(a, i, h) belong
to I for all z ∈ [n0] and for allh ∈ [n2] which implies, by the hypothesis thatI is an
independent dominating set ofG, thatI = pr−1

1 (i). �

Lemma 19 LetG = Kn0 ×Kn1 ×Kn2 , with n0, n1, n2 ≥ 2, and letI be an independent
set ofG such that no two vertices in it agree in exactly two coordinates. Thus, the setI is
a dominating set ofG if and only if

I = {(α0, α1, α2), (α0, β1, β2), (β0, α1, β2), (β0, β1, α2)},
for someαi, βi ∈ [ni], with αi �= βi andi ∈ [3].

Proof. Assume first that such independent setI is also a dominating set ofG. By
hypothesis,I contains at least two vertices, and any pair of such vertices agreeing in
exactly one coordinate. AsG is vertex-transitive, we can assume w.l.o.g. that vertex
(0, 0, 0) belongs toI. By the commutativity of the direct product, we can assume thatI
contains also the vertex(0, β1, β2), with βi �= 0 for i = 1, 2. Furthermore, by hypothesis,
I contains no vertex of the form(0, 0, z), for anyz �= 0. As I is a dominating set, then
there exists(β0, b, c) ∈ I with β0 �= 0, b �= 0 andc �= z. If c �= 0 then vertices(0, 0, 0)
and(β0, b, c) are adjacent which is a contradiction to the independence ofI. So c = 0
which implies thatb = β1, otherwise there is again a contradiction with the independence
of I. Therefore, vertices(0, 0, 0), (0, β1, β2) and (β0, β1, 0) belong toI. Similarly, by
hypothesis,I contains no vertex of the form(0, y, 0) for anyy �= 0. As I is a dominating
set, there exists a vertex(u, v, w) ∈ I with u �= 0, v �= y andw �= 0, which implies
that vertex(β0, 0, β2) belongs toI. By hypothesis, it is clear that no other vertex different
to the previous four vertices can belong toI, otherwise there is a contradiction to the
independence ofI.
Conversely, letI = {(α0, α1, α2), (α0, β1, β2), (β0, α1, β2), (β0, β1, α2)}, for someαi, βi ∈
[ni], with αi �= βi andi ∈ [3]. Clearly,I is a maximal independent set w.r.t. the property
that any pair of vertices in it agree in exactly one coordinate. Suppose that there is a
vertex(x0, x1, x2) ∈ G \ I such that it is not adjacent to any vertex inI. Thus,xi = αi

for some (but not for all)i ∈ [3]. So, assume thatx2 �= α2 (the other cases can be proved
similarly). If x0 = α0 andx1 = α1 then(β0, β1, α2) is adjacent to it. Therefore, assume
thatx1 �= α1. As x0 = α0, then it implies thatx1 = β1, otherwise(x0, x1, x2) is adjacent
to (β0, β1, α2). But, the last implies thatx2 = β2, otherwise(x0, x1, x2) is adjacent to
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(β0, α1, β2). Thus,(x0, x1, x2) = (α0, β1, β2) ∈ I that is a contradiction. Similarly, if we
assume thatx0 �= α0, x1 = α1, andx2 �= α2 we obtain that(x0, x1, x2) = (β0, α1, β2) ∈ I
that is a contradiction. Therefore,I is an independent dominating set ofG. �

Definition 2 Let G = Kn0 × Kn1 × Kn2, with ni ≥ 2, and letI be an independent
dominating set inG. The setI is said to be ofType A if it verifies the hypothesis in
Lemma 18, and it is said to be ofType B if it verifies the hypothesis in Lemma 19.

The following result is a consequence of Lemmas 18 and 19.

Theorem 28 LetG = Kn0 ×Kn1 ×Kn2 , with ni ≥ 2, and letI be an independent set in
G. Then,I is also a dominating set inG if and only if it is of Type A or Type B.

3.2.2 Idomatic partitions

Definition 3 Let G = Kn0 × Kn1 × Kn2, with ni ≥ 2, and letG1, G2, . . . , Gt be an
idomatict-partition ofG, with t > 1. Such an idomatic partition is called

- of Type A: If all independent dominating setsGi are of Type A.

- of Type B: If all independent dominating setsGi are of Type B.

- of Type C: If there is at least one independent dominating setGi of Type A, and at
least one independent dominating setGj of Type B, withi �= j.

Theorem 29 Let G = Kn0 × Kn1 × Kn2, with ni ≥ 2. Then,G has an idomaticni-
partition of Type A for eachi ∈ [3]. Moreover, such partitions are the only idomatic
partitions of Type A ofG.

Proof. Let pri be the projection ofG on Kni
, for i ∈ [3]. It is easy to deduce that

pr−1
i (0), pr−1

i (1), . . . , pr−1
i (ni − 1) is an idomaticni-partition ofG. In order to proof the

second part, assume thatG has an idomatic partition of Type A containing two different
independent dominating setsIi andIj such thatIi = Knk

× Knj
× {αi} for some fixed

αi ∈ [ni] andIj = Knk
× {αj} × Kni

for some fixedαj ∈ [nj], wherei, j, k ∈ [3] and
i, j, k pairwise different. Clearly,Ii ∩ Ij �= ∅ that is a contradiction. �

Proposition 4 Let G = Kn0 × Kn1 × Kn2, with ni ≥ 2. If G has an idomatic partition
of Type B then there existj, k ∈ [3], with j �= k, such thatnj andnk are both even.

Proof. By Lemma 19, we know that each part in an idomatic partition of Type B has four
vertices, and thus4 is a divisor ofn0.n1.n2. That is, there is at least onenj , with j ∈ [3]
such that2|nj . By the commutativity of the direct product, we can assume w.l.o.g. that
j = 2. Let Gk be a part of the idomatic partition of Type B. By definition,Gk is an inde-
pendent dominating set of Type B. So, letGk = {(α0, α1, α2), (α0, β1, β2), (β0, α1, β2),
(β0, β1, α2)}, whereαi, βi ∈ [ni] with αi �= βi. Fix the elementα2 ∈ [n2]. The number
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of vertices(x, y, α2) in G is exactlyn0.n1. Moreover, asαi �= βi then, there are exactly
n0.n1

2
parts in any idomatic partition of Type B each one containing exactly two different

vertices(x, y, α2) and (x′, y′, α2), with x �= x′ andy �= y′. Therefore,2|n0.n1, which
implies that2|n0 or 2|n1. �

Proposition 5 Let G = Kn0 × Kn1 × Kn2 , with ni ≥ 2. If there existj, k ∈ [3], with
j �= k, such thatnj andnk are both even, thenG has an idomatic partition of Type B of
order n0.n1.n2

4
.

Proof. As mentioned previously, the graphG = Kn0 × Kn1 × Kn2 can be seen as
the Cayley graph associated with the direct product groupG = Zn0 × Zn1 × Zn2 with
connector set[n0] \ {0} × [n1] \ {0} × [n2] \ {0}, whereZni

denotes the additive cyclic
group of the integers moduloni. By the commutativity of the direct product, we can
assume w.l.o.g. that2|n1 and2|n2. Let aj be an element of ordernj

2
in the groupZnj

, for
j ∈ {1, 2}. Let H0 = < (1, 0, 0) > be the cyclic subgroup ofG generated by the element
(1, 0, 0). Similarly, letH1 = < (0, a1, 0) > andH2 = < (0, 0, a2) > be cyclic subgroups
of G. It is easy to deduce thatHi ∩ Hj = {(0, 0, 0)} for all i, j ∈ [3], with i �= j. As G
is an Abelian group then, by using standard group theoretic concepts, it can be deduced
that the setH0.H1.H2 = {h0 + h1 + h2 : hi ∈ Hi for i ∈ [3]} is a subgroup of order
n0.n1.n2

4
in G. Let P denotes the subgroupH0.H1.H2 and letr = n0.n1.n2

4
. Moreover, let

P = {p1, p2, . . . , pr}, wherep1 = (0, 0, 0) is the identity element. The following claim
can be obtained by using standard arguments in group theory.

Claim 1 LetP be the subgroup ofG = Zn0 ×Zn1 ×Zn2 defined previously. Forj = 1, 2,
let aj be the element of ordernj/2 in Znj

chosen in order to construct the subgroupHj of
G. Letβ0 be any element inZn0, withβ0 �= 0. Moreover, forj = 1, 2, letβj be any element
in Znj

such thatβj �∈< aj >. Then,P, (0, β1, β2) + P, (β0, 0, β2) + P, (β0, β1, 0) + P is
a partition ofG into left cosets ofP .

In fact, letD = {(0, β1, β2), (β0, 0, β2), (β0, β1, 0)}. By construction, no element in
the setD belongs to the subgroupP . Moreover, letx, y be any two different elements in
D. It is easy to show that there exists no elementz ∈ P such thatx + z = y. Otherwise,
z = (p0, p1, p2) ∈ P is such thatp1 = ±β1 or p2 = ±β2 that is a contradiction. Therefore,
Claim 1 holds.

Now, for each1 ≤ i ≤ r, letCi = {pi, (0, β1, β2)+pi, (β0, 0, β2)+pi, (β0, β1, 0)+pi :
pi ∈ P}. We want to show thatC1, C2, . . . , Cr is an idomaticr-partition of the graphG =
Kn0×Kn1×Kn2 . By using the fact thatG is the Cayley graph Cay(

∏
Zni

,
∏

([ni]\{0})),
we obtain the following claim.

Claim 2 Letx, y, z be three vertices ofG. Then, verticesx + y andx + z are adjacent in
G if and only if verticesy andz are adjacent inG.

Notice that, by Claim 2, each partCi is an independent set of the graphG. Moreover,
by Lemma 19, each setCi is an independent dominating set of Type B, which completes
the proof. �

By Propositions 4 and 5, we obtain the following theorem.
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Theorem 30 LetG = Kn0 ×Kn1 ×Kn2 , withni ≥ 2. Then,G has an idomatic partition
of Type B if and only if there existj, k ∈ [3], with j �= k, such thatnj andnk are both
even.

Example 1 Let G = K2 × K3 × K4. An idomatic6-partition of Type B ofG can
be constructed as follows : letP =< (0, 0, 0) > . < (0, 1, 0) > . < (0, 0, 2) >=
{p0, p1, p2, p3, p4, p5} be a subgroup of the groupZ2 × Z3 × Z4, wherep0 = (0, 0, 0),
p1 = (0, 1, 0), p2 = (0, 2, 0), p3 = (0, 0, 2), p4 = (0, 1, 2), and p5 = (0, 2, 2). Let
x1 = (0, 1, 1), x2 = (1, 0, 1), andx3 = (1, 1, 0). Then,Ci = {pi, pi +x1, pi +x2, pi +x3},
for i = 0, 1, . . . , 5, is an idomatic6-partition of Type B ofG .

Theorem 31 Let G = Kn0 × Kn1 × Kn2, with ni ≥ 2, and letq1, q2 be two positive
integers. Then,G has an idomatic(q1 + q2)-partition of Type C if and only if there exists
i ∈ [3] such thatni − q1 > 1 andKnj

×Knk
×Kni−q1 admits an idomaticq2-partition of

Type B, withj, k, i ∈ [3] andj, k, i pairwise different.

Proof. Assume first thatG has an idomatic(q1 + q2)-partition of Type C, whereq1 (resp.
q2) denotes the number of independent dominating sets of Type A (resp. Type B) in such
a partition. By Theorem 29, it can be deduced that theq1 dominating sets of Type A must
be all of the formKnj

× Knk
× {s} for somes ∈ Kni

with i fix, wherej, k, i ∈ [3] and
j, k, i pairwise different. So, by permuting (if necessarily) the elements in the factorKni

,
we can assume w.l.o.g. that theq1 independent dominating sets of Type A are the sets
Knj

× Knk
× {s}, for s = ni − q1, . . . , ni − 1. Clearly, the remainingq2 independent

dominating sets of Type B induce an idomaticq2-partition of Type B of the direct product
graphKnj

× Knk
× Kni−q1. Finally, note that ifni − q1 = 1, then all the independent

dominating sets in the idomatic partition are of Type A, which is a contradiction, and thus,
ni − q1 > 1. The other direction of the proof is trivial. �

Example 2 Let G = K2 × K3 × K4. An idomatic5-partition of Type C ofG can be
constructed as follows : consider first the graphG′ = K2 × K2 × K4 and letP =
< (0, 0, 0) > . < (0, 0, 0) > . < (0, 0, 1) >= {p0, p1, p2, p3} be a subgroup of the group
Z2 × Z2 × Z4, wherep0 = (0, 0, 0), p1 = (0, 0, 1), p2 = (0, 0, 2), andp3 = (0, 0, 3). Let
x1 = (0, 1, 1), x2 = (1, 0, 1), andx3 = (1, 1, 0). Then,C ′

i = {pi, pi +x1, pi +x2, pi +x3},
for i = 0, 1, 2, 3 is an idomatic4-partition ofG′ of Type B. Then,(K2×{2}×K4)∪(∪C ′

i)
is an idomatic5-partition of Type C forG.

From Theorems 29, 30 and 31, we have a full characterization of the idomatic parti-
tions of the direct product of three complete graphs as follows.

Theorem 32 LetG = Kn0 ×Kn1 ×Kn2 , withni ≥ 2. If I is an idomatic partition ofG,
thenI must be of Type A, B or C.

By Theorem 17 (see [20]) we know that the idomatic number of the graphG = Kn0 ×
Kn1, with n0, n1 ≥ 2, is equal tomax{n0, n1}. Now, having the characterization of the
idomatic partitions of the direct product of three complete graphs then, by using Theorems
29, 30, 31, and Proposition 5, we can easily deduce the following corollary.
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Corollary 6 Let G = Kn0 × Kn1 × Kn2, with n0, n1, n2 ≥ 2, and letid(G) denote the
idomatic number of graphG. Let t = max{n0, n1, n2}. Then,

1. If ni is an odd integer for alli ∈ [3], thenid(G) = t.

2. If ni is an even integer andnj ≤ nk are odd integers, withi, j, k ∈ [3] andi, j and
k pairwise different, thenid(G) = max{t, ni.nj .(nk−1)

4
+ 1}.

3. If ni andnj are even integers, withi, j ∈ [3] andi �= j, thenid(G) =
ni.nj .nk

4
.

3.2.3 Some General results

Theorem 33 Let G × H be the direct product graph of graphsG andH respectively. If
G admits an idomaticr-partition for somer > 0, and ifH has no isolated vertices, then
G × H admits an idomaticr-partition.

Proof. Assume thatG admits an idomaticr-partition, for some positive integerr. Let
G1, G2, . . . , Gr be such an idomaticr-partition ofG. SetSi = Gi × H, for 1 ≤ i ≤ r.
Clearly,

⋃r
i=1 Si is a vertex partition of the graphG × H. As for each1 ≤ i ≤ r, we

have thatGi is an independent dominating set inG, it follows, by the definition of direct
product graph and by the hypothesis thatH has at least one edge, thatSi is an indepen-
dent dominating set inG×H, and therefore

⋃r
i=1 Si is an idomaticr-partition ofG×H. �

So, by using Theorem 33, we can directly deduce the following result.

Proposition 6 LetG = Kn0 ×Kn1 × . . .×Knt , with t ≥ 3 andni ≥ 2 for anyi ∈ [t+1].
Let J be any subset of[t + 1]. If

∏
i∈J Kni

has an idomatic partition of sizer, thenG
has an idomaticr-partition.

Notice that Theorem 29 can be generalized as follows.

Theorem 34 LetG = Kn0 ×Kn1 × . . .×Knt, with t ≥ 3 andni ≥ 2 for anyi ∈ [t + 1].
Then,G has an idomaticni-partition of Type A for eachi ∈ [t + 1]. Moreover, such
partitions are the only idomatic partitions of Type A ofG.

3.3 Conclusions

In Section 3.1, we have shown that for circular graphs, Kneser graphs, and powers
of cycles graphs, the Hedetniemi’s conjecture on the chromatic number of direct prod-
ucts of these graphs is true. Moreover, we have also computed the independence number
of direct products of these graphs. However, it is unknown if for any vertex-transitive
graphsG and H, the equalitiesχ(G × H) = min{χ(G), χ(H)} and α(G × H) =
max{α(G)|H|, α(H)|G|} always hold.

In Section 3.2, we are obtained a full characterization of the idomatic partitions of the
direct product of three complete graphs. Moreover, From Theorem 34 and Proposition
6 in Section 3.2, we are able to construct many idomatic partitions for a direct product
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of four or more complete graphs. However, we do not know if there exist other different
types of idomatic partitions. Therefore, a full characterization of such idomatic partitions
for the direct product of finitely many complete graphs remains an open question.



Chapter 4

Sum-coloring of graphs

Given a vertex coloring of a graphG, thesumof the coloring is the sum of the colors
assigned to the vertices. Thechromatic sumΣ(G) of G is the smallest sum that can be
achieved by any proper coloring ofG. In theMinimum Sum Coloring(MSC) problem we
have to find a coloring ofG with sumΣ(G).

The MSC problem was introduced by Kubicka [58]. The problem is motivated by
applications in scheduling [3, 4, 35, 36] and VLSI design [69, 76]. The computational
complexity of determining the vertex chromatic sum of a simple graph has been studied
extensively since then. In [59] it is shown that the problem is NP-hard in general, but
polynomial-time solvable for trees. The dynamic programming algorithm for trees can
be extended to partialk-trees and block graphs [49]. Furthermore, the MSC problem is
NP-hard even when restricted to some classes of graphs for which finding the chromatic
number is easy, such as bipartite or interval graphs [4, 76]. A number of approachability
results for various classes of graphs were obtained in the last ten years [3, 30, 35, 36, 26].

Jansen has shown in [49] that a more general optimization problem where each color
has an integer cost, but this cost is not necessarily equal to the color itself,the Opti-
mal Cost Chromatic Partition (OCCP) problem, can be solved in polynomial-time for
cographs and block graphs, but it remains NP-hard for permutation graphs. Salavatipour
has shown in [73] that the OCCP problem can be solved in polynomial-time for the fam-
ily of P4-reducible graphs, a superclass containing the family of cographs.P4-sparse
graphs were introduced in [41]. They generalize cographs andP4-reducible graphs, can
be recognized in linear time [46], and are a subclass of perfect graphs [41]. In Section
4.1, we study the Minimum Sum Coloring (MSC) problem onP4-sparse graphs. First,
we introduce the concept of maximal sequence associated with an optimal solution of
the MSC problem of any graph. Next, based in such maximal sequences, we show that
there is a large sub-family ofP4-sparse graphs for which the MSC problem can be solved
in polynomial-time. This work has been done with the collaboration of Flavia Bonomo
(Universidad de Buenos Aires, Argentina) (see reference [10]).

In an analogous way, it has been defined the edge coloring version of the MSC prob-
lem : theMinimum Sum Edge Coloring(MSEC) problem. Theedge-chromatic sumof
a graphG is denoted byΣ′(G).The MSEC problem is NP-hard for bipartite graphs [31],

49
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even if the graph is also planar and has maximum degree 3 [64]. Furthermore, in [64] is
also shown that the MSEC is NP-hard for3-regular planar graphs and for partial2-trees.
Independently of the result given by Jansen in [49] concerning the polynomial-time com-
plexity of a more general optimization problem (i.e. the General Optimal Cost Chromatic
Partition Problem) containing the MSC problem on block graphs, it has been shown in
[31, 74, 83] that the MSEC problem can be solved in polynomial time by a dynamic pro-
gramming algorithm that uses weighted bipartite matching as a subroutine (in fact, notice
that the family of block graphs includes trees and line graphs of trees). For general multi-
graphs, a1.829-approximation algorithm for the MSEC problem is presented in [36]. For
bipartite graphs there exist better approximation ratios : a1.796-approximation algorithm
is given in [35], and a1.414-approximation algorithm is proposed recently in [28]. In
Section 4.2, we show that the MSEC problem is polynomial-time solvable for multicy-
cles (resp. multipaths), i.e. cycles (resp. paths) with parallel edges. This work has been
done with the collaboration of Jean Cardinal (Universit´e Libre de Bruxelles, Belgique)
and Vlady Ravelomanana (Universit´e Paris-Nord, France) (see references [13, 14]).

We also define the minimum number of colors needed in a minimum sum coloring of
G. This number is called thestrengths(G) of the graphG in the case of vertex colorings,
and theedge strengths′(G) in the case of edge colorings. Clearly,s(G) ≥ χ(G) and
s′(G) ≥ χ′(G). Hardness results were also given for the vertex and edge strength of a
simple graph by Salavatipour [74], and Marx [66].

Some results concern the relations between the chromatic numberχ(G) and the strength
s(G) of a graph. It has been known for long that the vertex strength can be arbitrarily
larger than the chromatic number [24]. However, ifG is a proper interval graph, then
s(G) = χ(G) [69], ands(G) ≤ min{n, 2χ(G) − 1} if G is an interval graph [68]. Haji-
abolhassan, Mehrabadi, and Tusserkani [34] proved an analog of Brooks’ theorem for the
vertex strength of simple graphs:s(G) ≤ ∆(G) for every simple graphG that is neither
an odd cycle nor a complete graph, where∆(G) is the maximum degree inG.

Concerning the relation between the chromatic index and the edge strength, Mitchem,
Morriss, and Schmeichel [67] proved an inequality similar to Vizing’s theorem :s ′(G) ≤
∆(G) + 1 for every simple graphG. Harary and Plantholt [82] have conjectured that
s′(G) = χ′(G) for every simple graphG, but this was later disproved by Mitchemet
al. [67], and Hajiabolhassanet al. [34].

An interesting application of the MSEC problem is to model dedicated scheduling
of biprocessor jobs. The vertices correspond to the processors and each edgee = uv
corresponds to a job that requires a time unit of simultaneous work on the two preassigned
processorsu andv. The colors correspond to the available time slots. A processor cannot
work on two jobs at the same time, this corresponds to the requirement that a color can
appear at most once on the edges incident to a vertex. The objective is to minimize the
average time before a job is completed. When there can beω(e) instances of the same
job, it arises the notion ofset-coloringof the corresponding conflict graph. Formally,
given a simple graphG = (V, E) and a demand functionω : V → Z+, a vertex set-
coloringof (G, ω) consists in assigning to each vertexv ∈ V a set ofω(v) colors in such
a way that adjacent vertices will be assigned disjoint sets of colors. Given a vertex set-
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coloring of a graphG with demand functionω, thesumof the set-coloring is the sum of
the colors in the set assigned to each one of the vertices. Thechromatic set-sumΣ(G, ω)
of (G, ω) is the smallest sum that can be achieved by any proper set-coloring of(G, ω).
In the Minimum Sum Set Coloring(MSSC) problem we have to find a set-coloring of
(G, ω) with sumΣ(G, ω). Clearly, whenω(v) = 1 for each vertexv of the graph, the
MSSC problem becomes the MSC problem. The dedicated scheduling of biprocessor
jobs with multiple instances can be modeled as a MSSC problem on the line graph of the
conflict graph. A similar problem where each jobe requiresω(e) time units of dedicated
biprocessors, thus leading to a different objective function, was studied in [65]. In this
case, sometimes it is allowed that a job is interrupted and continue later : the set of colors
assigned to a vertex does not have to be consecutive. This type of scheduling is called
preemptive(assuming that preemptions can happen only at integer times). Otherwise, if
the set of colors assigned to each vertex needs to be consecutive, then the scheduling is
callednon-preemptive. In our case, the non-preemptive case arises when each job requires
a high cost setup on the processors, and thus the objective is to minimize the average time
before a job is completed, within the solutions minimizing the setup costs. Therefore, we
have two variants of the MSSC problem : the preemptive and the non-preemptive one.
It will be show in Section 4.3 that the computational complexity of the MSC problem
and the MSSC problem (resp. preemptive MSSC problem and the non-preemptive MSSC
problem) can be different for the same family of graphs :block graphs. A maximal
subgraph2-connected of a graph is called ablock. A block graphis a graph for which
each block is a clique. The family of block graphs includes as special cases trees and
line graphs of trees. This work has been done with the collaboration of Flavia Bonomo
and Guillermo Dúran (Universidad de Buenos Aires, Argentina), and Javier Marenco
(Universidad Nacional de General Sarmiento, Argentina) (see reference [9]).

4.1 MSC problem in P4-sparse graphs

By Theorem 7 (see Chapter 2, Section 2.2.1),P4-sparse graphs have a nice decompo-
sition property : ifG is a non-trivialP4-sparse graph, then eitherG or G is not connected,
or G is a spider.

In fact, to eachP4-sparse graphG one can associate a corresponding decomposition
rooted treeT in the following way. Each non-leaf node in the tree is labeled with either
“∪” (union-nodes), or “∨” (join-nodes) or “SP” (spider-partition-nodes), and each leaf is
labeled with a vertex ofG. Each non-leaf node has two or more children. LetTx be the
subtree ofT rooted at nodex and letVx be the set of vertices corresponding to the leaves in
Tx. Then, each nodex of the tree corresponds to the graphGx = (Vx, Ex). An union-node
(join-node) corresponds to the disjoint union (join) of theP4-sparse graphs associated
with the children of the node. A spider-partition-node corresponds to a spider-partition
(S, C, R) of theP4-sparse graphs associated with the children of the node. Finally, the
P4-sparse graph that is associated with the root of the tree is justG, theP4-sparse graph
represented by this decomposition tree. The decomposition tree associated with aP4-
sparse graph can be computed in linear time [47].
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4.1.1 Maximal sequences and optimal solutions of the MSC problem

A k-coloring of a graphG = (V, E) is a partition of the vertex setV into k indepen-
dent setsS1, . . . , Sk, where each vertex inSi is colored with colori, for 1 ≤ i ≤ k. So, for
any suchk-partition ofV into independent sets, we can associate a non-negativesequence
p such thatp[i] = |Si| for i = 1, . . . , k andp[i] = 0 for i > k. In the sequel, we deal only
with finite support non-negative integer sequences. Let|p| = max{i : p[i] > 0}.

Definition 4 Let p andq be two integer sequences. We say thatp dominatesq, denoted
byp � q, if for all t ≥ 1 it holds that

∑
1≤i≤t p[i] ≥∑1≤i≤t q[i].

Definition 5 Let p be a sequence. We denote byp̃ the sequence that results fromp when
we order it in a non-decreasing way.

The following two lemmas are direct consequences of Definition 4.

Lemma 20 The dominance relation� is a partial order.

Lemma 21 Letp be a sequence. Then,p̃ � p.

The following lemma will be very useful in order to study the MSC problem on
graphs.

Lemma 22 Let p and q be two sequences and letn = max{|p|, |q|}. If p � q and∑
1≤i≤n p[i] =

∑
1≤i≤n q[i], then it holds that

∑
1≤i≤n i.p[i] ≤∑1≤i≤n i.q[i].

Proof. Let N =
∑

1≤i≤n p[i] =
∑

1≤i≤n q[i].. Let P andQ be two sequences obtained
from p andq such that|P | = |Q| = N , and defined byP [j] = min{k :

∑
1≤i≤k p[i] ≥ j}

(resp. Q[j] = min{k :
∑

1≤i≤k q[i] ≥ j}) for j = 1, . . . , N . By hypothesis,p � q,
and so,P [j] ≤ Q[j] for all 1 ≤ j ≤ N . Therefore,

∑
1≤i≤n i.p[i] =

∑
1≤j≤N P [j] ≤∑

1≤j≤N Q[j] =
∑

1≤i≤n i.q[i]. �

Notice that if the sequences represent partitions of the vertex set of a graph into inde-
pendent sets, where the value of theith element of the sequence represents the size of the
ith independent set in the partition, then for the sum-coloring problem on graphs we can
restrict us to study maximal sequences w.r.t. the partial order�. Notice also that maxi-
mal sequences are non-increasing sequences. In the following, we define some operations
between sequences.

Definition 6 Let p andq be two sequences. The join ofp andq, denoted byp 
 q, is the
sequence that results by ordering in a non-increasing way the concatenation of sequences
p andq.

Definition 7 Let p andq be two sequences. The sum ofp andq, denoted byp + q, is the
sequence such that itsi-th value is equal top[i] + q[i], for i = 1, . . . , max{|p|, |q|}.

Definition 8 Let p and q be two sequences. We say thatp and q are non-comparable,
denoted byp||q, if p �� q andq �� p.
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The following two lemmas will be useful in order to study the MSC problem onP4-
sparse graphs.

Lemma 23 Letp, p′ andq be sequences. If̃p � p̃′ thenp 
 q � p′ 
 q.

Proof. Let’s consider the sequencep′ 
 q. By definition of join, p̃′ is a subsequence of
p′ 
 q. Let s be the sequence that results fromp′ 
 q by replacing each element̃p′[i] for
p̃[i]. As by hypothesis,̃p � p̃′, then we have thats � p′ 
 q. But now, note thatp 
 q = s̃
and thus,p 
 q � s � p′ 
 q. �

Lemma 24 Letp, p′ andq be sequences. Then,p||p′ if and only ifp + q||p′ + q.

Proof. Note thatp||p′ if and only if there exist two different positive integersj1 andj2

such that
∑j1

i=1 p[i] >
∑j1

i=1 p′[i] and
∑j2

i=1 p[i] <
∑j1

i=1 p′[i]. Therefore,
∑j1

i=1(p[i] +

q[i]) >
∑j1

i=1(p
′[i] + q[i]) and

∑j2
i=1(p[i] + q[i]) <

∑j1
i=1(p

′[i] + q[i]) that it is equivalent
to p + q||p′ + q. �

A direct consequence of the previous lemma is the following result.

Corollary 7 Letp, p′ andq be sequences. Then,p � p′ if and only ifp + q � p′ + q.

Let G be a graph. Suppose thatG = G1 ∪ G2 and letp be a sequence representing
a partition of the vertex set ofG into independent sets. Clearly,p = p1 + p2 wherep1

(resp. p2) is a sequence representing a partition of the vertex set ofG1 (resp. G2) into
independent sets. In an analogous way, suppose thatG = G1∨G2 and letp be a sequence
representing a partition of the vertex set ofG into independent sets. Clearly,p = p1 
 p2

wherep1 (resp. p2) is a sequence representing a partition of the vertex set ofG1 (resp.
G2) into independent sets. Therefore, by Corollary 7 and Lemma 23, if we are looking
for maximal sequences ofG representing partitions of its vertex set into independent sets
then, in both cases it is sufficient to consider maximal partitions of the graphsG1 andG2.

4.1.2 Maximal sequences ofP4-sparse graphs

In the sequel, sequences of a graph will represent partitions of its vertex set into inde-
pendent sets.

Lemma 25 LetG = (S, C, R) be a thin spider. Then,

1. If R = ∅ then,G has only one maximal sequencep, with |p| = |C|, wherep[1] =
|C|, p[2] = 2, andp[i] = 1 for 3 ≤ i ≤ |C|.

2. If R �= ∅ then, the number of maximal sequences ofG is equal to the number of
maximal sequences ofG[R]. Moreover, for each maximal sequenceq of G[R] there
exists only one maximal partitionq ′ of G with |q′| = |q| + |C| and whereq′[1] =
q[1] + |C|, q′[i] = q[i] for 2 ≤ i ≤ |q|, andq′[i] = 1 for |q| + 1 ≤ i ≤ |q| + |C|.



54 CHAPTER 4. SUM-COLORING OF GRAPHS

Proof. Let S = {s1, . . . , sk} andC = {c1, . . . , ck}, with k ≥ 2. Let S1, . . . , St be a
partition of the vertex set ofG into independent sets, witht ≥ 1, such that its associated
sequencep is maximal. Then,

1. By hypothesis, we have thatR = ∅. Note first that each vertexci ∈ C must belong
to a different independent setSj and so,t ≥ k. Now, by definition of a thin spider,
each vertexsi is adjacent to vertexcj if and only if i = j. We claim that there isSi

such thatSi = S or there areSi andSj, with i �= j, such thatSi = (S \{sn})∪{cn}
andSj = {sn, cm}, for somen, m ∈ {1, . . . , k}, with m �= n. Assume that it is
not true, that is, suppose that there areSi, Sj , Sl, with i < j < l, such that each
one of them contains at least one vertex ofS. Let sq ∈ S be a vertex inSl. Then
vertexcq ∈ C belongs at most to one ofSi or Sj but not to both. Thus, vertexsq

must migrate to one ofSi or Sj who contains no vertexcq which gives a sequence
that dominatesp, that is a contradiction. Therefore, vertices inS belong to only
one setSi or to two different setsSi andSj. As p is maximal, thenp is such that
: (i) p[1] = k andp[i] = 1 for 2 ≤ i ≤ k + 1, that is,S1 = S andSj = {cj−1}
for 2 ≤ j ≤ k + 1; or (ii) p[1] = k, p[2] = 2, andp[i] = 1 for 3 ≤ i ≤ k, that is,
sequencep is associated with the partitionS1 = (S \ {s1}) ∪ {c1}, S2 = {s1, c2},
andSl = {cl} for 3 ≤ l ≤ k. Clearly, the sequence of Case(ii) dominates the one
of Case(i), and it is the only maximal sequence.

2. By hypothesis, we have thatR �= ∅. Let p be a maximal sequence ofG and letp1

andp2 be sequences associated withS ∪C and defined as :p1[1] = k andp1[i] = 1
for 2 ≤ i ≤ k + 1; andp2[1] = k, p2[2] = 2, andp2[i] = 1 for 3 ≤ i ≤ k. In fact,p1

(resp.p2) represents the partition of the Case(i) (resp.(ii)) in Case(1) above. Let
S1, . . . , St be the partition of the vertex set ofG into independent sets associated
with the sequencep, with t ≥ k. Let S ′

1, . . . , S
′
r (resp.S ′′

1 , . . . , S ′′
r′) be the partition

that results fromS1, . . . , St after eliminating on it the setsSw such thatSw ⊆ R
(resp. Sw ⊆ S ∪ C), and letQ1, . . . , Qr (resp. R1, . . . , Rr′) be a partition of the
vertex setS∪C (resp.R), whereQj = S ′

j \S ′
j ∩R (resp.Rj = S ′′

j \S ′′
j ∩ (S ∪C)).

By definition of spider partition, all vertices inR are adjacent to all vertices inC
and non-adjacent to all the vertices inS. First, we will show that the sequence
q′ associated with the partitionQ1 . . . , Qr of S ∪ C is equal either top1 or to p2.
For this, letj be the minimum positive integer suchSj contains vertices ofR. By
definition of thin spider and by the maximality of the sequencep, it suffices to
consider the following cases:

- Casej = 1. In this case,S ⊂ S1 which implies that sequenceq ′ is equal to
sequencep1.

- Casej = 2. In this case, setS1 must contains a vertex inC. Let s1 ∈ S be the
vertex not inS1. Note thatS2 �⊆ R, otherwiseS2 ∪ {s1} leads to a partition
of G such that its associated sequence dominatesp, that is a contradiction.
Therefore,s1 ∈ S2 and so,c1 ∈ S1. Let T1, . . . , Tt be a partition of the vertex
set ofG into independent sets such that :T1 = S1 \ {c1} ∪ S2, Ti = Si+1 for
2 ≤ i < t, andTt = {c1}. Let p′ be the sequence associated with the partition
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T1, . . . , Tt. Clearly,p′ dominatesp that is a contradiction. Therefore, this case
can no exists.

- Casej ≥ 3. Notice that each setSi must contains a vertex inC, for 1 ≤ i < j.
As p is maximal, it implies thatS1 = S \{s1}∪{c1} andS2 = {s1, c2}, which
implies that sequenceq ′ is equal to sequencep2.

Now, as sequenceq′ associated with the partitionQ1 . . . , Qr of S ∪ C is equal
either top1 or to p2 then, it is not difficult to show that sequenceq associated with
the partitionR1 . . . , Rr′ of R must be a maximal sequence for the graphG[R],
otherwise there is a contradiction with the maximality ofp. Now, for the sequence
q we define the following parameters : letr1 = |{i : q[i] ≥ k, 1 ≤ i ≤ |q|}|;
r2 = |{i : 1 < q[i] < k, 1 ≤ i ≤ |q|}|; andr3 = |{i : q[i] = 1, 1 ≤ i ≤ |q|}|. By
the observations made above, we have only two possibilities for the sequencep :

(a) The sequenceq′ associated with the partitionQ1 . . . , Qr of S ∪ C is equal
to p1. As p is maximal, then we have that :p[1] = q[1] + k (all vertices in
S ∪ R1); p[i] = q[i] for 2 ≤ i ≤ |q| (vertices inR \ R1); andp[i] = 1 for
|q| + 1 ≤ i ≤ |q| + k (vertices inC).

(b) The sequenceq′ associated with the partitionQ1 . . . , Qr of S ∪ C is equal to
p2. As p is maximal, then we have that :p[i] = q[i] for 1 ≤ i ≤ r1 (vertices in
R1, . . . , Rr1); p[r1+1] = k (where there arek−1 vertices inS et one vertex in
C); p[i] = q[i−1] for r1 +2 ≤ i ≤ r1 +r2 +1 (vertices inRr1+1, . . . , Rr1+r2);
p[r1 + r2 + 2] = 2 (the remaining vertex inS and one vertex inC); p[i] = 1
for r1 +r2 +3 ≤ i ≤ |q|+k (the remainingr3 vertices inR and the remaining
k − 2 vertices inC).

It is not difficult to show that the sequence of the Case(a) dominates the one of
Case (b). Therefore, it is the only maximal sequence ofG.

�

Lemma 26 LetG = (S, C, R) be a thick spider. Then,

1. If R = ∅ then,G has only two maximal sequencesp1 andp2, with |p1| = |C| and
|p2| = |C| + 1, wherep1[i] = 2 for 1 ≤ i ≤ |C|, andp2[1] = |C| andp2[i] = 1 for
2 ≤ i ≤ |C| + 1.

2. If R �= ∅ then, the number of maximal sequences ofG is equal to the number of
maximal sequences ofG[R]. Moreover, for each maximal sequenceq of G[R] there
exists only one maximal partitionq ′ of G with |q′| = |q| + |C| and whereq′[1] =
q[1] + |C|, q′[i] = q[i] for 2 ≤ i ≤ |q|, andq′[i] = 1 for |q| + 1 ≤ i ≤ |q| + |C|.

Proof. Let S = {s1, . . . , sk} andC = {c1, . . . , ck}, with k ≥ 3. Let S1, . . . , St be a
partition of the vertex set ofG into independent sets, witht ≥ 1, such that its associated
sequencep is maximal. Then,
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1. By hypothesis, we have thatR = ∅. As each vertexci ∈ C must belong to a
different independent setSj thent ≥ k. Now, by definition of a thick spider, each
vertexsi is adjacent to vertexcj if and only if i �= j. We claim that the sequence
p is equal either to(i) p[1] = k (i.e., S1 = S) andp[i] = 1 for 2 ≤ i ≤ k + 1
(i.e., eachSi if formed by only one vertex inC, with i > 1); or (ii) p[i] = 2 for
1 ≤ i ≤ k (eachSi if formed by a vertexsi ∈ S and its only vertex non-adjacent
ci ∈ C). Assume that sequencep is not as claimed. Thus, there are positive integers
i1 < i2 such that :(a) Si1 , Si2 ⊂ S or (b) Siu ⊂ S andSiv = {sw, cw}, where
u, v ∈ {1, 2}, u �= v, sw ∈ S, andcw ∈ C. Clearly, Case (a) gives a contradiction
to the maximality ofp. In the Case(b), if u = 1 andv = 2 then we can construct
a partitionS ′

1, . . . , S
′
t such thatS ′

i = Si for all i ∈ {1, . . . , t} \ {i1, i2}, and where
S ′

i1
= Si1 ∪ {sw} andS ′

i2
= Si2 \ {sw}. Now, by reordering (if necessarily) in a

non increasing size the setsS ′
i, for i2 ≤ i ≤ t, we have that the sequence associated

with this new partition dominatesp that is a contradiction. Thus for Case(b), we
have thatSi1 = {sw, cw} andSi2 ⊂ S. As p is maximal, then1 ≤ |Si2 | ≤ 2 and
thus, there existi3 > i2, sl ∈ Si2 , andcl ∈ C such thatSi3 = {cl}. Notice that
|Si2| = 2, otherwise we can migrate vertexcl into Si2 removing in this way the part
Si3 and obtaining again a sequence that dominatesp, that is a contradiction. So, let
sy ∈ Si2, with sy �= sl. Swapping verticescl andsy we must obtain a new partition
such that its associated sequence is equal top and it verifies the hypothesis of Case
(b), but wherei2 is greater that the previous one. Now, repeating the same process
to the current partition, we will obtain a partition such that its associated sequence
dominatesp, that is again a contradiction.

Therefore, there are only two maximal sequencesp1 andp2 for G such thatp1[1] =
k andp1[i] = 1 for 2 ≤ i ≤ k + 1, andp2[i] = 2 for 1 ≤ i ≤ k. Moreover, we
have thatp1||p2. In fact, letj1 = k − 2 andj2 = k. Then,

∑j1
i=1 p1[i] = 2k − 3 >

2k − 4 =
∑j1

i=1 p2[i] and
∑j2

i=1 p1[i] = 2k − 1 < 2k =
∑j2

i=1 p2[i].

2. By hypothesis, we have thatR �= ∅. Let p be a maximal sequence ofG and letp1

andp2 be sequences associated withS ∪C and defined as :p1[1] = k andp1[i] = 1
for 2 ≤ i ≤ k + 1; andp2[i] = 2 for 1 ≤ i ≤ k. In fact,p1 (resp.p2) represents
the only two maximal partitions of the Case(1) whenR = ∅. Let S1, . . . , St be the
partition of the vertex set ofG into independent sets associated with the sequence
p, with t ≥ k. Let S ′

1, . . . , S
′
r (resp.S ′′

1 , . . . , S ′′
r′) be the partition that results from

S1, . . . , St after eliminating on it the setsSw such thatSw ⊆ R (resp.Sw ⊆ S ∪C),
and letQ1, . . . , Qr (resp.R1, . . . , Rr′) be a partition of the vertex setS ∪ C (resp.
R), whereQj = S ′

j\ S ′
j∩R (resp.Rj = S ′′

j \S ′′
j ∩(S∪C)). By definition of a spider

partition, all vertices inR are adjacent to all vertices inC and non-adjacent to all
the vertices inS. First, we will show that the partitionS1, . . . St can be transformed
(if necessarily) into another one having as associated sequence alsop and where the
sequenceq′ associated with the partitionQ1 . . . , Qr of S∪C is equal either top1 or
to p2. For this, letj be the minimum positive integer such thatSj contains vertices
of R. Consider the following two cases:

- Casej = 1. If S1 ⊆ R then we can migrate all vertices ofS into S1 obtaining
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in this way a partition ofG such that its associated sequence dominatesp,
that is a contradiction. Therefore,S1 must contain vertices ofR and ofS.
However, as no vertex inR is adjacent to any vertex inS, thenS ⊂ S1, which
implies thatQ1 = S and so, sequenceq′ is equal to sequencep1.

- Casej > 1. By definition, every vertex inC is adjacent to all vertices inR.
So, each independent setSi must contains one vertex inC, for 1 ≤ i < j.
Moreover, if vertexcl ∈ C is in Si, for 1 ≤ i < j, then vertexsl ∈ S must
be also inSi, otherwise sequencep is not maximal. Now, asp is maximal,
then1 ≤ |Sj| ≤ 2. If |Sj| = 1 then it is clear thatj must be equal tok + 1,
otherwisep is not maximal, and so in this case, sequenceq ′ is equal top2. Let
|Sj| = 2. We have two possibilities forSj : (i) Sj ⊆ R; (ii) Sj contains one
vertex inR and one vertex inS. In Case(i), all vertices inS must be in the
setsSi, with i < j, otherwisep is not maximal. So, in this case, sequenceq ′

is equal top2. In Case(ii), let Sj = {x, sl}, wherex ∈ R andsl ∈ S. Again,
asp is maximal, there is no vertex ofS in the setsSi, with i > j. As vertex
cl ∈ C must be alone in some independent setSw, with w > j, then swapping
verticescl andx such thatSj becomes the set{sl, cl} andSw becomes{x},
we obtain a new partition where its associated sequence is equal top and the
sequenceq′ is equal top2.

As we can assume that the sequenceq′ associated with the partitionQ1 . . . , Qr of
S ∪C is equal either top1 or top2, then the sequenceq associated with the partition
R1 . . . , Rr′ of R must be a maximal sequence for the graphG[R], otherwise there
is a contradiction with the maximality ofp.

Now, for the sequenceq we define the following parameters : letr1 = |{i : q[i] ≥
k, 1 ≤ i ≤ |q|}|; r2 = |{i : 1 < q[i] < k, 1 ≤ i ≤ |q|}|; andr3 = |{i : q[i] = 1, 1 ≤
i ≤ |q|}|. By the observations made above, we have only two possibilities for the
sequencep :

(a) The sequenceq′ associated with the partitionQ1 . . . , Qr of S ∪ C is equal
to p1. As p is maximal, then we have that :p[1] = q[1] + k (all vertices in
S ∪ R1); p[i] = q[i] for 2 ≤ i ≤ |q| (vertices inR \ R1); andp[i] = 1 for
|q| + 1 ≤ i ≤ |q| + k (vertices inC).

(b) The sequenceq′ associated with the partitionQ1 . . . , Qr of S ∪ C is equal to
p2. As p is maximal, then we have that :p[i] = q[i] for 1 ≤ i ≤ r1 + r2

(vertices inR1, . . . , Rr1+r2); p[i] = 2 for r1 + r2 + 1 ≤ i ≤ r1 + r2 + k (all
vertices inS ∪ C); andp[i] = 1 for r1 + r2 + k + 1 ≤ i ≤ |q| + k (vertices in
R|q|−r3+1 . . . , R|q|).

It is not difficult to show that the sequence of the Case(a) dominates the one of
Case (b). In fact, letq1 (resp. q2) be the sequence ofG in Case(a) (resp. in
Case(b)). Then, q1[i] > q2[i] for 1 ≤ i ≤ |q| + k − 3 and q1[i] = q2[i] for
|q| + k − 2 ≤ i ≤ |q| + k. Therefore, it is the only maximal sequence ofG.

�
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Notice also that the trivial graph has only one maximal sequencep, with |p| = 1,
wherep[1] = 1. Therefore, we have the following theorems.

Theorem 35 Let G be aP4-sparse graph such that in its modular decomposition there
are no thick spiders(S, C, R) with R = ∅. Then,

1. s(G) = χ(G), andΣ(G) and an optimal coloring ofG can be computed from its
modular decomposition in polynomial time.

2. In such an optimal coloring, each independent setSi is a maximum independent set
of G \⋃1≤j<i Sj which verifiesχ(G \⋃1≤j≤i Sj) = χ(G \⋃1≤j<i Sj) − 1.

Proof. Let T be the decomposition rooted tree associated withG. It is well known that
T can be computed in linear time [47].

1. Let n be the number of vertices inG. In order to compute an optimal coloring
with s(G) = χ(G) and sumΣ(G) for this case, we proceed from the leaves to the
root in T as follows. Ifx is a leaf inT then its associated partition isS1 = {x}
having as maximal sequencep, with |p| = 1 andp[1] = 1. If nodex ∈ T is a
union-node (resp. join-node) then, by Corollary 7 (resp. Lemma 23), the unique
maximal sequence and its corresponding optimal partition of the vertex-set ofGx

into independent sets can be computed from the unique maximal sequences and
their corresponding optimal partitions of the children ofx. Moreover, by defini-
tion of union and join, it is clear thatS(Gx) = χ(Gx) and the sum of the colors is
equal toΣ(Gx). If nodex ∈ T is a spider-partition node representing the spider
σ = (S, C, R) then, the unique maximal sequence and its corresponding optimal
partition of the vertex-set ofGx into independent sets can be computed from the
unique maximal sequences and their corresponding optimal partitions of the chil-
dren ofx, either as shown in either the Lemma 25 (ifσ is a thin spider) or as shown
in Case(2) of Lemma 26 (ifσ is a thick spider withR �= ∅). Moreover, by Lem-
mas 25 and 26, it is clear thatS(Gx) = χ(Gx) and the sum of the colors is equal
to Σ(Gx). Finally, notice that each nodex ∈ T needsO(n) time to compute its
optimal partition. As there are at most2n− 1 nodes inT , then the complexity time
of the algorithm is bounded byO(n2).

2. By using Theorem 7 and by using Corollary 7 (resp. Lemma 23) ifG is a disjoint
union (resp. join) ofP4-sparse graphs, and Cases(1) and(2) of Lemma 25 (resp.
Case(2) of Lemma 26) ifG is a spider partition then, by induction on the number
of vertices ofG, the result holds.

�

Theorem 36 Let G be aP4-sparse graph onn vertices. Letk be the number of thick
spiders(S, C, R) withR = ∅ in the modular decomposition ofG. Then,s(G) ≤ χ(G)+k,
the number of maximal sequences ofG is at most2k, and an optimal coloring ofG can
be computed in2kP (n) time, whereP (n) is a polynomial onn.
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Proof. By Case(1) of Lemma 26, each thick spiderσi = (Si, Ci, ∅) in the decomposition
treeT of G have exactly two maximal sequences with their corresponding optimal parti-
tions, with1 ≤ i ≤ k. Clearly, there are2k ways of choosing maximal sequences (and
their corresponding partitions) for thek thick spidersσi. Now, given a fixed choice for
the thick spidersσi and by using the algorithm in the proof of Case(1) of Theorem 35,
we can compute inO(n2) time a maximal sequence and its corresponding partition into
independent sets forG. This shows thatG has at most2k maximal sequences and that an
optimal coloring withs(G) colors and sumΣ(G) can be computed inO(2kn2) time. Fi-
nally, note that for each thick spiderσi, one of its maximal sequences has lengthχ(σi)+1
and thus, the number of colors used in an optimal solution forG is upper bounded by
χ(G) + k. �

4.2 MSEC problem in multicycles

The following well-known result has been proved by K¨onig in 1916.

Theorem 37 (König’s theorem [55]) Let G = (V, E) be a bipartite multigraph and let
∆ denotes its maximum degree. Thenχ′(G) = ∆.

Hajiabolhassanet al. [34] mention thats′(G) = χ′(G) for every bipartite graphG. In
fact, by using the same technique as in the classical proof of K¨onig’s theorem, it is easy
to deduce thats′(G) = χ′(G) for every bipartite multigraphG.

Theorem 38 Let G = (V, E) be a bipartite multigraph and let∆ denote its maximum
degree. Thens′(G) = χ′(G) = ∆.

Multicycles are cycles in which we can have parallel edges between two consecutive
vertices. We consider the chromatic edge strength of multicycles.

The chromatic edge strengths′(G) of a graphG is bounded from below by both∆
and�m

τ
�, where∆ is the maximum degree inG andτ is the cardinality of a maximum

matching inG. In this section, we show that the lower boundmax{∆, �m
τ
�} is indeed

tight for multicycles. We assume that the multiplicity of each edge in the multicycle is at
least one, so that the sizeτ of a maximum matching is equal to�n/2�.

We first give a closed-form expression for the chromatic index of multicycles.

Theorem 39 ([5]) LetG = (V, E) be a multicycle onn vertices withm edges and maxi-
mum degree∆. Letτ denote the maximum cardinality of a matching inG. Then

χ′(G) =

{
∆, if n is even,
max

{
∆, �m

τ
�} , if n is odd.

We now introduce some useful notations. GivenC the set of colors used in an edge
coloring of a multigraphG, we denote byCx the subset of colors ofC assigned to edges
incident to vertexx of G. Given two colorsα andβ, we call a path an(α, β)-path if the
colors of its edges alternate betweenα andβ. We also denote bydG(x) the degree of
vertexx in G. We now state our main result.
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Theorem 40 Let G = (V, E) be a multicycle onn vertices withm edges and maximum
degree∆, and letτ denote the maximum cardinality of a matching inG. Then

s′(G) = χ′(G) =

{
∆, if n is even,
max

{
∆, �m

τ
�} , if n is odd.

Proof. If n is even, then the result follows from Theorem 38. Thus, we assume that
n = 2k + 1 for a positive integerk and lets′ = s′(G). Let r = max

{
∆, �m

k
�}. As

τ = k, then it is clear thatχ′(G) = r. Moreover, ass′ ≥ χ′(G) then, it suffices to prove
thats′ ≤ r. Assume thats′ > r andG is a smallest counterexample. We claim that there
exists a minimum sum edge coloringf of G in which there is only one edge colored with
color s′. Otherwise, delete one of the edges with colors′, saye. From the minimality of
G, there exists a minimum sum edge coloring ofG \ e with χ ′ colors. Then we obtain the
desired edge coloring ofG by assigning the colors′ = χ′ + 1 = r + 1 to e.

Let Ei denote the set of edges ofG with color i and let[a, b]0 be the only edge inG
colored with colors′. Moreover, letG′ = G\ [a, b]0. By the minimality ofG, we have that
s′(G′) = χ′(G′) = max

{
∆′, �m−1

k
�} ≤ r. LetC = {1, . . . , r}. The following properties

for the edge coloring ofG′ can be easily deduced:

(1) There exists a colorσ ∈ C such that|Eσ| < k.

(2) |Ca ∪ Cb| = r.

(3) There exist at least two colorsα andβ in C such thatα ∈ Ca \Cb andβ ∈ Cb \Ca,
with α �= β.

For (1), notice that if there is no colorσ ∈ C such that|Eσ| < k, thenm − 1 =∑r
i=1 |Ei| = kr, hencer = m−1

k
< m

k
, contradicting the definition ofr. Property(2)

holds, otherwise edge[a, b]0 can be colored with a color inC which contradicts the fact
that G′ is a counterexample. Finally, notice that the degree of verticesa andb in G′ is
at most equal to∆ − 1. Sincer ≥ ∆, there is a colorβ �∈ Ca and a colorα �∈ Cb with
α, β ∈ C. Clearlyα �= β, otherwise[a, b]0 can be colored with such a color, contradicting
the fact thatG is a counterexample. Moreover, by(2), we have thatα ∈ Ca \ Cb and
β ∈ Cb \ Ca, which proves(3).

By Property(2), it is sufficient to analyze the casesσ ∈ Cb \ Ca (or σ ∈ Ca \ Cb) and
σ ∈ Ca ∩ Cb. The two cases are illustrated on Figures 4.1 and 4.2, respectively.

If σ ∈ Cb \ Ca then, by Property(3), there exists a colorα ∈ Ca \ Cb with α �=
σ. Let G(α, σ) denote the subgraph ofG′ induced by the edges of colorα andσ. Let
Gb(α, σ) denote the connected component ofG(α, σ) containingb. Clearly,Gb(α, σ) is a
simple(σ, α)-path havingb as last vertex and not containing vertexa, otherwise we have
a contradiction to Property(1). Hence we can recolor the edges of the pathGb(α, σ) by
swapping colorsα andσ in such a way thatσ �∈ Cb. Sinceσ �∈ Ca, we assign color
σ to [a, b]0, and obtain an edge coloringf ′′ of G usingr colors. Figure 4.1 provides an
example of this case.
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Figure 4.1: An illustration of the caseσ ∈ Cb \ Ca in the proof of Theorem 40, on a
multicycle G with s′ = χ′ = 3. The edge[a, b]0 is the only edge colored with color
s′ + 1 = 4. In this example, colorσ = 3 and colorα ∈ Ca \ Cb is equal to1.
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Figure 4.2: An illustration of the caseσ ∈ Ca ∩ Cb in the proof of Theorem 40, on a
multicycleG with s′ = χ′ = 3. Again, edge[a, b]0 is the only edge colored with color
s′ + 1 = 4 andσ = 3.

We now want to show that∑
e∈E

f ′′(e) <
∑
e∈E

f(e), (*)

contradictings′(G) > r. If the length of the pathGb(α, σ) is even, then
∑

e∈E f ′′(e) −∑
e∈E f(e) = σ − r − 1 ≤ r − r − 1 < 0. If the length of the pathGb(α, σ) is odd, say

2s+1, with s ≥ 0, then the difference is(σ +(s+1)α+ sσ)− (r +1+(s+1)σ + sα) =
α − r − 1 ≤ r − r − 1 < 0. Thus, inequality(*) always holds.

The other case is whenσ ∈ Ca ∩Cb. By Property(3), there exist a colorβ ∈ Cb \Ca.
Let us assume that vertices are ordered clockwise and letb be the clockwise vertex of
edge[a, b]0. Recolor edge[a, b]0 with color β and the edge of colorβ incident tob with
color s′ = r + 1. This recoloring does change neither the value of the sum nor the
number of colors. Let[x, y]0 be the edge that is recolored with colors′, with x being its
counterclockwise vertex.

By Property(3) again, a colorβy such thatβy ∈ Cy \ Cx exists. We can therefore
repeat the above procedure until the edge[x, y]0 is such thatσ ∈ Cx \Cy or σ ∈ Cy \Cx.
This is always possible, because the cycle is odd, and|Eσ| < k; hence by moving around
the cycle this way, we will eventually find an edge[x, y]0 that is adjacent to only one edge
of colorσ. Assume, without loss of generality, thatσ ∈ Cy \ Cx. Then lettinga = x and
b = y leads us back to the first case. Figure 4.2 gives an example of this case. �
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4.2.1 Algorithms

We now present algorithms for minimum sum coloring of multicycles. Our algorithms
assume that the encoding of the multicycle given as input has sizeΘ(n+m). This does not
allow for implicit representations consisting of, for instance, the number of vertices and
the number of parallel edges between each pair of consecutive vertices. This assumption
is natural since we expect the resulting coloring to be represented by an encoding of size
linear in the number of edges.

The line graph of a multicycle is a proper circular arc graph. Hence the problem of
coloring edges of multicycles is a special case of proper circular arc graph coloring. It
is easy to realize that not all proper circular arc graphs are line graphs of multicycles,
though. Proper circular arc graphs were shown by Orlin, Bonuccelli, and Bovet [70] to
admitequitable colorings, that is, colorings in which the sizes of any two color classes
differ by at most one, that only useχ colors. Therefore, a corollary of our results is
that multicycles admit both equitable and minimum sum edge colorings with the same,
minimum, number of colors, and that both types of colorings can be computed efficiently.

We first present a general algorithm, then focus on the case wheren is even.

The general case

A natural idea for solving minimum cost coloring problems is to use a greedy algo-
rithm that iteratively removes maximum independent sets (or maximum matchings in the
case of edge coloring) [3, 26]. It can be shown that this approach fails here. Instead we
use an algorithm in which the smallest color class, corresponding to colors ′, is removed
iteratively.

We first consider the case where�m/k� ≥ ∆ andk dividesm. Then the number of
colors must be equal tom/k. But since each color class can contain at mostk edges, ev-
ery color class in a minimum sum coloring must have size exactlyk. Such a coloring can
be easily found in linear time by a sweeping algorithm that assigns each colori mod χ ′ in
turn. This is a special case of the algorithm of Orlinet al.(Lemma 2, [70]) for circular arc
graph coloring. In the remainder of this section, we refer to this case as the ”easy case”.

Algorithm MULTICYCLECOLOR.

1. i ← s′(G), Gi ← G

2. if �|E(Gi)|/k� ≥ ∆(Gi) andk divides|E(Gi)| then apply the ”easy case” algo-
rithm and terminate

3. else

(a) Find a matchingM of minimum size such thats′(Gi \ M) = s′(Gi) − 1

(b) color the edges ofM with color i

(c) Gi−1 ← Gi \ M , i ← i − 1

(d) if Gi �= ∅ then go to step 2
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The correctness of the algorithm relies on the following lemma.

Lemma 27 Given a matchingM in a multicycleG such that

1. s′(G \ M) = s′(G) − 1,

2. M has minimum size among all matchings satisfying condition 1,

there exists a minimum sum edge coloring ofG such thatM is the set of edges colored
with colors′(G).

Proof. We distinguish three cases, a), b), and c), depending on the relative values of
�m/k� and∆.

Case a) We first assume that�m/k� > ∆ and k does not dividem, thus m =
�m/k� · k + q, with q > 0. In that case,M has size exactlyq. To find a minimum
sum coloring, we color the edges ofM with color �m/k�. The remaining edges are col-
ored using the “easy case” algorithm, which applies since�m/k� ≥ ∆ and the number of
remaining edges is a multiple ofk. This coloring must have minimum sum, because only
one color class has not sizek.

Case b) When∆ > �m/k�, we haves′(G) = ∆ from Theorem 40. We claim that
in that case,M is a minimum matching that hits all vertices of degree∆. To prove this,
suppose otherwise. Then(G \ M) has maximum degree∆, and thus from Theorem 40,
s′(G \ M) = s′(G), contradicting condition 1. Now we have to ensure that there exists a
minimum sum coloring such thatM is the color classs ′(G) = ∆.

We consider a minimum sum coloring and the color class∆ in this coloring. This
class, sayM ′, must also be a matching hitting all vertices of degree∆. We now describe
a recoloring algorithm that, starting with this coloring, produces a coloring whose sum
is not greater and whose color class∆ is exactlyM . We define ablock as a maximal
sequence of adjacent vertices of degree∆. The algorithm examines each block, and shifts
the edges ofM ′ if they do not match with those ofM . Two cases can occur, depending
on the parity of the block length.

The first case is when a block contains an odd number of vertices of degree∆,
say v1, v2, . . . , v2t+1 for some integert. In that case, the only way in whichM and
M ′ can disagree is, without loss of generality, whenM ′ contains edges of the form
v0v1, v2v3, . . . , v2tv2t+1, while M containsv1v2, v3v4, . . . , v2t+1v2t+2 (see figure 4.3(a)-
4.3(b)), wherev0 andv2t+2 are the predecessor ofv1 and the successor ofv2t+1, respec-
tively. Since the degree ofv0 is, by definition of a block, strictly less than∆, there must
exist a colorα ∈ Cv1 \ Cv0 . Furthermore, since all vertices within the block have degree
∆, the color class for colorα containst + 1 edges of the formv2i+1v2i+2 for 0 ≤ i ≤ t.
Hence we can recolor the edges ofM ′ of the formv2iv2i+1 for 0 ≤ i ≤ t with color α,
and thet + 1 edges of colorα within the block with color∆. Note that at this point, the
coloring might be not proper anymore, as two edges colored∆ might be incident tov2t+2.

The other case is when a block contains an even number of vertices of degree∆, say
v1, v2, . . . , v2t for some integert. In that case, sinceM is minimum, it contains edges of
the formv1v2, v3v4, . . . , v2t−1v2t. The only way in whichM ′ can disagree withM is by
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(a) odd case: edges ofM ′ (b) odd case: edges ofM

(c) even case: edges ofM ′ (d) even case: edges ofM

Figure 4.3: Illustration of the proof of Lemma 27.

containing edgesv0v1, v2v3, . . . , v2tv2t+1 (see figure 4.3(c)-4.3(d)). Like in the previous
case, there must be a colorα �∈ Cv0 , so we can recolor the edges ofM ′ of the formv2iv2i+1

for 0 ≤ i < t with colorα, and the edges of colorα within the block with color∆. Note
that the edgev2tv2t+1 of color ∆ has not been recolored, thusv2t−1v2t andv2tv2t+1 both
have color∆, and at this point the coloring is not proper anymore.

We proceed in this way for each block. Notice that the sum of the coloring is unal-
tered, and that the set of edges of color∆ is now a superset ofM . Also, whileG is not
necessarily properly colored anymore, the graphG \ M is properly colored with at most
∆ colors. But since removingM decreases the strength, we know we can recolorG \ M
with ∆ − 1 colors without increasing the sum. Doing that and gluing back the edges of
M colored with color∆, we obtain a minimum sum coloring where only the edges ofM
have color∆, as claimed.

Case c) Finally, in the case where�m/k� = ∆, with m = �m/k� ·k + q, the matching
M consists of at leastq edges that together hit all vertices of degree∆. If M has exactly
sizeq, then case a) above applies, since we know that by removingM , we also decrease
the maximum degree. Otherwise case b) applies. �

We have to make sure that the main step of the algorithm can be implemented effi-
ciently.

Lemma 28 Finding a matchingM in a multicycleG such thats′(G \ M) = s′(G) − 1
andM has minimum size can be done inO(n) time.

Proof. The three cases of the previous proof must be checked. In the case where�m/k� >
∆ andm = �m/k�·k+q, we can pick any matching of sizeq, which can clearly be done in
linear time. In the second case, when�m/k� < ∆, we need to find a minimum matching



4.2. MSEC PROBLEM IN MULTICYCLES 65

hitting all vertices of degree∆. This can be achieved in linear time as well by proceeding
in a clockwise greedy fashion.

Finally, in the last case, we need to find a minimum set of at leastq edges that together
hit all vertices of degree∆. This can also be achieved inO(n) time as follows. We first
find the minimum matching hitting all maximum degree vertices. If the resulting match-
ing has size at leastq, then we are done and back to the previous case. Otherwise, we need
to include additional edges. For that purpose, we can proceed in the clockwise direction
and iteratively extend each block in order to include the exact number of additional edges.
This can take linear time as well if we took care to count the size of each block and of the
gaps between them in the previous pass. �

Theorem 41 AlgorithmMULTICYCLECOLOR finds a minimum sum coloring of a multi-
cycle onn vertices and with maximum degree∆ in timeO(∆n).

Proof. The number of iterations of the algorithm is at mosts ′(G) = max{�m/k�, ∆}.
Hence the running time isO(max{�m/k�n, ∆n}) = O(max{m, ∆n}) = O(∆n). �

We deliberately ignored the situation in which after some iterations, the multicyleG i

does not contain a full cycle anymore, that is, one of the edge multiplicitymi drops to
0. We are then left with a collection of disjointmultipaths, for which the minimum sum
coloring problem becomes easier. This special case is described in the following section.

A linear time algorithm for even length multicycles

We turn to the special casen = 2k, that is, the number of vertices is even. We show
that in that case, minimum sum colorings have a convenient property that can be exploited
in a fast algorithm. This algorithm first colors a uniform multicycle contained inG such
that the remaining edges ofG form a (possibly unconnected) multipath. This multipath is
then colored separately.

We begin this section by the following result on multipaths. We consider multipaths
with vertices labelled{1, 2, . . . , n}, such that edges are only between vertices of the form
i, i + 1.

Lemma 29 There always exists a minimum sum edge coloring of a multipathH, such that
its color classesEi are maximum matchings in the graphsHi = H \∪i−1

j=1Ej ; furthermore
these matchings contain all the edges appearing in odd position from left to right in each
connected component ofHi.

Proof. SupposeH has been colored optimally. We want to transform such an edge
coloring into another one that verifies the hypothesis of the theorem. Leti be the minimum
positive integer for whichEi does not verify the hypothesis. Note that the color of every
edge inHi is at leasti.

We can assume thatHi is connected, the following reasoning being applicable to each
connected component. We first remark thatEi is a maximal matching, otherwise one
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edge can be recolored with colori, contradicting the optimality of the given edge color-
ing. ThusEi can be partitioned inblocks, defined as maximal sequences of consecutive
vertices{y1, y2, . . . , y2t} such that one of the edges betweeny2j−1 andy2j has colori, for
1 ≤ j ≤ t. Two consecutive blocks are separated by a single vertex whose incident edges
have colors strictly greater thani. We now show that if a block starts at an even vertex,
it can be recolored without decreasing the color sum. We lety0 be the vertex precedingy1.

Recoloring: Let α1 �= i be any color appearing on the edges betweeny0 andy1. We
recolor an edge of colorα1 with color i and color the edge between verticesy1 andy2 of
color i with color α1. Now, for eachj, with 1 < j ≤ t, we recolor the edgey2j−1y2j of
color i with a colorαj appearing on the edgesy2j−2y2j−1, and color the edgey2j−2y2j−1

of colorαj with color i. The colorαj is chosen such thatαj = αj−1 if color αj−1 appears
on edgesy2j−2y2j−1, and it is any color appearing on edgesy2j−2y2j−1 otherwise. At the
end, we have two cases. Eithery2t is the last vertex of the path, and we are done, or there
exist edges betweeny2t and, say,y2t+1. One of these edges may be of colorαt, and can
be recolored with colori. Otherwise, any such edge can be recolored with colori. Since,
by definition,y2t+1 was not incident to any edge with colori, this yields a proper coloring
whose sum is not greater than the original one.

Now, it is clear that we can assume that every block starts at an odd vertex. This im-
plies that there is only one block. Furthermore, this block must start with the first vertex
of the path. HenceEi is a maximum matching containing all the edges appearing in odd
position. �

From Lemma 29, we can deduce the following result, that settles the case of multi-
paths.

Theorem 42 The greedy algorithm that iteratively picks a maximum matching formed
by all edges appearing in odd position in each connected component of a multipathH,
computes a minimum edge sum coloring ofH in timeO(m).

We now consider the case of even multicycles. We assume that the vertices in the
multicycleG onn = 2k vertices are labelled clockwise with integers0, 1, . . . , n− 1, and
arithmetic operations are taken modulon. For each0 ≤ i < n, let mi denote the number
of parallel edges between two consecutive verticesi andi + 1 in G. Let p be a positive
integer. A multicycleG with m = pn edges is calledp-uniformif mi = p for everyi such
that0 ≤ i < n.

Lemma 30 Let G be a multicycle of even length and letp = mini mi. Let f be any
minimum sum edge coloring ofG. Then,f can be transformed into another minimum sum
edge coloringf ′ such that the first2p color classesEi induced byf ′, with 1 ≤ i ≤ 2p,
are such that|Ei| = k and their union induces ap-uniform multicycle.

Proof. Let G be a multicycle onn vertices, withn = 2k for some integerk > 1. Let
f be any minimum sum edge coloring ofG. Clearly, asf is minimum, we have that
|E1| ≥ |E2| ≥ · · · ≥ |Eχ′|. Let us consider the following claim.
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Claim 3 The coloringf can be transformed into a minimum sum edge coloringf ′ having
the property that the edges colored with colors1 and2 induce a subgraph ofG isomorphic
to a cycle.

Notice that, by using Claim 3, the lemma follows directly by induction onp. So, in order
to prove Claim 3, first notice that, by using a similar recoloring argument as in the proof
of Lemma 29, we can deduce that|E1| = k.

Now, without loss of generality, assume thatf is such that there is an edge colored
with color 1 between vertices2j and2j + 1 for eachj with 0 ≤ j < k. Moreover, let
c ≥ 2 be the minimum color appearing on the edges between vertices2j + 1 and2j + 2,
for all 0 ≤ j < k.

Suppose that there exists a maximal sequencei1, . . . , i2t of consecutive vertices inG,
such that colors1 andc belong to the set of colors assigned byf to the edges between
verticesi2q−1 andi2q, with 1 ≤ q ≤ t. Then by using the same recoloring argument as in
the proof of Lemma 29, we can move colorc in order to transform such a sequence into
a (c, 1)-path. Moreover, again by using the same recoloring argument as in the proof of
Lemma 29, we can deduce that|Ec| = k.

So, if c = 2 we are done, otherwise, we can swap the colors2 andc so that|E2| = k
andE1 ∪ E2 induce a cycle. �

Theorem 43 There exists anO(m)-time algorithm for computing a minimum sum edge
coloring of a multicycleG of even length withm edges.

Proof. Let n = 2k be the number of vertices inG and letp = mini{mi}, for 0 ≤ i < n.
For each0 ≤ j < k, assign top edges between vertices2j and2j + 1 the odd colors
1, 3, . . . , 2p− 1 and assign top edges between vertices2j + 1 and2j + 2 the even colors
2, 4, . . . , 2p.

The previouspn colored edges induce a subgraph ofG isomorphic to ap-uniform
multicycle. When removing thisp-uniform multicycle fromG, we obtain a multipath
or a set of disjoint multipaths, the edges of which can be colored with colors in{2p +
1, . . . , s′(G)}, from Theorem 42.

Such a coloring can be computed inO(m) time, and by Lemmas 30 and 29, it is a
minimum sum edge coloring ofG. �

4.2.2 Generalization

In the generalized optimal cost chromatic partition problem [49], each color has an
integer cost, but this cost is not necessarily equal to the color itself. The cost of a vertex
coloring is

∑
v∈V c(f(v)), wherec(i) is the cost of colori. For any set of costs, our proofs

can be generalized to show that on one hand, the minimum number of colors needed in a
minimum cost edge coloring ofG is equal toχ′(G) whenG is bipartite or a multicycle,
and on the other hand that a minimum cost coloring can be computed inO(∆n) time for
multicycles.
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In fact, our results can be generalized to an even broader class of edge coloring prob-
lems. Given an edge coloringf : E �→ N, we define a costC(f) of the form:

C(f) =
∑

i

c(i, |f−1(i)|),

wherec : N × N �→ R is a real function of a colori and an integerk, andf−1(i) is the
set of edgese such thatf(e) = i. Hence the cost to minimize is a sum of the cost of each
color class, itself defined as some function of the color and the size of the color class.

In the minimum sum coloring problem, the functionc is defined by

c(i, k) = i · k.

We further suppose that the functionsc(i, k) satisfy the following property:
Given two nonincreasing integer sequencesa1 ≥ a2 . . . ≥ an andb1 ≥ b2 . . . ≥ bn such
that

j∑
i=1

ai ≥
j∑

i=1

bi, ∀j = 1, . . . , n,

we have
n∑

i=1

c(i, ai) ≤
n∑

i=1

c(i, bi). (4.1)

This property clearly holds in the minimum sum coloring problem. It formalizes the
fact that when minimizing the costC(f), we are looking for a distribution of the color
class sizes that is as nonuniform as possible. In particular, when an element (edge or
vertex) in a color classi is recolored with a colorj < i, whose class is larger, then the
objective function decreases. This is the argument that we implicitly used in our proof of
Theorem 40. It is also the argument that ensures the correctness of the algorithms.

Property (4.1) can also be shown to hold (see [27]) when the following two conditions
are satisfied:

1. c(i, k) = c(j, k) ∀i, j, that is, when the cost of a class only depends on its size, in
which case we will say that the functions areseparable,

2. the functionsc(i, k) = c(k) are concave.

This is the case for instance in the minimum entropy edge coloring problem [12], for
which c(k) = − k

m
log k

m
. A number of other coloring problems falling in that class were

recently studied by Fukunaga, Halld´orsson, and Nagamochi [27].

For all minimum cost edge coloring problems whose objective function satisfies (4.1),
all our results apply. In fact, the colorings that we compute arerobustcolorings, in the
sense that they minimize every objective function satisfying the above property.



4.3. MSSC PROBLEM IN BLOCK GRAPHS 69

4.3 MSSC problem in block graphs

Assume that we are given a graphG = (V, E) with a demand functionω : V → Z+.
We will denoten = |V |, d(v) the degree of a vertexv ∈ V , ∆ = maxv∈V d(v) and
ωmax = maxv∈V ω(v). The neighborhood of a vertexv will be denoted byNG(v).

We can consider that the input of our problem is a graphG = (V, E) with a demand
functionω : V → Z+, so the input size would be|V | + |E| +

∑
v∈V log(ω(v)). In the

preemptive case it makes some sense to consider as the size of the problem|V | + |E| +∑
v∈V ω(v), since it is the output size. Nevertheless, we will call (pseudo)polynomial

time algorithms to those that are polynomial on|V | + |E| + ∑v∈V ω(v).
It is known than the minimum number of colors that can be used in an optimum solu-

tion of the MSC problem on a graphG is bounded by∆(G)+1. Assume that we are given
a graphG = (V, E) with a demand functionω : V → Z+. Denote byC(G, ω) (resp.
C ′(G, ω)) be the minimum number of colors that can be used in an optimum solution of
the non-preemptive (resp. preemptive) MSSC problem onG with demand functionω. It
is easy to generalize the bound above and getC ′(G, ω) ≤ ωmax(∆(G)+1). We now show
the following lemma.

Lemma 31 Let G be a graph and letω be a demand function from the vertices ofG to
the set of positive integers. ThenC(G, ω) ≤ 2ωmax(∆ + 1).

Proof. Let v be the vertex using the highest color. Since the goal is to minimize the
total sum of colors, it uses at most the interval[c + 1, c + ω(v)], wherec is the maximum
color used by one of its neighbors. In the worst case, all of its neighbors use disjoint
intervals, the smaller beginning atω(v) and separated by intervals of sizeω(v) − 1.
So c ≤ ∑

w∈NG(v)(ω(w) + ω(v) − 1) ≤ (2ωmax − 1)∆ = 2ωmax∆ − ∆, and thus
c + ω(v) ≤ 2ωmax(∆ + 1) − ∆ < 2ωmax(∆ + 1). �

Let P = V1, . . . , Vt be a partition of the vertices of a graphG with demandω. We
will call P -goodto a coloring of(G, ω) where eachVi, i = 1, . . . , t, is colored with sum
Σ(G[Vi], ω). Clearly, aP -good coloring is optimum for the MSSC problem, and ifG
admits aP -good coloring, then every optimum coloring ofG must beP -good.

4.3.1 Minimum sum set-coloring of trees

In this section we deal with the MSSC problem on trees. First, we show that the non-
preemptive version of the MSSC problem on trees can be computed in (pseudo)polynomial
time. Next, we show that the preemptive version of the MSSC problem on trees is NP-
hard.

Non-preemptive case

The algorithm for solving the non-preemptive MSSC problem for trees is based on the
idea of dynamic programming. For, we first choose an arbitrary vertexr of T as the root.
For each vertexv of T , we denote byTv the subtree ofT rooted at vertexv. Let C be
an upper bound forC(T, ω). We have an × C tableS such that,S[v, j] represents the
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minimum sum for the subtreeTv when vertexv is assigned the interval[j, j + ω(v) − 1],
for every vertexv ∈ T and every1 ≤ j ≤ C.

First, we define for each vertexv in T and each integer1 ≤ j ≤ C the valueqv(j) as
follows:

qv(j) =

{ ∑j+ω(v)−1
i=j i = jω(v) +

(
ω(v)

2

)
, if j + ω(v) − 1 ≤ C,

∞, otherwise.

The algorithm computes the values of tableS in a bottom-up way, from the leaves of the
tree up to the root. If vertexv is a leaf thenS[v, j] = qv(j) for all 1 ≤ j ≤ C. Assume that
vertexv is an internal vertex inT . Let v1, v2, . . . , vk be the children vertices of internal
vertexv. Assume thatS[vi, s] is computed, for1 ≤ i ≤ k and1 ≤ s ≤ C, and we want to
compute the value ofS[v, j] (for somej, with 1 ≤ j ≤ C). Now, for each children vertex
vi we compute the valuefv(vi, j) as follows:

fv(vi, j) = min
1≤t≤C

{S[vi, t] : [t, t + ω(vi) − 1] ∩ [j, j + ω(v) − 1] = ∅}.

The algorithm also can keep track the following information:gv(vi, j) = min{t : S[vi, t] =
fv(vi, j)}, which will be used for reconstruct the coloring. Once the valuesfv(vi, j) have
been determined for each1 ≤ i ≤ k, we can compute the value ofS[v, j] as follows:

S[v, j] = qv(j) +
∑

1≤i≤k

fv(vi, j).

Now, knowing how to compute the value ofS[v, j] from the computed values of children
of v, the algorithm starts from the leaves ofT , and fills in the table, from bottom to up,
until it computes the value ofS[r, C], wherer is the root ofT . One can easily verify
that the minimum value ofS[r, j], for 1 ≤ j ≤ C, is the value of an optimal sum for
the non-preemptive MSSC of(T, ω) and the root vertexr can be assigned the interval
[j, j +ω(r)−1], wherej is the minimum valuem for whichS[r, m] is minimum. Finally,
assuming that an internal vertexv has been assigned an interval[j, j + ω(v) − 1], the
interval assigned to each one of its childrenvi will be the interval[gv(vi, j), gv(vi, j) +
ω(vi) − 1].

Notice that the complexity of computingS[v, j] is O(d(v)C), whered(v) is the num-
ber of children of vertexv andC is the upper bound for the minimum number of colors
needed in any optimal solution of the non-preemptive MSSC on(T, ω). In fact, in order
to determine the value ofS[v, j], we need to compute the valuefv(vi, j) for each children
vi of v, each one of these values takingO(C) steps. Therefore the overall complexity of
the previous algorithm for computing an optimal solution for the non-preemptive MSSC
problem on the entire tree is proportional to the number of edges, which, in a tree, gives
rise to anO(nC2) algorithm. Thus, by Lemma 31, we have the following result.

Theorem 44 The non-preemptive MSSC problem on trees can be solved inO(n∆2ω2
max),

that is, in (pseudo)polynomial time.
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Preemptive case

We will show that the preemptive MSSC problem on trees is in general NP-hard, even
considering

∑
v∈V (T ) ω(v) as the input size.

Theorem 45 The preemptive MSSC problem on trees is NP-hard.

Proof. The reduction is from 3-SAT. First we give some definitions and we introduce
some families of special trees that will be used as gadgets in the NP-hardness proof.
Fora, b positive integers,a ≤ b, letT[a,b] be a tree with rootr with demandω(r) = b−a+1
and, ifa > 1, two childrenv1, v2 with demandω(v1) = ω(v2) = a − 1 (see Figure 4.4).

[a,b]T (a > 1)

r
[1,b]T

b
r

b-a+1

a-1 a-1
1v 2v

Figure 4.4: The treeT[a,b] for 1 ≤ a ≤ b.

The treesT[a,b] admit P -good colorings for suitable partitionsP : if a = 1 then the
partitionP is trivial, if a > 1 then the partitionP = {r, v1}, {v2} is such thatT[a,b] admits
aP -good coloring. Moreover, in everyP -good coloring ofT[a,b], vertexv2 should receive
colors1, . . . , a − 1 and therefore vertexr should receive colorsa, . . . , b (and vertexv1

colors1, . . . , a − 1 as well).
Let {a1, . . . , ak} be a set of positive integers,a1 < · · · < ak, and letS =

∑k
i=1 ai −(

k+1
2

)
+ 1. We will define the treeT{a1,...,ak}. The rootr has demandω(r) = 1. The

children ofr are the following: a childv with demandω(v) = k − 1; S children each
of them being the root ofT[1,a1−1], whena1 > 1; S children each of them being the
root of T[ai+1,ai+1−1], whenai+1 > ai + 1 for eachi = 1, . . . , k − 1. Besides, vertexv
hasS children each of them being the root ofT[1,a1−1], whena1 > 1; S children each
of them being the root ofT[ai+1,ai+1−1], whenai+1 > ai + 1 for eachi = 1, . . . , k − 1
(see Figure 4.5). We will analyze now the possible solutions to the MSSC problem on
T{a1,...,ak}. If all the treesT[a,b] are colored in an optimum way, thenr and v should
receive colors{a1, . . . , ak}, and the overall sum is

∑k
i=1 ai + D whereD is the sum of

Σ(T[a,b], ω) over all the treesT[a,b] involved inT{a1,...,ak}. On the other hand, suppose that
r andv receive a set of colors{a′

1, . . . , a
′
k} different from{a1, . . . , ak} in an optimum

coloring ofT{a1,...,ak}. SinceD is locally optimum, then
∑k

i=1 a′
i ≤

∑k
i=1 ai, so at least

one of the colors not in{a1, . . . , ak} is less or equal thanak − 1, and thus at leastS
treesT[a,b] are colored in a non-optimum way. Therefore the overall sum would be at
least

∑k
i=1 a′

i + D + S and since
∑k

i=1 a′
i ≥

(
k+1
2

)
, this contradicts the optimality of the

coloring. Moreover, it is not difficult to see that for eachi = 1, . . . , k, there is an optimum
coloring ofT{a1,...,ak} wherer receives colorai.
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{a ,...,a }T

... ... ...

k-1

... ... ...

[1,a -1]T [a +1,a   -1]T [a   +1,a -1]T

S  copies of each

S  copies of each
r

v

1 i i+1 k-1 k

1 k

[1,a -1]T [a +1,a   -1]T [a   +1,a -1]T
1 i i+1 k-1 k

Figure 4.5: The treeT{a1,...,ak}.

Now, letI be an instance of 3-SAT, withn variables andm clauses. We will construct
TI as follows: it has a rootr with demandω(r) = n; the root hasn + m + 1 children
v1, . . . , vn, w1, . . . , wm, all of them with demand1, andz with demandω(z) = n; eachvi

(1 ≤ i ≤ n) is the root of a copy ofT{2i−1,2i}; eachwi (1 ≤ i ≤ m) is the root of a copy
of T{ai

1,ai
2,ai

3}, whereai
1, a

i
2, a

i
3 are the values corresponding to the three literals of thei-th

clause ofI in increasing order, assigning to variablek the value2k−1 and to its negation
the value2k. Let P = {{r, z}, V (TI) \ {r, z}} be a partition of the vertices ofTI . We
will show thatI is satisfiable if and only if(TI , ω) admits aP -good coloring, that is, a
coloring with sum

(
2n+1

2

)
+Σ(TI \{r, z}, ω) (please note that this value can be computed

in polynomial time based on the construction ofTI and the observations above). Suppose
first thatI is satisfiable and consider a truth assignment satisfying it. Then assign toz
the values corresponding to true literals, tor the values corresponding to false literals,
to eachwi the value of a literal satisfying its corresponding clause (and then extend this
coloring to an optimum coloring ofT{ai

1,ai
2,ai

3}), and to eachvi the value in{2i − 1, 2i}
not used inr (and then extend this coloring to an optimum coloring ofT{2i−1,2i}). The
coloring obtained isP -good. Conversely, suppose thatTI admits aP -good coloring. For
i = 1, . . . , n, sinceT{2i−1,2i} is colored in an optimum way, eachvi uses either color
2i − 1 or color2i. Moreover, since{r, z} use the colors{1, . . . , 2n}, r uses exactly one
of {2i − 1, 2i} for eachi = 1, . . . , n, andz the other one. Let the variablei be true if
2i − 1 is used inz and false otherwise. For eachi = 1, . . . , m, sinceT{ai

1,ai
2,ai

3} is colored
in an optimum way,wi uses one of the colors{ai

1, a
i
2, a

i
3} and then that color should not

be used inr, so it should be used inz. If it is an odd color then the corresponding variable
is true and appears in thei-th clause, otherwise the corresponding variable is false but
its negation appears in thei-th clause. In both cases, the clause is satisfied and soI is
satisfiable. �

However, if the maximum value of the demand functionω from vertices of a tree
to the set of positive integers is bounded by a constant, then there is a polynomial-time
algorithm for the preemptive MSSC problem on trees as it is shown in the next theorem.

Theorem 46 LetT = (V, E) be a tree and letω : V → Z+ be a demand function forT .
Then the preemptive MSSC problem onT can be solved inO(n(∆ωmax)

2ωmax) time. In
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particular, if ωmax is bounded by a constant, it can be solved in polynomial time.

Proof. Let n be the number of vertices inT and let∆ be the maximum degree of
the vertices inT . Let m, k be positive integers, and let[m]k denote the set of allk-
subsets of[m], where[m] denotes the set{1, . . . , m}. Given an arbitrary finite setA
of positive integers, we denote byq(A) the value of the sum of the elements inA (i.e.
q(A) =

∑
i∈A i). LetC be an upper bound forC ′(T, ω), thusC is bounded byO(ωmax∆).

The algorithm is based on the idea of dynamic programming. Letr be an arbitrary vertex
in T chosen as the root. For each vertexv of T , we denote byTv the subtree ofT rooted
at vertexv. Now, for each vertexv in T , we construct an arraySv of length

(
C

ω(v)

)
such

thatSv[X] represents the minimum sum for the subtreeTv when vertexv is assigned the
subsetX ∈ [C]ω(v). The algorithm computes the values of the arraysSv in a bottom-up
way, from the leaves of the tree up to the root as follows.

If v is a leaf thenSv[X] = q(X), for each subsetX ∈ [C]ω(v). Now, assume that
vertexv is an internal vertex inT . Let v1, v2, . . . , vt be the children vertices of internal
vertexv. Assume thatSvi

[X] is computed, for all1 ≤ i ≤ t and for allX ∈ [C]ω(vi), and
we want to compute the value ofSv[Y ] for some fixed subsetY ∈ [C]ω(v). First, for each
children vertexvi we compute the valuefv(vi, Y ) as follows:

fv(vi, Y ) = min
X∈[C]ω(vi)

{Svi
[X] : X ∩ Y = ∅}.

Once the valuesfv(vi, Y ) have been computed for all1 ≤ i ≤ t, we can compute the
value ofSv[Y ] as follows:

Sv[Y ] = q(Y ) +

t∑
i=1

fv(vi, Y ).

Now, knowing how to compute the values of the arraySv from the computed values
of children ofv, the algorithm starts from the leaves ofT , from bottom to up, until it
computes the values ofSr[Z] for all Z ∈ [C]ω(r). It is clear that the minimum value of
Sr[Z] taken over all subsetsZ ∈ [C]ω(r) is the value of an optimal sum for the preemptive
MSSC problem for(T, ω). Notice that additional information can be maintained in order
to reconstruct the coloring without affecting the overall time complexity of the algorithm.

The length of each arraySv is bounded by
(

C
ωmax

)
. Therefore, the time complexity in

order to compute the value ofSv[Y ] for a given vertexv and a fixed subsetY ∈ [C]ω(v)

is at mostd(v)
(

C
ωmax

)
, whered(v) denote the degree of vertexv in T . Thus, the time

complexity needed to fulfill the arraySv is at mostd(v)
(

C
ωmax

)2
. Therefore, the overall

complexity of the previous algorithm is proportional to the number of edges inT times(
C

ωmax

)2
, that is,O(n(∆ωmax)

2ωmax). �

4.3.2 Minimum sum set-coloring of line graphs of trees

The MSSC problem on the line graphL(G) of a graphG and demand functionω
is equivalent to the Minimum Sum Edge Coloring (MSEC) of a multigraphG̃, obtained
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from G by multiplying each edgee by ω(e). Therefore, in the sequel, we assume that we
have as input to the MSEC problem a treeT = (V, E) and a demand functionω from the
edge-setE to the set of positive integers.

Non-preemptive case

In the following, we show that the non-preemptive MSSC problem on line graphs
of trees is in general NP-hard, even considering

∑
e∈E(T ) ω(e) as the input size. The

reduction we use is based on the results given by Marx in [65] for a similar optimization
problem. First we give some definitions and we introduce three families of special trees
that will be used as gadgets in the NP-hardness proof. For any two positive integersi, j
with i < j, let [i, j] denote the consecutive interval{i, i + 1, . . . , j − 1, j} of integers.
Denote byEv the set of edges incident to vertexv. Let l(v) be the minimum sum taken
onEv in any non-preemptive sum set edge-coloring. Clearly,l(v) ≥ |Ev|(|Ev|+1)

2
. LetG =

(A∪B, E) be a bipartite multigraph. A lower bound forΣ(L(G), ω) is l(A) =
∑

v∈A l(v).
A non-preemptive edge-coloringΨ will be calledA-goodif

∑
e∈E Ψ(e) = l(A). Notice

that everyA-good non-preemptive edge-coloring is clearly an optimum coloring, and if
there is anA-good non-preemptive edge-coloring, then every optimum coloring isA-
good.

We define the treeTi, for i ≥ 1, as follows. The treeT1 is an edgerv, wherer is the root
vertex and whereω(rv) = 1. Fori > 1, the treeTi is a path on five verticesr, v, v1, v2, v3,
beingr the root vertex and whereω(rv) = 1, ω(vv1) = ω(v2v3) = i−1, andω(v1v2) = i
(see Figure 4.6). Verticesv andv2 are inA (black vertices in the figure), the remain-
ing ones are inB. Consider the coloringΨ(rv) = i, Ψ(vv1) = Ψ(v2v3) = [1, i − 1]),
Ψ(v1v2) = [i, 2i − 1]. This is anA-good coloring, thus it is an optimum coloring and
every optimum coloring isA-good. Therefore, ifΦ is an optimum coloring forTi then
it must be anA-good coloring with verticesv andv2 in A, and it is easy to see that this
implies edgerv is assigned colori in every optimum coloring.

iT (i > 1)

v1

v2

v3

T1 r

v

...

...

...

r

v

i−1 edges

i edges

i−1 edges

Figure 4.6: The treeTi for i ≥ 1.

A treeTa,b,c (for a < b < c) has rootr having a single childv with ω(rv) = 1; vertexv
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hasc−1 childrenx, y, v1, . . . , vc−3 with ω(vx) = ω(vy) = ω(vv1) = · · · = ω(vvc−3) = 1
(see Figure 4.7). Every vertexvj is the root of aTa, Tb andTc tree, as defined in the pre-
vious paragraph. The black vertices in Figure 4.7 are inA. Notice that in everyA-good
(optimum) coloring ofTa,b,c the edgerv is colored with colora, b or c, and there are three
A-good colorings assigninga, b, andc to edgerv, respectively. The proof of this fact is
exactly as appear in [65].

Tb

TcTa

Tb

TcTa

Tb

TcTa

v1 v2
v3

r

v
x

y

Figure 4.7: The treeTa,b,c with c = 6

Finally, we define treêTi as follows. the vertex-set of̂Ti is composed by the vertices
r, x, v, v1, v2, v3, v4 andv5 wherer is the root vertex, and the edge-set ofT̂i is the set
{rv, vx, vv1, v1v2, v2v3, v3v4, v4v5}, whereω(rv) = ω(vx) = 2, ω(vv1) = ω(v2v3) =
ω(v4v5) = i, ω(v1v2) = 4, and ω(v3v4) = i + 4 (see Figure 4.8). We show that
in everyA-good (optimum) coloring of̂Ti the set of colors assigned to edges between
verticesr andv is either{i + 1, i + 2} or {i + 3, i + 4}. Let Ψ be anA-good color-
ing of T̂i. Notice that verticesv, v2 and v4 are inA. Thus,Ψ(v3v4) can be equal to
[1, i + 4] or equal to[i + 1, 2i + 4]. However, if Ψ(v3v4) = [1, i + 4] then Ψ(v2v3)
must be[i + 5, 2i + 4], but asv2 is in A, i > 0, andω(v1v2) = 4 then it contradicts
thatΨ is anA-good coloring. Therefore,Ψ(v3, v4) = [i + 1, 2i + 4] which implies that
Ψ(v4v5) = Ψ(v2v3) = Ψ(vv1) = [1, i], Ψ(v1v2) = [i + 1, i + 4]. Moreover, as vertexv
is in A andω(rv) = ω(vx) = 2 then in anA-good non-preemptive coloring for̂Ti, we
have only two possibilities :Ψ(rv) = {i + 1, i + 2} andΨ(vx) = {i + 3, i + 4}, or
Ψ(rv) = {i + 3, i + 4} andΨ(vx) = {i + 1, i + 2}.

Now, based in the three families of trees defined previously (i.e., the treesTi, Ta,b,c

with a < b < c, and T̂i, resp.), we can prove the NP-hardness of the non-preemptive
MSSC problem on line graphs of trees. The reduction is from 3-occurrence 3SAT, which
is the restriction of 3SAT where every variable occurs at most three times. This problem
is NP-complete even if every variable occurs at most twice positively and at most twice
negatively (cf. [71]). Given a formula withn variables andm clauses, we construct a
treeT = (V, E) and a demand functionω : E → Z+ such thatT has an non-preemptive
A-good edge-coloring if and only if the formula is satisfiable. Consider a variablexk
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Figure 4.8: The treêTi for i ≥ 1

(0 ≤ k < n), which is theh-th literal of thei-th clause. Letdi,h be4k+1 if this is the first
positive occurrence ofxk, 4k + 2 if this is the second positive occurrence,4k + 3 if this is
the first negated occurrence, and4k + 4 if this is the second negated occurrence. The tree
T has a vertexr which is the root ofn + m trees (assume thatr �∈ A). To each variable
xj corresponds a treêT4j , and to each clausei a treeTdi,1,di,2,di,3

. This definesT and the
demand functionω. The proof follows exactly as the one given by Marx (see Theorem
3.1 in [65]) for a similar optimization problem on trees. In fact, assume that a non-
preemptive edge-coloring isA-good, then it is anA-good non-preemptive edge-coloring
for all then + m subtrees (sincer �∈ A). Therefore, the root edge of̂T4j corresponding
to variablexj uses either the set{4j + 1, 4j + 2} or the set{4j + 3, 4j + 4}. Assign
to the variablexj the value ”false” in the first case and ”true” in the second case. It is a
satisfying assignment: if the root edge of the tree corresponding to clausei uses a color
from {4j +1, 4j +2, 4j +3, 4j +4}, the variablexj satisfies clausei. Precisely, if it uses
4j + 1 or 4j + 2 (resp. 4j + 3 or 4j + 4), thenxj has the value ”true” (resp. ”false”),
and by construction,xj appears in clausei positively (resp. negatively). Conversely,
given a satisfying assignment, we construct anA-good non-preemptive edge-coloring of
the tree as follows. Take anA-good non-preemptive edge-coloring of the subtreeT̂4j

corresponding to variablexj such that its root edge uses the colors{4j + 1, 4j + 2}
(resp.{4j + 3, 4j + 4}) if xj is ”false” (resp. ”true”). Since every clause is satisfied by
some variable, we can choose anA-good non-preemptive edge-coloring for each subtree
corresponding to a clause such that it does not conflict with any of the trees corresponding
to the variables. Clearly, this will be anA-good non-preemptive edge-coloring of the tree.
Therefore, as the previous reduction can be done in polynomial time, thus we have the
following theorem.

Theorem 47 The non-preemptive MSSC problem on line graphs of trees is NP-hard.

In the following, we will show that under some constraints, there is a (pseudo)polynomial
time complexity algorithm to solve the non-preemptive MSSC problem on line graphs of
trees. Before, we need some preliminaries.

Let m, k be positive integers. LetJ ⊂ [m] be a subset of consecutive positive integers.
Letn1, n2, . . . , nk+1 be positive integers (no necessarily different) such that

∑k+1
i=1 ni ≤ m
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and such thatnk+1 = |J |. Let P(m, J, n1, . . . , nk) be the set where each element is ak-
set of intervals of consecutive integers{I1, . . . , Ik} pairwise disjoint contained in[m]\J ,
such that|Ii| = ni for 1 ≤ i ≤ k. Thus, we have the following result.

Lemma 32 The cardinality of the setP(m, J, n1, . . . , nk) is bounded bymk, and it can
be computed inO(k2mk).

Proof. Since the sets{I1, . . . , Ik} are intervals of consecutive integers, they are univo-
cally defined by their starting point. So there are at mostmk possibilities for choosing the
starting points of thek sets within the interval[m] satisfying the constraints above. They
can be generated by simple enumeration, and for each of them, the constraints satisfaction
can be checked inO(k2) time. �

Theorem 48 LetT = (V, E) be a tree and letω : E → Z+ be a demand function defined
on the edge-set ofT . The non-preemptive MSSC problem for the line graphL(T ) of T
can be solved inO(n∆∆+3ω∆+1

max ). In particular, if ∆ is bounded by a constant, then it
can be solved in (pseudo)polynomial-time.

Proof. The algorithm uses the dynamic programming method. Letn be the number of
vertices ofT . Without loss of generality, we choose as root ofT a vertexr with degree
equal to1. As usual, we denote byTv the subtree rooted at vertexv in T . Moreover, for
each vertexv in T different fromr, we denote byv′ the father vertex ofv. Finally, for
each vertexv in T different fromr, we denote byTv′v the subtree ofT formed byTv to
which we join tov its father vertexv ′. Given a subtreeTv′v, we say thatv′ is its root.

Assume now thatC is an upper bound forC(L(T ), ω). Since∆(L(T )) ≤ 2∆(T ),
by Lemma 31,C is bounded byO(∆ωmax). We construct an × C tableS such that
S[v, j] represents the minimum sum for the subtreeTv′v when edgee = v′v is assigned
the interval[j, j + ω(e) − 1], for every vertexv ∈ T and every1 ≤ j ≤ C. First, we
define for every vertexv (v �= r) and every1 ≤ j ≤ C the valueqv(j) as follows:

qv(j) =

{
jω(v′v) +

(
ω(v′v)

2

)
, if j + ω(v′v) − 1 ≤ C,

∞, otherwise.

The algorithm computes the values of tableS in a bottom-up way, from the leaves of
T up to the rootr. If vertexv is a leaf thenS[v, j] = qv(j) for all 1 ≤ j ≤ C. Otherwise,
let v be an internal vertex inT with v �= r. Let v1, v2, . . . , vk be the children vertices ofv.
Assume thatS[vi, s] is computed, for all1 ≤ i ≤ k and for all1 ≤ s ≤ C, and we want to
compute the value ofS[v, j] for a fixed valuej such thatj + ω(v ′v)− 1 ≤ C (otherwise,
S[v, j] = ∞).
Consider now the setPv(j) = P(C, [j, j+ω(v′v)−1], ω(vv1), . . . , ω(vvk)). If |Pv(j)| = 0
then S[v, j] = ∞. Otherwise, letX be an element of the setPv(j). By definition,
X = {I1, . . . , Ik}, where for eachi we have that|Ii| = ω(vvi), Ii is an interval of
consecutive integers,Ii ∩ [j, j +ω(v′v)−1] = ∅ andIi ∩ It = ∅ wheneveri �= t. For each
i, let α(X, i) be the minimum integer in the intervalIi of X.
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Now, the value ofS[v, j] can be computed as follows:

S[v, j] = qv(j) + min
X∈Pv(j)

{
k∑

i=1

S[vi, α(X, i)]}.

Let z be the only children of root vertexr in T . Knowing how to compute the value
of S[v, j] from the computed values of children ofv, the algorithm starts from the leaves
filling the table, from bottom to up, until it computes the value ofS[z, C]. It is easy to ver-
ify that the minimum value ofS[z, j], for 1 ≤ j ≤ C, is the value of an optimal sum for
the non-preemptive MSSC of(L(T ), ω). Notice that additional information can be main-
tained in order to reconstruct the coloring without affecting the overall time complexity
of the algorithm.

Now, in order to compute the valueS[v, j] for a given vertexv and a fixed integerj,
the algorithm needsO(C∆) time steps. In fact, by Lemma 32, the setPv(j) has cardinal-
ity O(C∆) and can be computed inO(∆2C∆). Thus, the time complexity of compute the
valuesS[v, j], for all 1 ≤ j ≤ C, is O(∆2C∆+1). Finally, the overall time complexity of
the previous algorithm onT is O(n∆2C∆+1), thusO(n∆∆+3ω∆+1

max ). �

4.4 Conclusions

In Section 4.1, we have studied the Minimum Sum Coloring (MSC) problem onP4-
sparse graphs. We have introduced the concept of maximal sequence associated with
an optimal solution of the MSC problem of any graph. Next, based in such maximal
sequences, we have shown that there is a large sub-family ofP4-sparse graphs for which
the MSC problem can be solved in polynomial-time. An interesting open problem is the
complexity of the MSC problem onP4-sparse graphs.

In Section 4.2, we have studied the MSEC problem on multicycles and we have given
a closed-form expression for the chromatic edge strength for such familly of multigraphs,
thereby extending a theorem due to Berge. It is shown that the minimum sum can be
achieved with a number of colors equal to the chromatic index. We also propose simple
algorithms for finding a minimum sum edge coloring of a multicycle. Finally, these results
are generalized to a large family of minimum cost coloring problems.

Finally, in Section 4.3, we have defined the Minimum Sum Set Coloring (MSSC)
problem which consists in assign a set ofω(v) positive integers to each vertexv of a
graph so that the intersection of sets assigned to adjacent vertices be empty and the sum
of the assigned set of numbers to each vertex of the graph is minimum. Clearly, when
ω(v) = 1 for each vertexv of the graph, the MSSC problem becomes the MSC problem.
We have shown that the MSSC problem on trees is polynomial-time solvable in thenon-
preemptivecase (i.e. the set of integers assigned to each vertex is a consecutive interval)
but NP-hard in thepreemptivecase. Finally, we have shown that thenon-preemptivecase
of the MSSC problem is NP-hard for line graphs of trees.



Chapter 5

Conclusions and Perspectives

In this manuscript, I have shown the recent progress on some variations of the famous
classical problem of graph Theory : (i) the b-coloring problem, (ii) coloring properties
on direct product graphs, and (iii) the Minimum Sum coloring problem. For each one of
these problems, I have given some conclusions and some open problems.

In this section, I propose some research perspectives for each one of the coloring
problems discussed in this manuscript.

b-coloring

- The computational complexity of the b-chromatic problem for chordal graphs is not
known. A related problem consists in constructing polynomial-time approximation
algorithms for computing the b-chromatic number of chordal graphs, or for sub-
classes of b-continuous graphs. In fact, even for subfamilies of chordal graphs like
interval graphs, the complexity of this problem is unknown.

- An interesting research perspective on this topic is the study of exact and parametrized
algorithms for some classes of graphs. A graduate thesis on this perspective, which
I co-supervised with Flavia Bonomo, is actually in execution by a Ph.D. student at
the Computer Science Department of the University of Buenos Aires, Argentina.

Direct products of graphs

One of the most famous open problem on this topic is the Hedetniemi conjecture :
χ(G × H) = min{χ(G), χ(H)}. This problem is open even ifG andH are both finite
undirected vertex-transitive graphs. In Chapter 3, we have obtained a positive answer
to Hedetniemi conjecture for some families of vertex-transitive graphs : Kneser graphs,
Circular Graphs and powers of cycles. Notice that the last two subfamilies of graphs
belong to the family of circulant graphs, that is, Cayley graphs of cyclic groups.

- It will be very interesting to study the chromatic number of the direct product of
finite many undirected circulant graphs. Clearly, if Hedetniemi conjecture holds in
this case, it means that it holds for Cayley graphs of finite Abelian groups.
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- Another way to attack the Hedetniemi conjecture on vertex-transitive graphs can be
the study of a more strong conjecture, proposed by Tardif, on such family of graphs
: αk(G×H) = max{αk(G).|H|, αk(H).|G|}, whereαk(G) is the maximal size of
an inducedk-colorable subgraph ofG.

- Concerning the idomatic partitions of direct product of finite many complete graphs,
it will be interesting to know if there are other relations between properties of the
direct product of some groups associated to such Cayley graphs, as the one found
in [78].

Minimum Sum Coloring

Concerning this problem, two research perspectives may be suggested :

- As mentioned in Section 4.2 of Chapter 4, the line graph of a multicycle is a proper
circular arc graph. However, not all proper circular arc graphs are line graphs of
multicycles. Therefore, it will be interesting to extend our results to this family of
graphs. In fact, it is known that the MSC problem is NP-hard for general interval
graphs, but polynomial-time solvable for proper interval graphs. The former re-
sult implies that this problem is also NP-hard for general circular arc graphs. The
computational complexity of this problem for proper circular arc graphs is an open
question.

- The results presented in Section 4.1 of Chapter 4 are the first ones for the MSC
problem on the family ofP4-sparse graphs. However, neither the computational
complexity nor approximation algorithms are known for such a family of graphs.
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[55] D. König. Gráfok és alkalmaz´asuk a determin´ansokés a halmazok elm´eletére.
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