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Abstract. In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse
graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that
adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is
minimum. Based in the concept of maximal sequence associated with an optimal solution of the
MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for
which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized
algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs.
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1. Introduction

In this paper, we study the Minimum Sum Coloring (MSC) problem for the family
of P4-sparse graphs. A vertex coloring of a graph G = (V,E) is an assignment of colors
to the vertices in V such that adjacent vertices receive different colors. We assume that
the colors are positive integers. A vertex k-coloring of a graph G is a coloring such that
the color of each vertex in V is taken from the set {1, 2, . . . , k}. Given a vertex coloring
of a graph G, the sum of the coloring is the sum of the colors assigned to the vertices.
The chromatic sum Σ(G) of G is the smallest sum that can be achieved by any proper
coloring of G. In the Minimum Sum Coloring (MSC) problem we have to find a coloring
of G with sum Σ(G). The minimum number of colors needed in a minimum sum coloring
of G is called the strength of G and is denoted by s(G). Clearly, for any graph G we have
s(G) ≥ χ(G), where χ(G) denotes the chromatic number of G.

The MSC problem was introduced by Kubicka [12]. The problem is motivated by
applications in scheduling [1,2,6] and VLSI design [14,16]. The computational complexity
of determining the vertex chromatic sum of a simple graph has been extensively studied
since then. In [13] it is shown that the problem is NP-hard in general, but polynomial
time solvable for trees. The dynamic programming algorithm for trees can be extended
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to partial k-trees and block graphs [11]. Furthermore, the MSC problem is NP-hard even
when restricted to some classes of graphs for which finding the chromatic number is easy,
such as bipartite or interval graphs [2,16]. A number of approximability results for various
classes of graphs were obtained in the last ten years [1,5,6,4].

Jansen has shown in [11] that a more general optimization problem where each color has
an integer cost, but this cost is not necessarily equal to the color itself, the Optimal Cost
Chromatic Partition (OCCP) problem, can be solved in polynomial time for cographs (i.e.
P4-free graphs) and block graphs (i.e. diamond-free chordal graphs), but it remains NP-
hard for permutation graphs. Salavatipour has shown in [15] that the OCCP problem can
be solved in polynomial time for the family of P4-reducible graphs, a superclass containing
the family of cographs. P4-reducible graphs were introduced by Jamison and Olariu [8] as
a generalization of cographs: a graph is P4-reducible if every vertex belongs to at most one
P4. A generalization of P4-reducible graphs are the P4-sparse graphs introduced in [7]. A
graph is P4-sparse if every 5-vertex subset contains at most one P4. The family of P4-sparse
graphs can be recognized in linear time [9], and is a subclass of perfect graphs [7].

If G1 and G2 are two vertex disjoint graphs, then their union G1 ∪ G2 is the graph
with vertex set V (G1∪G2) = V (G1)∪V (G2) and edge set E(G1∪G2) = E(G1)∪E(G2).
Similarly, their join G1 ∨G2 is the graph with V (G1 ∨G2) = V (G1)∪V (G2) and E(G1 ∨
G2) = E(G1) ∪ E(G2) ∪ {(x, y) : x ∈ V (G1), y ∈ V (G2)}.

A spider is a graph whose vertex set can be partitioned into S, C and R, where
S = {s1, . . . , sk} (k ≥ 2) is an independent set; C = {c1, . . . , ck} is a complete set; si is
adjacent to cj if and only if i = j (a thin spider), or si is adjacent to cj if and only if
i ̸= j (a thick spider); R is allowed to be empty and if it is not, then all the vertices in
R are adjacent to all the vertices in C and non-adjacent to all the vertices in S. Clearly,
the complement of a thin spider is a thick spider, and vice-versa. The triple (S,C,R) is
called the spider partition, and can be found in linear time [9]. The sets S, C and R are
called the legs, body and head of the spider, respectively. The size of the spider will be
|C|. P4-sparse graphs have a nice decomposition theorem as follows.

Theorem 1.. [7,10] If G is a non-trivial P4-sparse graph, then either G or G is not
connected, or G is a spider.

To each P4-sparse graph G one can associate a corresponding decomposition rooted tree
T in the following way. Each non-leaf node in the tree is labeled with either “∪” (union-
nodes), or “∨” (join-nodes) or “SP” (spider-partition-nodes), and each leaf is labeled with
a vertex of G. Each non-leaf node has two or more children. Let Tx be the subtree of T
rooted at node x and let Vx be the set of vertices corresponding to the leaves in Tx. Then,
each node x of the tree corresponds to the graph Gx = (Vx, Ex). An union-node (join-
node) corresponds to the disjoint union (join) of the P4-sparse graphs associated with its
children. A spider-partition-node corresponds to the spider with spider-partition (S,C,R)
where S, C, and R are its children. Finally, the P4-sparse graph associated with the root
of the tree is just G, the P4-sparse graph represented by this decomposition tree. The
decomposition tree associated to a P4-sparse graph can be computed in linear time [10].

The paper is organized as follows. In Section 2 we give some preliminaries concerning
maximal sequences associated with optimal solutions of the MSC problem on any graph. In
Section 3, we study the maximal sequences associated with optimal solutions of the MSC
problem on P4-sparse graphs. As a consequence, we obtain a parameterized algorithm for
this problem and we show that there is a large sub-family of P4-sparse graphs for which
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the MSC problem can be solved in polynomial time. In Section 4 we analyze the strength
of P4-sparse graphs. Finally, in Section 5 we present a simple 2-approximation algorithm
for the MSC problem on P4-sparse graphs.

As far as we know, the results that we have obtained in this work are the first ones
concerning the MSC problem on the family of P4-sparse graphs. The computational com-
plexity of the MSC problem on P4-sparse graphs remains an open problem.

2. Maximal sequences and optimal solutions of the MSC problem

A k-coloring of a graph G = (V,E) is a partition of the vertex set V into k independent
sets S1, . . . , Sk, where each vertex in Si is colored with color i, for 1 ≤ i ≤ k. So, for any
such k-partition of V into independent sets, we can associate a non-negative sequence p
such that p[i] = |Si| for i = 1, . . . , k and p[i] = 0 for i > k. In the sequel, we deal with
finite-support non-negative integer sequences only. Let |p| = max{i : p[i] > 0}.

Definition 1.. Let p and q be two integer sequences. We say that p dominates q, denoted
by p ≽ q, if for all t ≥ 1 it holds that

∑
1≤i≤t p[i] ≥

∑
1≤i≤t q[i].

Definition 2.. Let p be a sequence. We denote by p̃ the sequence that results from p when
we order it in a non-decreasing way.

The following two lemmas are direct consequences of Definition 1.

Lemma 1.. The dominance relation ≽ is a partial order.

Lemma 2.. Let p be a sequence. Then, p̃ ≽ p.

The following lemma will be very useful in order to study the MSC problem on graphs.

Lemma 3.. Let p and q be two sequences and let n = max{|p|, |q|}. If p ≽ q and∑
1≤i≤n p[i] =

∑
1≤i≤n q[i], then it holds that

∑
1≤i≤n i · p[i] ≤

∑
1≤i≤n i · q[i].

Proof. Let N =
∑

1≤i≤n p[i] =
∑

1≤i≤n q[i]. Let P and Q be two sequences obtained from
p and q such that |P | = |Q| = N , and defined by P [j] = min{k :

∑
1≤i≤k p[i] ≥ j}

(resp. Q[j] = min{k :
∑

1≤i≤k q[i] ≥ j}) for j = 1, . . . , N . By hypothesis, p ≽ q, and so,
P [j] ≤ Q[j] for all 1 ≤ j ≤ N . Therefore,

∑
1≤i≤n i ·p[i] =

∑
1≤j≤N P [j] ≤

∑
1≤j≤N Q[j] =∑

1≤i≤n i · q[i].

Notice that if the sequences represent partitions of the vertex set of a graph into
independent sets, where the value of the i-th element of the sequence represents the size
of the i-th independent set in the partition, then for the sum-coloring problem on graphs
we can restrict us to study maximal sequences w.r.t. the partial order ≽. Notice also
that maximal sequences are non-increasing sequences. We will call maximal partition to
a partition of the vertex set of a graph into independent sets associated to a maximal
sequence. In the following, we define some operations between sequences.

Definition 3.. Let p and q be two sequences. The join of p and q, denoted by p ⋆ q, is
the sequence that results by sorting the concatenation of the sequences p and q in non-
increasing order.

Definition 4.. Let p and q be two sequences. The sum of p and q, denoted by p+ q, is the
sequence whose i-th value is equal to p[i]+q[i], for i ≥ 1. Notice that |p+q| = max{|p|, |q|}.
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Definition 5.. Let p and q be two sequences. We say that p and q are non-comparable,
denoted by p||q, if p ̸≽ q and q ̸≽ p.

The following two lemmas will be useful in order to study the MSC problem on P4-
sparse graphs.

Lemma 4.. Let p, p′ and q be sequences. If p̃ ≽ p̃′ then p ⋆ q ≽ p′ ⋆ q.

Proof. Consider the sequence p′ ⋆ q. By definition of join, p̃′ is a subsequence of p′ ⋆ q. Let
s be the sequence that results from p′ ⋆ q by replacing each element p̃′[i] by p̃[i]. As by
hypothesis, p̃ ≽ p̃′, then we have that s ≽ p′ ⋆ q. But now, note that p ⋆ q = s̃ and thus,
p ⋆ q ≽ s ≽ p′ ⋆ q.

Lemma 5.. Let p, p′, and q be sequences. Then, p||p′ if and only if p+ q||p′ + q.

Proof. Note that p||p′ if and only if there exist two different positive integers j1 and j2
such that

∑j1
i=1 p[i] >

∑j1
i=1 p

′[i] and
∑j2

i=1 p[i] <
∑j1

i=1 p
′[i]. This happens if and only if∑j1

i=1(p[i] + q[i]) >
∑j1

i=1(p
′[i] + q[i]) and

∑j2
i=1(p[i] + q[i]) <

∑j1
i=1(p

′[i] + q[i]), which is
equivalent to p+ q||p′ + q.

The following result can be proved similarly.

Lemma 6.. Let p, p′, and q be sequences. Then, p ≽ p′ if and only if p+ q ≽ p′ + q.

3. Maximal sequences of P4-sparse graphs

In the sequel, sequences of a graph will represent partitions of its vertex set into
independent sets. The following two lemmas show that if we are looking for maximal
sequences of a graph that is either the union or the join of two vertex disjoint graphs G1,
G2, then it is sufficient to consider maximal sequences of the graphs G1 and G2.

Lemma 7.. Let G1, G2 be two vertex disjoint graphs, and let G = G1 ∪ G2. Then, every
maximal sequence p of G can be expressed as p = p1+p2, where p1 (resp. p2) is a maximal
sequence of G1 (resp. G2).

Proof. Let p be a maximal sequence of G and let S1, . . . , Sk be a partition associated
with p. Let Si1 , . . . , Sit be the sets in the partition having nonempty intersection with
V (G1). We claim that {i1, . . . , it} = {1, . . . , t}. Otherwise, there is some value i such that
Si∩V (G1) = ∅ and Si+1∩V (G1) ̸= ∅. Since no vertex of G1 is adjacent to a vertex of G2,
vertices in Si+1 ∩ V (G1) can migrate to Si, obtaining a sequence that strictly dominates
p, a contradiction. The same happens for G2, so p can be expressed as p = p1 + p2, where
p1 and p2 are sequences of G1 and G2, respectively. By Lemma 6, they must be maximal
for the corresponding graphs.

Lemma 8.. Let G1, G2 be two vertex disjoint graphs, and let G = G1 ∨ G2. Then, every
maximal sequence p of G can be expressed as p = p1 ⋆p2, where p1 (resp. p2) is a maximal
sequence of G1 (resp. G2).

Proof. Let p be a maximal sequence of G and let S1, . . . , Sk be a partition associated with
p. Since every vertex of G1 is adjacent to all the vertices of G2 in G, each Si, 1 ≤ i ≤ k, is
entirely contained either in G1 or in G2. Besides, as p is maximal, it is non-increasing. So p
can be expressed as p = p1 ⋆ p2, where p1 and p2 are sequences of G1 and G2, respectively.
By Lemma 4, they must be maximal for the corresponding graphs.
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A similar result holds in general for homogeneous sets. Let G be a graph. A set H ⊆
V (G) of vertices is called homogeneous if, for each vertex w ∈ V (G) \ H, either w is
adjacent to all the vertices in H or to none of them. For any subset of vertices X ⊆ V (G),
denote by G[X] the subgraph of G induced by X.

Lemma 9.. Let G be a graph and H an homogeneous set of G. Let S1, . . . , Sk be a maximal
partition of G, and let Si1 , . . . , Sit be the sets in the partition having nonempty intersection
with H. Then, Si1 ∩H, . . . , Sit ∩H is a maximal partition of G[H].

Proof. Let p be the sequence of G associated to S1, . . . , Sk, that is, p[i] = |Si| for i =
1, . . . , k, p[i] = 0 for i > k. Let q be the sequence of G[H] associated to Si1∩H, . . . , Sit∩H,
that is, q[j] = |Sij ∩H| for j = 1, . . . , t, q[j] = 0 for j > t. Let q′ be a maximal sequence

for G[H] such that q′ ≽ q. Since
∑|q′|

j=1 q
′[j] =

∑|q|
j=1 q[j] = |H|, we have |q′| ≤ |q| = t. Let

S ′
1, . . . , S

′
t be a partition of H associated with q′, where maybe some of the sets are empty.

Notice that every vertex in (Si1 ∪ . . . ∪ Sit) \ H has at least a non-neighbor in H, since
Si1 , . . . , Sit are the sets having nonempty intersection with H and they are independent
sets. SinceH is an homogeneous set ofG, every vertex in (Si1∪. . .∪Sit)\H has no neighbors
in H. So we can consider the partition of V (G) obtained from S1, . . . , Sk by replacing Sij

by (Sij \H) ∪ S ′
j, for j = 1, . . . , t, that is a partition of V (G) into independent sets. Let

p′ be the sequence associated to this new partition. Then p′[i] = p[i] for i ̸∈ {i1, . . . , it},
while p′[ij] = p[ij]− q[j]+ q′[j] for j = 1, . . . , t. It is easy to see that p′ ≽ p because q′ ≽ q,
and that the domination is strict for p′ and p if it is strict for q′ and q. Since p is maximal
for G, it follows that q′ = q and q is maximal for G[H].

We describe next the maximal sequences of spiders.

Lemma 10.. Let G = (S,C,R) be a spider such that R ̸= ∅, and let p be a maximal
sequence for G. Then there exists a partition S1, . . . , S|p| associated with p in which there
are only three kinds of sets: sets entirely contained in R, sets entirely contained in C, and
sets intersecting both R and S; moreover, sets entirely contained in C are the last |C|
sets, and only S1 intersects both R and S, with S ⊆ S1.

Proof. Let S1, . . . , S|p| be a partition associated with p. It is clear that no set of the
partition can contain both vertices from C and R, since all the vertices in C are adjacent
to all the vertices in R. If there is a set Si containing vertices of S and no vertex of R, then
either Si ⊆ S or Si contains exactly one vertex of C, because C is a complete set. Since
R ̸= ∅, there is some set Sj containing vertices from R, thus Sj ⊆ R∪S. Then the vertices
in Si∩S can migrate to Sj, possibly swapping Si and Sj if i < j, thus obtaining a partition
associated with a sequence p′ such that p′ ≽ p. Since p is maximal, p′ = p. Therefore,
there exists a partition associated with p in which every set is either entirely contained
in R, or entirely contained in C, or intersects both R and S. Sets entirely contained in
C have only one element, and since p is maximal, thus non-increasing, we may assume
that these are the last |C| sets. From now on, we will assume that S1, . . . , S|p| is such a
partition. In particular, S1 ⊆ S ∪ R. Suppose that there is a set Si, i > 1, containing
vertices of S. Then the vertices in Si ∩ S can migrate to S1, obtaining a sequence that
strictly dominates p, a contradiction.

Lemma 11.. Let G = (S,C,R) be a spider such that R ̸= ∅. Then, the number of maximal
sequences of G is equal to the number of maximal sequences of G[R]. Moreover, for each
maximal sequence q of G[R] there exists only one maximal sequence q′ of G with |q′| =
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|q|+ |C| and where q′[1] = q[1] + |C|, q′[i] = q[i] for 2 ≤ i ≤ |q| (if |q| ≥ 2), and q′[i] = 1
for |q|+ 1 ≤ i ≤ |q|+ |C|.

Proof. Let p be a maximal sequence of G, and S1, . . . , S|p| a maximal partition asso-
ciated with p. Since R ̸= ∅, by Lemma 10, we may assume that S1, . . . , S|p| is such
that sets S|p|−|C|+1, . . . , S|p| are entirely contained in C, S1 intersects both R and S
and S2, . . . , S|p|−|C| (when 2 ≤ |p| − |C|) are entirely contained in R. By Lemma 9,
p[1] − |C|, p[2], . . . , p[|p| − |C|] (or simply p[1] − |C| when |p| = |C| + 1) is a maximal
sequence for G[R]. Conversely, for each maximal sequence q of G[R] associated with par-
tition T1, . . . , T|q|, define sequence q

′ of G with |q′| = |q|+ |C| and where q′[1] = q[1]+ |C|,
q′[i] = q[i] for 2 ≤ i ≤ |q| (if |q| ≥ 2), and q′[i] = 1 for |q| + 1 ≤ i ≤ |q| + |C|, associated
with the partition T1 ∪ S, . . . , T|q|, {c1}, . . . , {ck} if |q| ≥ 2, T1 ∪ S, {c1}, . . . , {ck} other-
wise. Let q1 and q2 be maximal sequences of G[R], and let q′1 and q′2 be their respective
maximal sequences of G constructed as below. It is easy to see that if q1||q2 then q′1||q′2,
so the lemma holds.

Lemma 12.. Let G = (S,C,R) be a thin spider such that R = ∅. Then, G has only
one maximal sequence p, with |p| = |C|, where p[1] = |C|, p[2] = 2, and p[i] = 1 for
3 ≤ i ≤ |C|.

Proof. Let S = {s1, . . . , sk} and C = {c1, . . . , ck}, with k ≥ 2. Let S1, . . . , St be a partition
of the vertex set of G into independent sets, with t ≥ 1, such that its associated sequence
p is maximal. By hypothesis, we have that R = ∅. Note first that each vertex ci ∈ C
must belong to a different independent set Sj and so, t ≥ k. Now, by definition of a thin
spider, each vertex si is adjacent to vertex cj if and only if i = j. We claim that there is
Si such that Si = S or there are Si and Sj, with i ̸= j, such that Si = (S \ {sn}) ∪ {cn}
and Sj = {sn, cm}, for some n,m ∈ {1, . . . , k}, with m ̸= n. Assume that it is not true.
Suppose first that there are three sets Si, Sj, Sl, with i < j < l, such that each one of
them contains at least one vertex of S. Let sq ∈ S be a vertex in Sl. Then vertex cq ∈ C
belongs to at most one of Si or Sj but not to both. Thus, vertex sq must migrate to one
of Si or Sj that contains no vertex cq, which gives a sequence that strictly dominates p, a
contradiction. Therefore, vertices in S belong either to only one set Si or to two different
sets Si and Sj, with i < j. If Si contains no vertex of C, all the vertices in S ∩ Sj must
migrate to Si, which gives a sequence that strictly dominates p, a contradiction. Else, Si

contains exactly one vertex cn of C. In that case, by similar arguments, only vertex sn
could be in Sj. Since p is maximal, Sj contains also a vertex in C. (Otherwise we can
merge two sets, obtaining a sequence that strictly dominates p, a contradiction.) As p is
maximal, then p is such that: (i) p[1] = k and p[i] = 1 for 2 ≤ i ≤ k + 1, that is, S1 = S
and Sj = {cj−1} for 2 ≤ j ≤ k + 1; or (ii) p[1] = k, p[2] = 2, and p[i] = 1 for 3 ≤ i ≤ k,
that is, sequence p is associated with the partition S1 = (S \ {s1}) ∪ {c1}, S2 = {s1, c2},
and Sl = {cl} for 3 ≤ l ≤ k. Clearly, the sequence of Case (ii) dominates the one of
Case (i), and it is the only maximal sequence for G.

Lemma 13.. Let G = (S,C,R) be a thick spider such that |C| ≥ 3 and R = ∅. Then,
G has only two maximal sequences p1 and p2, with |p1| = |C| and |p2| = |C| + 1, where
p1[i] = 2 for 1 ≤ i ≤ |C|, and p2[1] = |C| and p2[i] = 1 for 2 ≤ i ≤ |C|+ 1.

Proof. Let S = {s1, . . . , sk} and C = {c1, . . . , ck}, with k ≥ 3. By hypothesis, we have
that R = ∅. By definition of a thick spider, each vertex si is adjacent to vertex cj if and
only if i ̸= j.
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The sequence p1 with |p1| = k, and such that p1[i] = 2 for 1 ≤ i ≤ k, can be obtained
by defining Si = {ci, si} for 1 ≤ i ≤ k. The sequence p2 with |p2| = k + 1, and such
that p2[1] = k and p2[i] = 1 for 2 ≤ i ≤ k + 1, can be obtained by defining S1 = S and
Si = {ci−1} for 2 ≤ i ≤ k+1. Moreover, we have that p1||p2. In fact, let j1 = 1 and j2 = k.
Then, p1[1] = 2 < k = p2[1] and

∑j2
i=1 p1[i] = 2k > 2k − 1 =

∑j2
i=1 p2[i].

We will show now that these are the only two maximal sequences for G. Let S1, . . . , St

be a partition of the vertex set of G into independent sets, with t ≥ 1, such that its
associated sequence p is maximal. First notice that there is at most one set entirely
contained in S, because two such sets could be merged obtaining a sequence that strictly
dominates p, a contradiction.

Suppose first that there is some set Si containing more than one vertex of S. Since no
two vertices of S have a common non-neighbor in C, then Si ⊆ S and it is the only set
entirely contained in S. Every other set is either contained in C or has one vertex of C
and one of S. Since p is non-increasing, we may assume i = 1. If some set Si with i > 1
contains a vertex of S, it can migrate to S1, leading to a sequence that strictly dominates
p, a contradiction. So S1 = S and p = p2.

Suppose now that no set contains more than one vertex of S. Then each set is either
composed by one vertex of C, or by one vertex of S, or by a vertex si ∈ S and its only
non-adjacent vertex ci ∈ C. Clearly, p1 dominates every such a sequence, so p = p1.

Notice also that the trivial graph has only one maximal sequence p, with |p| = 1, where
p[1] = 1. Therefore, we have the following theorems.

Theorem 2.. Let G be a P4-sparse graph such that in its modular decomposition there
are no thick spiders (S,C,R) with |C| ≥ 3 and R = ∅. Then,
1. s(G) = χ(G), G has a unique maximal sequence, and Σ(G) and an optimal coloring

of G can be computed from its modular decomposition in polynomial time.
2. In such an optimal coloring, each set Si is a maximum independent set of G\

∪
1≤j<i Sj

which verifies χ(G \
∪

1≤j≤i Sj) = χ(G \
∪

1≤j<i Sj)− 1.

Proof. Let G be a P4-sparse graph such that in its modular decomposition there are no
thick spiders (S,C,R) with |C| ≥ 3 and R = ∅.
1. We will prove by induction that G admits a unique maximal sequence p and that

|p| = χ(G). This implies s(G) = χ(G). By Theorem 1, G is either trivial, or the union
or join of two smaller P4-sparse graphs G1 and G2, or G is a spider (S,C,R) and
G[R] is P4-sparse. If G is trivial, the property holds. Suppose G is the union or join of
G1 and G2. By inductive hypothesis, for i = 1, 2, Gi has a unique maximal sequence
pi, and |pi| = χ(Gi). If G = G1 ∪ G2 then, by Lemma 7, G has a unique maximal
sequence p = p1 + p2. Therefore, |p| = max{|p1|, |p2|} = max{χ(G1), χ(G2)} = χ(G).
If G = G1 ∨ G2 then, by Lemma 8, G has a unique maximal sequence p = p1 ⋆ p2.
Therefore, |p| = |p1|+ |p2| = χ(G1) +χ(G2) = χ(G). Finally, if G is a spider (S,C,R),
then either G is a thin spider with R = ∅ or R ̸= ∅. In the first case the property
follows by Lemma 12. In the second case, by inductive hypothesis, G[R] has a unique
maximal sequence q, and |q| = χ(G[R]). By Lemma 11, there exists only one maximal
sequence p of G, and |p| = |q|+ |C| = χ(G[R]) + |C| = χ(G).
Now, let n be the number of vertices in G. Let T be the decomposition rooted tree
associated with G. It is well known that T can be computed in linear time [10]. We
will show that the unique maximal sequence p of G and a partition associated with p
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can be computed from T in polynomial time. In order to compute an optimal coloring
with s(G) colors and sum Σ(G) for this case, we proceed from the leaves to the root
in T as follows. If x is a leaf in T then its associated partition is S1 = {x} having
as maximal sequence p, with |p| = 1 and p[1] = 1. If node x ∈ T is a union-node
(resp. join-node) then, by Lemma 7 (resp. Lemma 8), the unique maximal sequence
and its corresponding optimal partition of the vertex set of Gx into independent sets
can be computed from the unique maximal sequences and their corresponding optimal
partitions of the children of x. If node x ∈ T is a spider-partition node representing the
spider σ = (S,C,R) then, the unique maximal sequence and its corresponding optimal
partition of the vertex set of Gx into independent sets can be computed either as in
Lemma 12 (if σ is a thin spider with R = ∅) or from the unique maximal sequence and
their corresponding optimal partitions of the child Gx[R] of x as shown in Lemma 11,
if R ̸= ∅. Finally, notice that each node x ∈ T needs O(n) time to compute its optimal
partition. As there are at most 2n − 1 nodes in T , then the complexity time of the
algorithm is bounded by O(n2).

2. It follows by induction from Theorem 1, and using Lemma 7 (resp.
Lemma 8) if G is a disjoint union (resp. join) of P4-sparse graphs, and Lemma 12
(resp. Lemma 11) if G is a thin spider (S,C,R) with R = ∅ (resp. G is a spider
(S,C,R) with R ̸= ∅).

Theorem 3.. Let G be a P4-sparse graph on n vertices. Let t be the number of thick
spiders (S,C,R) with |C| ≥ 3 and R = ∅ in the modular decomposition of G. Then,
s(G) ≤ χ(G) + t, the number of maximal sequences of G is at most 2t, and an optimal
coloring of G can be computed in 2tP (n) time, where P (n) is a polynomial in n.

Proof. The statement holds for t = 0 by Theorem 2. Suppose t ≥ 1, and let σ1, . . . , σt be
the thick spiders in the decomposition tree T of G such that σj = (Sj, Cj, ∅) and |Cj| ≥ 3,
for j = 1, . . . , t. By Lemma 13, each σj has exactly two maximal sequences. Clearly, there
are 2t ways of choosing maximal sequences (and their corresponding partitions) for the
t thick spiders σj. Now, given a fixed choice for the thick spiders σj and by using the
algorithm in the proof of item (1) of Theorem 2, we can compute in O(n2) time a maximal
sequence and its corresponding partition into independent sets for G. This shows that G
has at most 2t maximal sequences and that an optimal coloring with s(G) colors and sum
Σ(G) can be computed in O(2tn2) time. Finally, note that for each thick spider σj, one of
its maximal sequences has length χ(σj) + 1 and thus, by induction, it can be proved that
the number of colors used in an optimal solution for G is upper bounded by χ(G) + t.

The algorithm described in Theorem 3 allows us to find also the minimum sum that
can be attained by a coloring of G with at most r colors, for some given value r ≥ χ(G),
and the corresponding coloring.

4. The strength of P4-sparse graphs

As we have shown in the last section, the difference between the strength of a P4-sparse
graph and its chromatic number is upper bounded by the number of thick spiders of size
at least three and empty head.

We will exhibit now some examples were this bound is tight, where it is not, and were
it can be seen that Lemma 9 does not hold if we replace “maximal sequence” by “sequence
achieving the minimum sum”.
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Let G1 be the join of t disjoint thick spiders of size 3 with empty head. The possible
maximal sequences for each of them are [3, 1, 1, 1] and [2, 2, 2]. Since the graph is sym-
metric, suppose that x of the spiders are partitioned [3, 1, 1, 1] and t − x are partitioned
[2, 2, 2], where 0 ≤ x ≤ t. By Lemma 8, the corresponding maximal sequence of G1 will
be

[3, . . . , 3︸ ︷︷ ︸
x

, 2, . . . , 2︸ ︷︷ ︸
3(t−x)

, 1, . . . , 1︸ ︷︷ ︸
3x

]

So, the sum Σ(x) of the obtained coloring is a function of x, more precisely, Σ(x) =∑3t+x
i=1 i+

∑3t−2x
i=1 i+

∑x
i=1 i = 3x2−3tx+9t2+3t. Since it is a convex quadratic function,

the minimum is attained only by the value of x where Σ ′(x) = 6x − 3t = 0, that is, for
x = t

2
. Since we are looking for the minimum attained by an integer value, it will be x = t

2

if t is even, and either x = ⌊ t
2
⌋ or x = ⌈ t

2
⌉ if t is odd. So, s(G1) = χ(G1) + ⌊ t

2
⌋.

Let now G2 = G1 ∨K3t, that is, the join of G1 and a complete graph on 3t vertices,
and let x as above. By Lemma 8, the corresponding maximal sequence of G2 will be

[3, . . . , 3︸ ︷︷ ︸
x

, 2, . . . , 2︸ ︷︷ ︸
3(t−x)

, 1, . . . , 1︸ ︷︷ ︸
3x+3t

]

Now, Σ(x) =
∑6t+x

i=1 i+
∑3t−2x

i=1 i+
∑x

i=1 i = 3x2+ 45
2
t2+ 9

2
t and the minimum is attained

only by the value of x where Σ ′(x) = 6x = 0, that is, for x = 0. So, s(G2) = χ(G2).
Finally, let G3 = G1 ∨ 3tK2, where 3tK2 is the join of 3t disjoint independent sets of

size 2, and let x as above. By Lemma 8, the corresponding maximal sequence of G3 will
be

[3, . . . , 3︸ ︷︷ ︸
x

, 2, . . . , 2︸ ︷︷ ︸
3(t−x)+3t

, 1, . . . , 1︸ ︷︷ ︸
3x

]

Now, Σ(x) =
∑6t+x

i=1 i +
∑6t−2x

i=1 i +
∑x

i=1 i = 3x2 − 6tx + 36t2 + 6t and the minimum
is attained only by the value of x where Σ ′(x) = 6x − 6t = 0, that is, for x = t. So,
s(G3) = χ(G3) + t, and in this case the bound of Theorem 3 is tight.

5. A 2-approximation algorithm for the MSC problem on P4-sparse graphs

Let G be a P4-sparse graph on n vertices. Let σ1, σ2, . . . , σt be the thick spiders in the
decomposition tree of G, such that σj = (Sj, Cj, ∅) and |Cj| ≥ 3, for j = 1, . . . , t. We
assume that t is of order Ω(n), otherwise, by Theorem 3, an optimal solution for the MSC
problem on G can be computed in polynomial time.

Consider the following algorithm to color G: first, for each thick spider σj, we choose as
its maximal sequence pj the sequence p1 of Lemma 13, that is, pj[i] = 2 for 1 ≤ i ≤ |Cj|,
and its corresponding maximal partition Sj

1, . . . , S
j
|Cj |, where Sj

i = {sji , c
j
i}, being sji and

cji non-adjacent vertices in Sj and Cj, respectively, for i = 1, . . . , |Cj|. Next, we apply
the algorithm in the proof of item (1) of Theorem 2 in order to compute in O(n2) time a
partition into independent sets for G. Let ϕ be the coloring of the vertices of G obtained
by the previous algorithm. Clearly, ϕ uses χ(G) colors. Let Σϕ(G) be the sum of the colors
of the vertices of G induced by the coloring ϕ. We claim the following.
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Claim 4 Σϕ(G) ≤ 2Σ(G).

Proof. Let Φ be an optimal coloring for G with sum Σ(G). Let H be the induced subgraph
of G obtained by removing from G all the vertices of each independent set Sj of the thick
spider σj, for 1 ≤ j ≤ t. Let Σ̃(H) be the sum of the colors of the vertices in H under

the coloring Φ. On one hand, we have that Σ̃(H) ≥ Σ(H). Moreover,

Σ(G) ≥ Σ̃(H) ≥ Σ(H) (∗)

On the other hand, let Φ′ be an optimal coloring of H with sum Σ(H). We extend the
coloring Φ′ ofH to a coloring Φ′′ ofG, where each vertex sji ∈ Sj is assigned the color Φ′(cji )
of vertex cji ∈ Cj, for 1 ≤ i ≤ |Cj|, being (Sj, Cj, ∅) the thick spider σj, for 1 ≤ j ≤ t.
Let ΣΦ′′(G) be the sum induced by the coloring Φ′′ on G. Clearly, Σϕ(G) ≤ ΣΦ′′(G), and
ΣΦ′′(G) ≤ 2Σ(H). Therefore, by (∗), we have that Σϕ(G) ≤ 2Σ(G).

Therefore, we have the following result.

Theorem 5.. There is a 2-approximation algorithm for the MSC problem on P4-sparse
graphs.

Finally, notice that all our results concerning the MSC problem on P4-sparse graphs
can be easily adapted to the OCCP problem on this family of graphs.
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