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Abstract

Let α(G) and χ(G) denote the independence number and chromatic number of a
graph G respectively. Let G×H be the direct product graph of graphs G and H . We
show that if G and H are circular graphs, Kneser graphs, or powers of cycles, then
α(G ×H) = max{α(G)|V (H)|, α(H)|V (G)|} and χ(G×H) = min{χ(G), χ(H)}.
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1 Introduction

In this paper, we study the independence and chromatic numbers of finite direct products
graphs of circular graphs, Kneser graphs and powers of cycles. In the case of circular and
Kneser graphs, this is done via classical homomorphisms. For the direct product graph of
powers of cycles, we first analyze its independence number and then we use such a result to
compute its chromatic number.

The direct product G×H of two graphs G andH is defined by V (G×H) = V (G)×V (H),
and where two vertices (u1, u2), (v1, v2) are joined by an edge in E(G×H) if {u1, v1} ∈ E(G)
and {u2, v2} ∈ E(H). This product is commutative and associative in a natural way (see
reference [10] for a detailed description on product graphs). A coloring of G × H can be
easily derived from a coloring of any of its factors, hence χ(G×H) ≤ min{χ(G), χ(H)}. One
of the outstanding problems in graph theory is a formula concerning the chromatic number
of the direct product of any two graphs G and H, called the Hedetniemi conjecture [8] (see
also [6, 7] and ref.), which states χ(G×H) = min{χ(G), χ(H)}. The inherent difficulty of
Hedetniemi’s conjecture lies in finding lower bounds for χ(G ×H). In this paper we prove
the Hedetniemi’s conjecture to be true in some classes of vertex-transitive graphs.

On the other hand, if I is an independent set of one factor, the pre-image of I under the
projection is an independent set of the product. Then, α(G×H) ≥ max{α(G)|H|, α(H)|G|}.
In this case it is known that the equality does not hold in general. In fact, Jha and Klavžar
show in [11] that for any graph G with at least one edge and for any j ∈ N there is a graph
H such that α(G×H) > max{α(G).|V (H)|, α(H).|V (G)|}+ j. In [16], Tardif asks whether
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αk(G × H) = max{αk(G)|H|, αk(H)|G|} always holds for vertex-transitive graphs, where
αk(G) is the maximal size of an induced k-colourable subgraph of G. In this paper, we
analyze this problem for some vertex-transitive graphs when k = 1.

In other related work, Larose and Tardif investigate in [12] the relationship between
projectivity and the structure of maximal independent sets of finite direct products of several
copies of the same graph G, being G a circular graph, a Kneser graph or a truncated
simplices.

Independence and chromatic properties of circular graphs and Kneser graphs are an-
alyzed using graph homomorphism. An edge-preserving map from φ : V (G) → V (H) is
called a homomorphism from G to H and it is denoted by φ : G → H. We say that G and
H are homomorphically equivalent if there exist φ : G → H and ψ : H → G. Notice that
if there is φ : G → H then χ(G) ≤ χ(H). In particular if G and H are homomorphically
equivalent then χ(G) = χ(H). The following result is direct.

Lemma 1 Let G be a graph and let H be an induced subgraph of G. Then, G×H and H
are homomorphically equivalent and therefore, χ(G×H) = χ(H).

In the context of vertex transitive graphs The “No-Homomorphism” lemma of Albertson
and Collins is useful to get bounds on the size of independent sets.

Lemma 2 (Albertson-Collins [2]) Let G,H be graphs such that H is vertex-transitive and
there is a homomorphism φ : G→ H. Then,

α(G)

|V (G)|
≥

α(H)

|V (H)|
.

The chromatic number of a graph G and its independence number are closely related
via the inequality

χ(G) ≥ d|V (G)|/α(G)e.

Let Kn denotes the complete graph on n vertices. By using this relation, Lemma 2, and
Lemma 1, we can deduce the following well known result.

Corollary 1 Let k ≥ 2 be an integer and let n1, n2, . . . , nk be positive integers. Then,

α (
∏

iKni
) = max

i

{

(
∏

jnj)/ni

}

and χ(
∏

iKni
) = min

i
{ni},

where 1 ≤ i, j ≤ k.

2 Circular graphs

Let m,n be integers such that m ≥ 2n > 0. The circular graph Cm
n is the Cayley graph for

the cyclic group Zm with connector set {n, n+ 1, n+ 2, . . . ,m− n}. These graphs play an
important role in the definition of the star chromatic number defined by Vince in [17]. The
following result can be easily deduced.

Lemma 3 Let m,n be integers with m ≥ 2n > 0. Then, α(Cm
n ) = n and χ(Cm

n ) = dm
n
e.

Concerning homomorphisms between circular graphs, Bondy and Hell show in [3] the
following result.
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Lemma 4 (Bondy-Hell [3]) Let m,n, k be positive integers such that m ≥ 2n. Then, Cm
n

and Ckm
kn are homomorphically equivalent.

Lemma 5 Let r,m be positive integers and let n1, n2, . . . , nr be positive integers such that
n1 ≤ n2 ≤ . . . ≤ nr and m ≥ 2ni, for each i ∈ [r]. Then, Cm

nr
is a subgraph of the graph

Cm
n1

× Cm
n2

× . . . ×Cm
nr

.

Proof Let φ : Cm
nr

→
∏

iC
m
ni

be the map defined by x 7→ (x, x, . . . , x) for all x ∈ V (Cm
nr

).
It is easy to deduce that this map is an injective graph homomorphism. �

By Lemma 5 and Lemma 1 we have the following result.

Corollary 2 Let r,m be positive integers and let n1, n2, . . . , nr be positive integers such that

m ≥ 2ni, for each i ∈ [r]. Then, χ
(
∏

iC
m
ni

)

= min
i
{χ(Cm

ni
)} = min

i

{⌈

m

ni

⌉}

.

Let m1,m2, . . . ,mr be positive integers, with r ≥ 1. We denote by [m1,m2, . . . ,mr] the
least common multiple of m1,m2, . . . ,mr.

Theorem 1 Let r be a positive integer, and let m1,m2, . . . ,mr, n1, n2, . . . , nr be positive
integers such that mi ≥ 2ni, for each i ∈ [r]. Then, χ

(
∏

iC
mi

ni

)

= min
i
{χ(Cmi

ni
)}.

Proof Let m = [m1,m2, . . . ,mr] and ki = m/mi for each i ∈ [r]. By Lemma 4, for each i,
we have Cm

niki
homomorphically equivalent to Cmi

ni
. Therefore

∏

iC
m
niki

is homomorphically
equivalent to

∏

iC
mi

ni
. By Corollary 2, we have

χ

(

∏

i

Cmi

ni

)

= χ
(
∏

iC
m
niki

)

= min
i

{

χ(Cm
niki

)
}

= min
i

{⌈

mi

ni

⌉}

= min
i

{

χ(Cmi

ni
)
}

.

�

Lemma 6 Let r,m be positive integers and let n1, n2, . . . , nr be positive integers such that
m ≥ 2ni, for each i ∈ [r]. Then, α

(
∏

iC
m
ni

)

= mr−1 max
i

{α(Cm
ni

)} = mr−1 max
i

{ni}.

Proof W.l.o.g. we can assume that n1 ≤ n2 ≤ . . . ≤ nr. By Lemma 5, the graph Cm
nr

is
a subgraph of the graph Cm

n1
×Cm

n2
× . . .×Cm

nr
and thus, there is a natural homomorphism

(i.e. the inclusion map) from Cm
nr

to
∏

iC
m
ni

. Moreover, as
∏

i C
m
ni

is vertex-transitive, by
Lemma 2 we have α(Cm

nr
)/m ≥ α

(
∏

iC
m
ni

)

/mr. Therefore,

α
(
∏

iC
m
ni

)

≤ mr−1α(Cm
nr

) = mr−1nr = mr−1 maxi{ni}. �

Theorem 2 Let r be a positive integer, and let m1,m2, . . . ,mr, n1, n2, . . . , nr be positive
integers such that mi ≥ 2ni, for each i ∈ [r]. Let M = m1m2 . . . mr. Then, α

(
∏

iC
mi

ni

)

=
max

i
{α(Cmi

ni
)M/mi} = max

i
{niM/mi}.

Proof Let m = [m1,m2, . . . ,mr] and let ki = m/mi for each i ∈ [r]. By Lemma 4,
∏

i C
m
niki

is homomorphically equivalent to
∏

i C
mi

ni
. Moreover, as

∏

iC
m
niki

and
∏

iC
mi

ni
are vertex-

transitive, by Lemma 2, we have α(
∏

i C
m
niki

)/mr = α(
∏

i C
mi

ni
)/M . Now, by Lemma 6,

we have α(
∏

iC
m
niki

) = mr−1 maxi{niki}. W.l.o.g. we can assume that n1k1 ≤ n2k2 ≤
. . . ≤ nrkr. Therefore, α(

∏

iC
mi

ni
) = nrkrM/m = m1m2 . . . mr−1nr = maxi{niM/mi} =

maxi{α(Cmi

ni
)M/mi}. �
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3 Kneser graphs

Let m,n be positive integers such that m ≥ 2n. The Kneser graph Km
n is the graph whose

vertices are the n-subsets of {0, 1, . . . ,m − 1}, where two vertices are adjacent if they are
disjoint. In a celebrated paper, Lovász shows the following result.

Theorem 3 (Lovász [13]) The chromatic number of Km
n is m− 2n+ 2.

The independence number of Kneser graphs is related to the following classical inequality.

Theorem 4 (Erdös-Ko-Rado, [5]) Let m,n be positive integers such that n < m/2, and F

a family of pairwise intersecting n-subsets of [m]. Then |F| ≤
(

m−1
n−1

)

.

Theorem 4 implies that the sets Ik = {A ∈ V (Km
n ) : k ∈ A} are independent sets of

maximal cardinality in Km
n , for k = 0, 1, . . . ,m− 1. Hilton-Milner [9], show that those are

the only independent sets of maximal cardinality in Km
n .

Concerning homomorphisms between Kneser graphs, Stahl shows the following useful
result.

Theorem 5 (Stahl [15]) Let m,n be integers such that n > 1 and m ≥ 2n. Then, there is
an homomorphism from Km

n to Km−2
n−1 .

Lemma 7 Let n, r be positive integers and let m1 ≤ m2 ≤ . . . ≤ mr be positive integers such
that mi ≥ 2n, for i ∈ [r]. Then, Km1

n is a subgraph of the graph Km1

n ×Km2

n × . . . ×Kmr

n .

Proof Let Φ : Km1

n →
∏

iK
mi

n be the map defined by Φ(A) = (A,A, . . . , A) for all
A ∈ V (Km1

n ). It is clear that this map is an injective homomorphism. �

By Lemma 7, Lemma 1 and Theorem 3 we can deduce the following result.

Corollary 3 Let n, r be positive integers and let m1,m2, . . . ,mr be positive integers such
that mi ≥ 2n, for i ∈ [r]. Then, χ(

∏

iK
mi

n ) = min
i
{χ(Kmi

n )} = min
i
{mi} − 2n+ 2.

Lemma 8 Let r be a positive integer, and let m1,m2, . . . ,mr, n1, n2, . . . , nr be positive in-
tegers such that mi ≥ 2ni, for i ∈ [r], and assume that n1 ≤ n2 ≤ . . . ≤ nr, with nr > 1.

Then, there is a graph homomorphism Φ :
∏

iK
mi+2(nr−ni)
nr

→
∏

iK
mi

ni
.

Proof By Theorem 5, for each i ∈ [r], there is a graph homomorphism φi : K
mi+2(nr−ni)
nr

→

Kmi

ni
. Therefore, there is a graph homomorphism Φ :

∏

iK
mi+2(nr−ni)
nr

→
∏

iK
mi

ni
. �

Theorem 6 Let r be a positive integer, and let m1,m2, . . . ,mr, n1, n2, . . . , nr be positive
integers such that mi ≥ 2ni, for i ∈ [r]. Then, χ

(
∏

iK
mi

ni

)

= min
i
{χ(Kmi

ni
)}.

Proof W.l.o.g. we can assume that n1 ≤ n2 ≤ . . . ≤ nr, and assume that nr > 1. Then, by

Lemma 8, there is a graph homomorphism Φ :
∏

iK
mi+2(nr−ni)
nr

→
∏

iK
mi

ni
, which implies

that χ(
∏

iK
mi

ni
) ≥ χ

(

∏

iK
mi+2(nr−ni)
nr

)

. By Corollary 3 we have χ
(

∏

iK
mi+2(nr−ni)
nr

)

=

min
i
{mi + 2(nr − ni) − 2nr + 2} = min

i
{mi − 2ni + 2} = min

i
{χ(Kmi

ni
)}. �
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Let m,n be positive integers such that m ≥ 2n. The circular graph Cm
n is a sub-

graph of the Kneser graph Km
n . More precisely the map φ : Cm

n → Km
n defined by

φ(u) = {u, u + 1, . . . , u + n − 1} (arithmetic operations are taken modulo m) is an in-
jective graph homomorphism. Notice that the Erdös-Ko-Rado inequality (Theorem 4) can
be easily deduced by using the fact that Cm

n is a subgraph of Km
n , and then, using the

No-Homomorphism-Lemma (Lemma 2). In the same way, we can deduce the independence
number of the direct product of Kneser graphs, which is a particular case of a more general
result of Ahlswede, Aydinian, and Khachatrian [1] in extremal set theory.

Theorem 7 Let r be a positive integer, and let m1,m2, . . . ,mr, n1, n2, . . . , nr be positive
integers such that mi ≥ 2ni, for i ∈ [r]. Let N =

∏

i

(

mi

ni

)

. Then,

α
(
∏

iK
mi

ni

)

= max
i

{

α(Kmi

ni
)N/

(

mi

ni

)

}

.

Proof We know that for each i ∈ [r], we have that Cmi

ni
is a subgraph of Kmi

ni
. Therefore,

there is a homomorphism from
∏

i C
mi

ni
to
∏

iK
mi

ni
. Let M =

∏

imi. By Lemma 2, we have
α(
∏

iC
mi

ni
)/M ≥ α(

∏

iK
mi

ni
)/N . Moreover, by Theorem 2, α

(
∏

iC
mi

ni

)

= max
i

{niM/mi}.

Thus, α(
∏

iK
mi

ni
) ≤ N max

i
{ni/mi} = max

i
{
(

mi−1
ni−1

)

N/
(

mi

ni

)

} = max
i

{α(Kmi

ni
)N/

(

mi

ni

)

}, which

proves this theorem. �

4 Powers of cycles

For positive integers n and a such that n ≥ 2a, we denote by C(n, a) the graph with vertex
set {0, 1, . . . , n− 1} and edge set {ij : i− j ≡ ±k mod n, 1 ≤ k ≤ a}; the graph C(n, a) is
the a-th power of the n-cycle C(n, 1). Notice that graph C(n, a) is the complement graph of
the circular graph Cn

a+1. Prowse and Woodall analyze in [14] a restricted coloring problem
(the list-coloring problem) on powers of cycles. In particular, they show the following result.

Theorem 8 (Prowse-Woodall [14]) Let n, a be positive integers such that a ≤ n/2 and
n = q(a + 1) + r, where q ≥ 1 and 0 ≤ r ≤ a. Then, α(C(n, a)) = b n

a+1c = q and
χ(C(n, a)) = d n

α(C(n,a)) e = a+ 1 + d r
q
e.

Let V1, V2, . . . , Vj be a vertex decomposition (i.e. a partition of the vertex set V ) of the
graph G. Then, it is easy to deduce that α(G) ≤

∑

i α(G[Vi]), where, for 1 ≤ i ≤ j, G[Vi]
denotes the subgraph of G induced by Vi.

Lemma 9 Let m,n, a be positive integers such that a ≤ n/2, and let α = α(C(n, a)). Then,

α(Km × C(n, a)) = max{n,mα}.

Proof Let n = q(a + 1) + r, with q ≥ 1 and 0 ≤ r ≤ a. By Theorem 8 we have that
α = q, and thus we need to prove that α(Km ×C(n, a)) ≤ max{n,mq}. Let I be a maximal
independent set of Km × C(n, a). We can assume that |I| > n. Otherwise, the lemma
trivially holds. Thus, there exists j ∈ {0, . . . , n−1} such that there are at least two vertices
in I with the second coordinate equal to j. As C(n, a) is vertex transitive, we can assume
that j = 0. As I is an independent set, there is no vertex in I having as second coordinate
an integer i, such that 0 < i ≤ a or such that n − a ≤ i ≤ n − 1. Thus, as 0 ≤ r ≤ a,
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we can assume that the remaining vertices of I form an independent set in the induced
subgraph Km ×C(n, a)[{a+1, a+2, . . . , n−r−1}]. This induced subgraph admits a vertex
decomposition into q − 1 subgraphs all of them isomorphic to Km ×Ka+1. Therefore, by
using Corollary 1, we have that |I| ≤ m+(q−1)α(Km ×Ka+1) = m+(q−1)max{m,a+1}.
If m ≥ a+ 1 then |I| ≤ mq. Otherwise, |I| ≤ (a+ 1)q ≤ n. �

Theorem 9 For i = 1, 2, let ni, ai be positive integers such that ni ≥ 2ai, and let αi =
α(C(ni, ai)). Then,

α(C(n1, a1) × C(n2, a2)) = max{α1n2, α2n1}.

Proof For i = 1, 2, arithmetic operations on the vertex set of C(ni, ai) will be taken modulo
ni. Let ni = qi(ai +1)+ ri, with qi ≥ 1 and 0 ≤ ri ≤ ai. By Theorem 8, αi = qi, for i = 1, 2.
Let I be a maximal independence set in the graph C(n1, a1) × C(n2, a2). We should prove
that |I| ≤ max{q1n2, q2n1}. We define I1 = {x ∈ I : (x1 − 1, x2) ∈ I or (x1 + 1, x2) ∈ I}
and I2 = I \ I1. For x ∈ I we define Sx = {(x1, x2 + i) : i = 0, . . . , a2} if x ∈ I1 and
Sx = {(x1 + i, x2) : i = 0, . . . , a1} if x ∈ I2.

Claim 1 Let x, y ∈ I. If x 6= y then Sx ∩ Sy = ∅.

Let x, y ∈ I be such that x 6= y. First we show y 6∈ Sx and x 6∈ Sy. W.l.o.g. as-
sume y ∈ Sx. If x ∈ I1, then x1 = y1 and 0 < y2 − x2 ≤ a2. By the maximality of I,
{(x1, x2 + i) : i = 1, . . . , y2 − x2} ⊂ I, contradicting x ∈ I1. By a similar argument x 6∈ I2.
Now, assume Sx ∩ Sy 6= ∅. Note that if x, y ∈ I1 or x, y ∈ I2, then x ∈ Sy or y ∈ Sx.
Therefore, x ∈ I1 if and only if y ∈ I2. W.l.o.g. assume x ∈ I1 and y ∈ I2. Let z ∈ Sx ∩ Sy.
Then z1 = x1 and z2 = y2. Thus, 0 ≤ y2 − x2 ≤ a2 and 0 ≤ x1 − y1 ≤ a1, contradicting
x, y ∈ I, proving this Claim.

Now, w.l.o.g. assume that a1 ≤ a2 and |I| > n2q1; and let A = ∪x∈ISx. By Claim
1, we have |A| = |I1|(a2 + 1) + |I2|(a1 + 1) ≥ |I|(a1 + 1) > n2q1(a1 + 1). Then there is
0 ≤ j < n2 such that Aj = {0 ≤ x < n1 : (x, j) ∈ A} has size larger than q1(a1 + 1). Given
x ∈ Aj let x̂ be defined as the only point in I such that (x, j) ∈ Sx̂. Also, for i = 1, 2, let
Bi = {x ∈ Aj : x̂ ∈ Ii} and let B ′

2 = {x ∈ Aj : (x, j) = x̂ ∈ I2}. By Claim 1, we have
B′

2 is an independence set in C(n1, a1) and |Aj | = (a1 + 1)|B′
2| + |B1| ≤ (a1 + 1)q1 + |B1|.

Therefore, B1 is nonempty. As C(n1, a1) × C(n2, a2) is vertex-transitive we can assume
Aj = {xi : i = 1, . . . , |Aj |} ordered such that xi+1 > xi for all i and x1 = 0 ∈ B1. Notice
that as |Aj | > q1(a1 + 1), then xi+1 − xi ≤ a1 for all i. Now we want to prove B2 is empty.
For this assume B ′

2 6= ∅ and let k = mini

{

xi ∈ B′
2

}

= mini

{

xi ∈ B2

}

. Then xk−1 ∈ B1.

Now, x̂k−1, x̂k ∈ I, but x̂k
1 − x̂k−1

1 = xk − xk−1 ≤ a1 and x̂k−1
2 − x̂k

2 = j − x̂k−1
2 ≤ a2.

Then x̂k−1
2 = j and by maximality of I we get xk = xk−1 + 1, but this contradicts x̂k ∈ I2.

Therefore B2 is empty.
Finally, by a similar argument to the one above, for every 1 ≤ i ≤ |Aj | we have x̂i

2 = x̂i+1
2

and xi+1 = xi + 1. Therefore there is 0 ≤ j ′ < n2 such that [0, n1 − 1] × {j′} ⊆ I.
W.l.o.g assume j ′ = 0. The vertices in I \ [0, n1 − 1] × {0} belong to the induced subgraph
C(n1, a1)×C(n2, a2)[{a2 +1, a2 +2, . . . , n2 − r2 − 1}], which admits a vertex decomposition
into q2 − 1 subgraphs all of them isomorphic to C(n1, a1)×Ka2+1. Therefore, by Lemma 9,
we have that |I| ≤ n1 +α(C(n1, a1)×Ka2+1)(q2 − 1) = n1 + (q2 − 1)max{n1, (a2 + 1)q1} ≤
max{q2n1, q1n2}. �
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Theorem 10 For i = 1, 2, let ni, ai be positive integers such that ni ≥ 2ai, and let αi =
α(C(ni, ai)). Then,

χ(C(n1, a1) × C(n2, a2)) = min {χ(C(n1, a1)), χ(C(n2, a2))} = min

{⌈

n1

α1

⌉

,

⌈

n2

α2

⌉}

.

Proof For i = 1, 2, let ni = qi(ai + 1) + ri, with qi ≥ 1 and 0 ≤ ri ≤ ai. By Theorem 8
we have that χ(C(ni, ai)) = dni

αi
e, where αi = qi. Moreover, by Theorem 9, we have that

α(C(n1, a1) × C(n2, a2)) = max{n1α2, n2α1}. So, we have that χ(C(n1, a1) × C(n2, a2)) ≥
d n1n2

max{n1α2,n2α1}
e. Thus, if n1α2 ≥ n2α1 then χ(C(n1, a1) × C(n2, a2)) ≥ dn1n2

n1α2
e = dn2

α2
e =

χ(C(n2, a2)). Otherwise, χ(C(n1, a1) × C(n2, a2)) ≥ dn1n2

n2α1
e = dn1

α1
e = χ(C(n1, a1)). There-

fore, χ(C(n1, a1) × C(n2, a2)) ≥ min{χ(C(n1, a1)), χ(C(n2, a2))}. �

Let F and G be graphs. The map graph FG has the set of functions from V (G) to V (F )
as its vertices; two such functions f and h are adjacent in F G if and only if whenever u and
v are adjacent in G, the vertices f(u) and h(v) are adjacent in F . Notice that a vertex in
FG has a loop on it if and only if the corresponding function is a graph homomorphism. In
order to simplify the study of Hedetniemi’s conjecture, El-Zahar and Sauer show in [4] the
following result (see also [6]).

Theorem 11 (El-Zahar, Sauer [4]) Suppose χ(G) > n. Then KG
n is n-colourable if and

only if χ(G×H) > n for all graphs H such that χ(H) > n.

A consequence of Theorem 11 is the following lemma, that follows by induction.

Lemma 10 Let F be a non empty family of graphs such that for any two graphs G,H ∈ F

(not necessarily different) we have that χ(G ×H) = min{χ(G), χ(H)}. Let G1, G2, . . . , Gk

be a collection of graphs in F. Then, χ(
∏

Gi) = min{χ(Gi)}.

We have not be able to generalize Theorem 9 for any finite product of powers of cycles
graphs, and so it remains as an open problem. However, by using Lemma 10 we can
generalize Theorem 10 as follows.

Theorem 12 Let r be a positive integer, and let n1, n2, . . . , nr, a1, a2, . . . , ar be positive
integers such that ni ≥ 2ai, for each i ∈ [r]. Then, χ (

∏

iC(ni, ai)) = min
i
{χ(C(ni, ai)}.

Another interesting open problem is the structure of the independent sets of finite direct
products of vertex-transitive graphs such as the ones studied in this paper.
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