Résumé : L'anneau des polynômes en n variables est souvent vu de façon récursive comme l'anneau des polynômes en 1 variable à coefficients dans les polynômes à n-1 variables. Nous montrons une approche différente qui étudie l'anneau comme une somme linéaire de vecteurs d'entiers de taille n : les exposants des monômes. A partir d'opérations simples sur les vecteurs, on obtient des actions sur les polynômes. Nous définissons des opérations de différences divisées à partir desquelles nous obtenons des bases linéaires de l'anneau des polynômes. Ces bases apparaissent dans le contexte de la géométrie algébrique et peuvent être vues comme des généralisations de certaines bases des polynômes symétriques. Tout l'exposé sera illustré de calculs effectués à partir du logiciel Sage.
Dernière modification : Monday 27 May 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |