Library Top.IE_Property

This file is part of the IE library
Copyright (C) El Ouraoui, Mayero, Mazza
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details.

Require Export Sn_Axiomatic.

Ordre lexicographique sur les paires d'entiers
Inductive lex : (nat × nat) (nat × nat) Prop :=
 | lt_L : s1 s2, (fst s1) < (fst s2) lex s1 s2
 | lt_G : s1 s2, (fst s1) = (fst s2) (snd s1) < (snd s2)
                          lex s1 s2.

Notation "a <lex b" := (lex a b) (at level 70).

Definition f_cp t u := (eta ((t {0 := u })) ) + (eta u).
Definition alpha (t:term) (u:term) :=
   ((f_cp t u ),(num_occ t 0)).

Induction forte; preuve en cours

Axiom sn_ind :
   P : term term Prop,
  ( t u:term,
    ( t' u':term,
       (alpha t' u') <lex (alpha t u) P t' u')
     (P t u) )
   t u:term, P t u .

Lemma One_step_ls :
   t t' u,
    (t [u]) -->ls (t' [u]) num_occ t' 0 < num_occ t 0.

Lemma subst_var_0_eta :
   u, i,
    0 i eta((TVar 0) {i := u}) = eta(TVar 0).

Lemma subst_var_eta :
   u, n i,
    i n eta((TVar n) {i := u}) = eta (TVar n).

La propriété IE


Theorem IEProp : t u:term,
     sn u sn (t {0 := u}) sn(t [u]).