Groupe de lecture LIPN: Apprentissage et Optimisation

Jour, horaire, lieu
lundi de 14h à 15h en A303
Lien visio
https://bbb.lipn.univ-paris13.fr/b/ler-mou-dke-f0x
Lien calendrier (format ics)
calendrier
Discussions
Canal Mattermost

2024/2025

2023/2024

2022/2023

Date Article/Thème Lecture animée par Notes
25/05/23 NLP/ML/CO: a case study Nadi Tomeh  
17/05/23 Fast Continuous and Integer L-shaped Heuristics Through Supervised Learning Francesco Demelas présentation
11/05/23 Constrained Discrete Black-Box Optimization using Mixed-Integer Programming Alexandre Schulz présentation
19/04/23 Reinforcement learning with combinatorial actions: An application to vehicle routing Emiliano Traversi en B107
13/04/23 Machine Learning–Supported Prediction of Dual Variables for the Cutting Stock Problem with an Application in Stabilized Column Generation Francesco Demelas  
29/03/23 Learning Cut Selection for Mixed-Integer Linear Programming via Hierarchical Sequence Model Mathieu Lacroix présentation
16/03/23 Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization Yue Zhang  
09/03/23 Deep ADMM-Net for Compressive Sensing MRI Joseph Le Roux  
09/02/23 A Deep Reinforcement Learning Framework For Column Generation Emiliano Traversi  
18/01/23 COIL: A Deep Architecture for Column Generation Mathieu Lacroix présentation
11/01/23 UNIFY: a Unified Policy Designing Framework for Solving Constrained Optimization Problems with Machine Learning Francesco Demelas présentation
04/01/23 Strong mixed-integer programming formulations for trained neural networks Yue Zhang  
07/12/22 Machine-learning-based arc selection for constrained shortest path problems in column generation Roberto Wolfler-Calvo  
09/11/22 Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions Joseph Le Roux présentation
03/10/22 Solving Mixed Integer Programs Using Neural Networks Xin He  
26/09/22 MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers Alexandre Schulz présentation
19/09/22 Learning with Combinatorial Optimization Layers: a Probabilistic Approach Francesco Demelas présentation

AS 5 ET 2 FD 6 JLR 3 ML 3 NT 1 RWC 2 XH 1 YZ 6

Emacs 29.4 (Org mode 9.6.15)